Properties

Label 54.21.d.a.17.6
Level $54$
Weight $21$
Character 54.17
Analytic conductor $136.897$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [54,21,Mod(17,54)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("54.17"); S:= CuspForms(chi, 21); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(54, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5])) N = Newforms(chi, 21, names="a")
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 21 \)
Character orbit: \([\chi]\) \(=\) 54.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(136.897433155\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.6
Character \(\chi\) \(=\) 54.17
Dual form 54.21.d.a.35.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-627.069 + 362.039i) q^{2} +(262144. - 454047. i) q^{4} +(6.58251e6 + 3.80041e6i) q^{5} +(7.46524e7 + 1.29302e8i) q^{7} +3.79625e8i q^{8} -5.50358e9 q^{10} +(-3.07406e10 + 1.77481e10i) q^{11} +(-1.12062e11 + 1.94097e11i) q^{13} +(-9.36245e10 - 5.40541e10i) q^{14} +(-1.37439e11 - 2.38051e11i) q^{16} +2.48192e12i q^{17} -7.60316e12 q^{19} +(3.45113e12 - 1.99251e12i) q^{20} +(1.28510e13 - 2.22586e13i) q^{22} +(-5.93735e12 - 3.42793e12i) q^{23} +(-1.87975e13 - 3.25581e13i) q^{25} -1.62283e14i q^{26} +7.82787e13 q^{28} +(-6.25109e14 + 3.60907e14i) q^{29} +(4.26088e14 - 7.38006e14i) q^{31} +(1.72368e14 + 9.95164e13i) q^{32} +(-8.98551e14 - 1.55634e15i) q^{34} +1.13484e15i q^{35} +5.72383e15 q^{37} +(4.76771e15 - 2.75264e15i) q^{38} +(-1.44273e15 + 2.49888e15i) q^{40} +(-3.48457e15 - 2.01182e15i) q^{41} +(-1.52227e16 - 2.63664e16i) q^{43} +1.86102e16i q^{44} +4.96417e15 q^{46} +(1.80696e16 - 1.04325e16i) q^{47} +(2.87502e16 - 4.97968e16i) q^{49} +(2.35746e16 + 1.36108e16i) q^{50} +(5.87527e16 + 1.01763e17i) q^{52} +2.64537e17i q^{53} -2.69800e17 q^{55} +(-4.90862e16 + 2.83399e16i) q^{56} +(2.61325e17 - 4.52628e17i) q^{58} +(1.59453e17 + 9.20605e16i) q^{59} +(-1.11733e17 - 1.93528e17i) q^{61} +6.17041e17i q^{62} -1.44115e17 q^{64} +(-1.47530e18 + 8.51763e17i) q^{65} +(2.13397e17 - 3.69615e17i) q^{67} +(1.12691e18 + 6.50620e17i) q^{68} +(-4.10856e17 - 7.11623e17i) q^{70} -5.24061e17i q^{71} -4.66174e18 q^{73} +(-3.58924e18 + 2.07225e18i) q^{74} +(-1.99312e18 + 3.45219e18i) q^{76} +(-4.58972e18 - 2.64987e18i) q^{77} +(1.90733e18 + 3.30360e18i) q^{79} -2.08930e18i q^{80} +2.91343e18 q^{82} +(1.63293e19 - 9.42772e18i) q^{83} +(-9.43231e18 + 1.63372e19i) q^{85} +(1.90913e19 + 1.10224e19i) q^{86} +(-6.73762e18 - 1.16699e19i) q^{88} +3.96851e19i q^{89} -3.34628e19 q^{91} +(-3.11288e18 + 1.79722e18i) q^{92} +(-7.55392e18 + 1.30838e19i) q^{94} +(-5.00478e19 - 2.88951e19i) q^{95} +(5.68257e19 + 9.84250e19i) q^{97} +4.16347e19i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 10485760 q^{4} - 29763918 q^{5} + 133479866 q^{7} + 35793208728 q^{11} + 39827158550 q^{13} - 187564400640 q^{14} - 5497558138880 q^{16} - 10560819523540 q^{19} - 15604865040384 q^{20} + 10829007458304 q^{22}+ \cdots - 66\!