Properties

Label 54.21.d
Level $54$
Weight $21$
Character orbit 54.d
Rep. character $\chi_{54}(17,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $40$
Newform subspaces $1$
Sturm bound $189$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 21 \)
Character orbit: \([\chi]\) \(=\) 54.d (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(189\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{21}(54, [\chi])\).

Total New Old
Modular forms 372 40 332
Cusp forms 348 40 308
Eisenstein series 24 0 24

Trace form

\( 40 q + 10485760 q^{4} - 29763918 q^{5} + 133479866 q^{7} + 35793208728 q^{11} + 39827158550 q^{13} - 187564400640 q^{14} - 5497558138880 q^{16} - 10560819523540 q^{19} - 15604865040384 q^{20} + 10829007458304 q^{22}+ \cdots - 66\!\cdots\!16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{21}^{\mathrm{new}}(54, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
54.21.d.a 54.d 9.d $40$ $136.897$ None 18.21.d.a \(0\) \(0\) \(-29763918\) \(133479866\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{21}^{\mathrm{old}}(54, [\chi])\) into lower level spaces

\( S_{21}^{\mathrm{old}}(54, [\chi]) \simeq \) \(S_{21}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 2}\)