\cdots\!16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −627.069 + 362.039i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 262144. 454047.i 0.250000 0.433013i
\(5\) 6.58251e6 + 3.80041e6i 0.674049 + 0.389162i 0.797609 0.603175i \(-0.206098\pi\)
−0.123560 + 0.992337i \(0.539431\pi\)
\(6\) 0 0
\(7\) 7.46524e7 + 1.29302e8i 0.264279 + 0.457745i 0.967375 0.253350i \(-0.0815326\pi\)
−0.703095 + 0.711096i \(0.748199\pi\)
\(8\) 3.79625e8i 0.353553i
\(9\) 0 0
\(10\) −5.50358e9 −0.550358
\(11\) −3.07406e10 + 1.77481e10i −1.18518 + 0.684266i −0.957208 0.289401i \(-0.906544\pi\)
−0.227975 + 0.973667i \(0.573210\pi\)
\(12\) 0 0
\(13\) −1.12062e11 + 1.94097e11i −0.812877 + 1.40794i 0.0979657 + 0.995190i \(0.468766\pi\)
−0.910842 + 0.412754i \(0.864567\pi\)
\(14\) −9.36245e10 5.40541e10i −0.323675 0.186874i
\(15\) 0 0
\(16\) −1.37439e11 2.38051e11i −0.125000 0.216506i
\(17\) 2.48192e12i 1.23111i 0.788092 + 0.615557i \(0.211069\pi\)
−0.788092 + 0.615557i \(0.788931\pi\)
\(18\) 0 0
\(19\) −7.60316e12 −1.24010 −0.620052 0.784561i \(-0.712888\pi\)
−0.620052 + 0.784561i \(0.712888\pi\)
\(20\) 3.45113e12 1.99251e12i 0.337024 0.194581i
\(21\) 0 0
\(22\) 1.28510e13 2.22586e13i 0.483849 0.838051i
\(23\) −5.93735e12 3.42793e12i −0.143322 0.0827472i 0.426624 0.904429i \(-0.359703\pi\)
−0.569946 + 0.821682i \(0.693036\pi\)
\(24\) 0 0
\(25\) −1.87975e13 3.25581e13i −0.197106 0.341397i
\(26\) 1.62283e14i 1.14958i
\(27\) 0 0
\(28\) 7.82787e13 0.264279
\(29\) −6.25109e14 + 3.60907e14i −1.48585 + 0.857858i −0.999870 0.0161097i \(-0.994872\pi\)
−0.485984 + 0.873968i \(0.661539\pi\)
\(30\) 0 0
\(31\) 4.26088e14 7.38006e14i 0.519855 0.900415i −0.479879 0.877335i \(-0.659319\pi\)
0.999734 0.0230802i \(-0.00734730\pi\)
\(32\) 1.72368e14 + 9.95164e13i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) −8.98551e14 1.55634e15i −0.435265 0.753900i
\(35\) 1.13484e15i 0.411390i
\(36\) 0 0
\(37\) 5.72383e15 1.19033 0.595167 0.803602i \(-0.297086\pi\)
0.595167 + 0.803602i \(0.297086\pi\)
\(38\) 4.76771e15 2.75264e15i 0.759405 0.438443i
\(39\) 0 0
\(40\) −1.44273e15 + 2.49888e15i −0.137590 + 0.238312i
\(41\) −3.48457e15 2.01182e15i −0.259604 0.149882i 0.364550 0.931184i \(-0.381223\pi\)
−0.624154 + 0.781301i \(0.714556\pi\)
\(42\) 0 0
\(43\) −1.52227e16 2.63664e16i −0.704379 1.22002i −0.966915 0.255098i \(-0.917892\pi\)
0.262537 0.964922i \(-0.415441\pi\)
\(44\) 1.86102e16i 0.684266i
\(45\) 0 0
\(46\) 4.96417e15 0.117022
\(47\) 1.80696e16 1.04325e16i 0.343534 0.198339i −0.318300 0.947990i \(-0.603112\pi\)
0.661834 + 0.749651i \(0.269779\pi\)
\(48\) 0 0
\(49\) 2.87502e16 4.97968e16i 0.360313 0.624080i
\(50\) 2.35746e16 + 1.36108e16i 0.241404 + 0.139375i
\(51\) 0 0
\(52\) 5.87527e16 + 1.01763e17i 0.406438 + 0.703972i
\(53\) 2.64537e17i 1.51261i 0.654219 + 0.756305i \(0.272998\pi\)
−0.654219 + 0.756305i \(0.727002\pi\)
\(54\) 0 0
\(55\) −2.69800e17 −1.06516
\(56\) −4.90862e16 + 2.83399e16i −0.161837 + 0.0934369i
\(57\) 0 0
\(58\) 2.61325e17 4.52628e17i 0.606597 1.05066i
\(59\) 1.59453e17 + 9.20605e16i 0.311971 + 0.180116i 0.647808 0.761804i \(-0.275686\pi\)
−0.335837 + 0.941920i \(0.609019\pi\)
\(60\) 0 0
\(61\) −1.11733e17 1.93528e17i −0.156633 0.271297i 0.777019 0.629477i \(-0.216731\pi\)
−0.933653 + 0.358180i \(0.883397\pi\)
\(62\) 6.17041e17i 0.735186i
\(63\) 0 0
\(64\) −1.44115e17 −0.125000
\(65\) −1.47530e18 + 8.51763e17i −1.09584 + 0.632682i
\(66\) 0 0
\(67\) 2.13397e17 3.69615e17i 0.117069 0.202769i −0.801536 0.597946i \(-0.795984\pi\)
0.918605 + 0.395177i \(0.129317\pi\)
\(68\) 1.12691e18 + 6.50620e17i 0.533088 + 0.307779i
\(69\) 0 0
\(70\) −4.10856e17 7.11623e17i −0.145448 0.251924i
\(71\) 5.24061e17i 0.160990i −0.996755 0.0804950i \(-0.974350\pi\)
0.996755 0.0804950i \(-0.0256501\pi\)
\(72\) 0 0
\(73\) −4.66174e18 −1.08472 −0.542362 0.840145i \(-0.682470\pi\)
−0.542362 + 0.840145i \(0.682470\pi\)
\(74\) −3.58924e18 + 2.07225e18i −0.728928 + 0.420847i
\(75\) 0 0
\(76\) −1.99312e18 + 3.45219e18i −0.310026 + 0.536981i
\(77\) −4.58972e18 2.64987e18i −0.626439 0.361675i
\(78\) 0 0
\(79\) 1.90733e18 + 3.30360e18i 0.201444 + 0.348912i 0.948994 0.315294i \(-0.102103\pi\)
−0.747550 + 0.664206i \(0.768770\pi\)
\(80\) 2.08930e18i 0.194581i
\(81\) 0 0
\(82\) 2.91343e18 0.211966
\(83\) 1.63293e19 9.42772e18i 1.05241 0.607611i 0.129089 0.991633i \(-0.458795\pi\)
0.923324 + 0.384022i \(0.125461\pi\)
\(84\) 0 0
\(85\) −9.43231e18 + 1.63372e19i −0.479103 + 0.829831i
\(86\) 1.90913e19 + 1.10224e19i 0.862684 + 0.498071i
\(87\) 0 0
\(88\) −6.73762e18 1.16699e19i −0.241924 0.419025i
\(89\) 3.96851e19i 1.27270i 0.771399 + 0.636352i \(0.219558\pi\)
−0.771399 + 0.636352i \(0.780442\pi\)
\(90\) 0 0
\(91\) −3.34628e19 −0.859306
\(92\) −3.11288e18 + 1.79722e18i −0.0716612 + 0.0413736i
\(93\) 0 0
\(94\) −7.55392e18 + 1.30838e19i −0.140247 + 0.242915i
\(95\) −5.00478e19 2.88951e19i −0.835890 0.482601i
\(96\) 0 0
\(97\) 5.68257e19 + 9.84250e19i 0.770597 + 1.33471i 0.937236 + 0.348695i \(0.113375\pi\)
−0.166639 + 0.986018i \(0.553292\pi\)
\(98\) 4.16347e19i 0.509559i
\(99\) 0 0
\(100\) −1.97106e19 −0.197106
\(101\) 6.10749e19 3.52616e19i 0.552903 0.319219i −0.197389 0.980325i \(-0.563246\pi\)
0.750292 + 0.661106i \(0.229913\pi\)
\(102\) 0 0
\(103\) 3.14589e19 5.44884e19i 0.234084 0.405445i −0.724922 0.688831i \(-0.758124\pi\)
0.959006 + 0.283386i \(0.0914577\pi\)
\(104\) −7.36841e19 4.25415e19i −0.497783 0.287395i
\(105\) 0 0
\(106\) −9.57725e19 1.65883e20i −0.534789 0.926281i
\(107\) 3.83535e19i 0.194970i −0.995237 0.0974848i \(-0.968920\pi\)
0.995237 0.0974848i \(-0.0310797\pi\)
\(108\) 0 0
\(109\) −2.15650e20 −0.910928 −0.455464 0.890254i \(-0.650527\pi\)
−0.455464 + 0.890254i \(0.650527\pi\)
\(110\) 1.69183e20 9.76781e19i 0.652275 0.376591i
\(111\) 0 0
\(112\) 2.05203e19 3.55422e19i 0.0660698 0.114436i
\(113\) −6.06526e19 3.50178e19i −0.178675 0.103158i 0.407995 0.912984i \(-0.366228\pi\)
−0.586670 + 0.809826i \(0.699561\pi\)
\(114\) 0 0
\(115\) −2.60551e19 4.51287e19i −0.0644042 0.111551i
\(116\) 3.78439e20i 0.857858i
\(117\) 0 0
\(118\) −1.33318e20 −0.254723
\(119\) −3.20916e20 + 1.85281e20i −0.563537 + 0.325358i
\(120\) 0 0
\(121\) 2.93614e20 5.08555e20i 0.436439 0.755934i
\(122\) 1.40129e20 + 8.09035e19i 0.191836 + 0.110756i
\(123\) 0 0
\(124\) −2.23393e20 3.86927e20i −0.259927 0.450207i
\(125\) 1.01062e21i 1.08515i
\(126\) 0 0
\(127\) 1.83140e21 1.67782 0.838909 0.544271i \(-0.183194\pi\)
0.838909 + 0.544271i \(0.183194\pi\)
\(128\) 9.03702e19 5.21753e19i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) 6.16743e20 1.06823e21i 0.447374 0.774874i
\(131\) 7.80204e20 + 4.50451e20i 0.524198 + 0.302646i 0.738651 0.674089i \(-0.235463\pi\)
−0.214452 + 0.976734i \(0.568797\pi\)
\(132\) 0 0
\(133\) −5.67594e20 9.83101e20i −0.327734 0.567652i
\(134\) 3.09032e20i 0.165560i
\(135\) 0 0
\(136\) −9.42199e20 −0.435265
\(137\) 3.41822e21 1.97351e21i 1.46756 0.847293i 0.468215 0.883614i \(-0.344897\pi\)
0.999340 + 0.0363210i \(0.0115639\pi\)
\(138\) 0 0
\(139\) −1.81808e20 + 3.14901e20i −0.0675252 + 0.116957i −0.897811 0.440380i \(-0.854844\pi\)
0.830286 + 0.557337i \(0.188177\pi\)
\(140\) 5.15270e20 + 2.97491e20i 0.178137 + 0.102848i
\(141\) 0 0
\(142\) 1.89731e20 + 3.28623e20i 0.0569185 + 0.0985858i
\(143\) 7.95554e21i 2.22489i
\(144\) 0 0
\(145\) −5.48638e21 −1.33538
\(146\) 2.92323e21 1.68773e21i 0.664255 0.383508i
\(147\) 0 0
\(148\) 1.50047e21 2.59888e21i 0.297584 0.515430i
\(149\) −5.60568e21 3.23644e21i −1.03936 0.600074i −0.119707 0.992809i \(-0.538196\pi\)
−0.919652 + 0.392735i \(0.871529\pi\)
\(150\) 0 0
\(151\) 2.43706e20 + 4.22110e20i 0.0395454 + 0.0684946i 0.885121 0.465362i \(-0.154076\pi\)
−0.845575 + 0.533856i \(0.820742\pi\)
\(152\) 2.88635e21i 0.438443i
\(153\) 0 0
\(154\) 3.83743e21 0.511485
\(155\) 5.60945e21 3.23862e21i 0.700815 0.404616i
\(156\) 0 0
\(157\) 7.80176e21 1.35130e22i 0.857424 1.48510i −0.0169529 0.999856i \(-0.505397\pi\)
0.874377 0.485246i \(-0.161270\pi\)
\(158\) −2.39206e21 1.38106e21i −0.246718 0.142443i
\(159\) 0 0
\(160\) 7.56407e20 + 1.31014e21i 0.0687948 + 0.119156i
\(161\) 1.02361e21i 0.0874735i
\(162\) 0 0
\(163\) −1.64606e22 −1.24328 −0.621642 0.783301i \(-0.713534\pi\)
−0.621642 + 0.783301i \(0.713534\pi\)
\(164\) −1.82692e21 + 1.05477e21i −0.129802 + 0.0749412i
\(165\) 0 0
\(166\) −6.82640e21 + 1.18237e22i −0.429646 + 0.744169i
\(167\) 1.96107e22 + 1.13222e22i 1.16233 + 0.671069i 0.951860 0.306532i \(-0.0991688\pi\)
0.210465 + 0.977601i \(0.432502\pi\)
\(168\) 0 0
\(169\) −1.56133e22 2.70430e22i −0.821537 1.42294i
\(170\) 1.36595e22i 0.677554i
\(171\) 0 0
\(172\) −1.59621e22 −0.704379
\(173\) 1.12442e19 6.49185e18i 0.000468239 0.000270338i −0.499766 0.866161i \(-0.666581\pi\)
0.500234 + 0.865890i \(0.333247\pi\)
\(174\) 0 0
\(175\) 2.80655e21 4.86109e21i 0.104182 0.180448i
\(176\) 8.44991e21 + 4.87856e21i 0.296296 + 0.171066i
\(177\) 0 0
\(178\) −1.43675e22 2.48853e22i −0.449969 0.779369i
\(179\) 7.50426e21i 0.222217i 0.993808 + 0.111109i \(0.0354402\pi\)
−0.993808 + 0.111109i \(0.964560\pi\)
\(180\) 0 0
\(181\) 1.29707e22 0.343698 0.171849 0.985123i \(-0.445026\pi\)
0.171849 + 0.985123i \(0.445026\pi\)
\(182\) 2.09835e22 1.21148e22i 0.526216 0.303811i
\(183\) 0 0
\(184\) 1.30133e21 2.25397e21i 0.0292556 0.0506721i
\(185\) 3.76771e22 + 2.17529e22i 0.802344 + 0.463233i
\(186\) 0 0
\(187\) −4.40493e22 7.62956e22i −0.842409 1.45910i
\(188\) 1.09392e22i 0.198339i
\(189\) 0 0
\(190\) 4.18446e22 0.682501
\(191\) 5.31082e22 3.06621e22i 0.821917 0.474534i −0.0291598 0.999575i \(-0.509283\pi\)
0.851077 + 0.525041i \(0.175950\pi\)
\(192\) 0 0
\(193\) 3.02115e22 5.23278e22i 0.421307 0.729725i −0.574760 0.818322i \(-0.694905\pi\)
0.996068 + 0.0885963i \(0.0282381\pi\)
\(194\) −7.12673e22 4.11462e22i −0.943785 0.544894i
\(195\) 0 0
\(196\) −1.50734e22 2.61078e22i −0.180156 0.312040i
\(197\) 1.14453e22i 0.130007i 0.997885 + 0.0650033i \(0.0207058\pi\)
−0.997885 + 0.0650033i \(0.979294\pi\)
\(198\) 0 0
\(199\) −1.31665e23 −1.35189 −0.675944 0.736953i \(-0.736264\pi\)
−0.675944 + 0.736953i \(0.736264\pi\)
\(200\) 1.23599e22 7.13598e21i 0.120702 0.0696873i
\(201\) 0 0
\(202\) −2.55321e22 + 4.42230e22i −0.225722 + 0.390962i
\(203\) −9.33318e22 5.38852e22i −0.785361 0.453428i
\(204\) 0 0
\(205\) −1.52915e22 2.64856e22i −0.116657 0.202056i
\(206\) 4.55573e22i 0.331044i
\(207\) 0 0
\(208\) 6.16067e22 0.406438
\(209\) 2.33726e23 1.34941e23i 1.46975 0.848560i
\(210\) 0 0
\(211\) 9.04919e22 1.56737e23i 0.517351 0.896078i −0.482446 0.875926i \(-0.660252\pi\)
0.999797 0.0201520i \(-0.00641503\pi\)
\(212\) 1.20112e23 + 6.93467e22i 0.654980 + 0.378153i
\(213\) 0 0
\(214\) 1.38854e22 + 2.40503e22i 0.0689322 + 0.119394i
\(215\) 2.31410e23i 1.09647i
\(216\) 0 0
\(217\) 1.27234e23 0.549548
\(218\) 1.35227e23 7.80736e22i 0.557827 0.322062i
\(219\) 0 0
\(220\) −7.07265e22 + 1.22502e23i −0.266290 + 0.461228i
\(221\) −4.81733e23 2.78129e23i −1.73334 1.00074i
\(222\) 0 0
\(223\) 1.43694e23 + 2.48886e23i 0.472489 + 0.818375i 0.999504 0.0314811i \(-0.0100224\pi\)
−0.527016 + 0.849856i \(0.676689\pi\)
\(224\) 2.97166e22i 0.0934369i
\(225\) 0 0
\(226\) 5.07112e22 0.145888
\(227\) −1.30573e23 + 7.53864e22i −0.359414 + 0.207508i −0.668824 0.743421i \(-0.733202\pi\)
0.309410 + 0.950929i \(0.399869\pi\)
\(228\) 0 0
\(229\) −3.18946e23 + 5.52431e23i −0.804197 + 1.39291i 0.112635 + 0.993636i \(0.464071\pi\)
−0.916832 + 0.399274i \(0.869262\pi\)
\(230\) 3.26767e22 + 1.88659e22i 0.0788787 + 0.0455406i
\(231\) 0 0
\(232\) −1.37009e23 2.37307e23i −0.303299 0.525329i
\(233\) 6.25874e22i 0.132717i 0.997796 + 0.0663587i \(0.0211382\pi\)
−0.997796 + 0.0663587i \(0.978862\pi\)
\(234\) 0 0
\(235\) 1.58591e23 0.308745
\(236\) 8.35995e22 4.82662e22i 0.155985 0.0900582i
\(237\) 0 0
\(238\) 1.34158e23 2.32368e23i 0.230063 0.398481i
\(239\) 2.82126e23 + 1.62886e23i 0.463943 + 0.267857i 0.713701 0.700451i \(-0.247018\pi\)
−0.249758 + 0.968308i \(0.580351\pi\)
\(240\) 0 0
\(241\) 7.38294e22 + 1.27876e23i 0.111701 + 0.193473i 0.916456 0.400135i \(-0.131037\pi\)
−0.804755 + 0.593607i \(0.797703\pi\)
\(242\) 4.25199e23i 0.617217i
\(243\) 0 0
\(244\) −1.17161e23 −0.156633
\(245\) 3.78496e23 2.18525e23i 0.485737 0.280440i
\(246\) 0 0
\(247\) 8.52025e23 1.47575e24i 1.00805 1.74600i
\(248\) 2.80165e23 + 1.61754e23i 0.318345 + 0.183796i
\(249\) 0 0
\(250\) 3.65885e23 + 6.33731e23i 0.383658 + 0.664515i
\(251\) 1.48369e24i 1.49488i 0.664331 + 0.747439i \(0.268717\pi\)
−0.664331 + 0.747439i \(0.731283\pi\)
\(252\) 0 0
\(253\) 2.43357e23 0.226484
\(254\) −1.14841e24 + 6.63036e23i −1.02745 + 0.593199i
\(255\) 0 0
\(256\) −3.77789e22 + 6.54350e22i −0.0312500 + 0.0541266i
\(257\) −2.06910e24 1.19460e24i −1.64608 0.950363i −0.978610 0.205723i \(-0.934045\pi\)
−0.667467 0.744640i \(-0.732621\pi\)
\(258\) 0 0
\(259\) 4.27297e23 + 7.40101e23i 0.314581 + 0.544870i
\(260\) 8.93139e23i 0.632682i
\(261\) 0 0
\(262\) −6.52323e23 −0.428006
\(263\) −1.37083e24 + 7.91449e23i −0.865816 + 0.499879i −0.865956 0.500121i \(-0.833289\pi\)
0.000139273 1.00000i \(0.499956\pi\)
\(264\) 0 0
\(265\) −1.00535e24 + 1.74131e24i −0.588651 + 1.01957i
\(266\) 7.11841e23 + 4.10982e23i 0.401390 + 0.231743i
\(267\) 0 0
\(268\) −1.11882e23 1.93785e23i −0.0585343 0.101384i
\(269\) 2.82543e24i 1.42417i 0.702093 + 0.712085i \(0.252249\pi\)
−0.702093 + 0.712085i \(0.747751\pi\)
\(270\) 0 0
\(271\) 9.79278e23 0.458367 0.229183 0.973383i \(-0.426394\pi\)
0.229183 + 0.973383i \(0.426394\pi\)
\(272\) 5.90824e23 3.41112e23i 0.266544 0.153889i
\(273\) 0 0
\(274\) −1.42897e24 + 2.47506e24i −0.599127 + 1.03772i
\(275\) 1.15569e24 + 6.67238e23i 0.467212 + 0.269745i
\(276\) 0 0
\(277\) 1.42582e23 + 2.46958e23i 0.0536124 + 0.0928595i 0.891586 0.452851i \(-0.149593\pi\)
−0.837974 + 0.545711i \(0.816260\pi\)
\(278\) 2.63287e23i 0.0954950i
\(279\) 0 0
\(280\) −4.30813e23 −0.145448
\(281\) −3.45341e24 + 1.99383e24i −1.12508 + 0.649568i −0.942694 0.333658i \(-0.891717\pi\)
−0.182391 + 0.983226i \(0.558384\pi\)
\(282\) 0 0
\(283\) −1.81450e24 + 3.14281e24i −0.550672 + 0.953792i 0.447554 + 0.894257i \(0.352295\pi\)
−0.998226 + 0.0595353i \(0.981038\pi\)
\(284\) −2.37948e23 1.37380e23i −0.0697107 0.0402475i
\(285\) 0 0
\(286\) 2.88021e24 + 4.98868e24i 0.786619 + 1.36246i
\(287\) 6.00749e23i 0.158443i
\(288\) 0 0
\(289\) −2.09569e24 −0.515642
\(290\) 3.44034e24 1.98628e24i 0.817752 0.472129i
\(291\) 0 0
\(292\) −1.22205e24 + 2.11665e24i −0.271181 + 0.469699i
\(293\) −3.58144e24 2.06774e24i −0.768036 0.443426i 0.0641378 0.997941i \(-0.479570\pi\)
−0.832173 + 0.554516i \(0.812904\pi\)
\(294\) 0 0
\(295\) 6.99735e23 + 1.21198e24i 0.140189 + 0.242814i
\(296\) 2.17291e24i 0.420847i
\(297\) 0 0
\(298\) 4.68686e24 0.848633
\(299\) 1.33070e24 7.68281e23i 0.233007 0.134527i
\(300\) 0 0
\(301\) 2.27282e24 3.93663e24i 0.372306 0.644852i
\(302\) −3.05641e23 1.76462e23i −0.0484330 0.0279628i
\(303\) 0 0
\(304\) 1.04497e24 + 1.80994e24i 0.155013 + 0.268490i
\(305\) 1.69853e24i 0.243823i
\(306\) 0 0
\(307\) 8.10863e23 0.109034 0.0545172 0.998513i \(-0.482638\pi\)
0.0545172 + 0.998513i \(0.482638\pi\)
\(308\) −2.40633e24 + 1.38930e24i −0.313219 + 0.180837i
\(309\) 0 0
\(310\) −2.34501e24 + 4.06168e24i −0.286106 + 0.495551i
\(311\) −4.54701e24 2.62521e24i −0.537182 0.310142i 0.206754 0.978393i \(-0.433710\pi\)
−0.743936 + 0.668251i \(0.767043\pi\)
\(312\) 0 0
\(313\) −6.63668e24 1.14951e25i −0.735373 1.27370i −0.954560 0.298020i \(-0.903674\pi\)
0.219187 0.975683i \(-0.429660\pi\)
\(314\) 1.12982e25i 1.21258i
\(315\) 0 0
\(316\) 1.99998e24 0.201444
\(317\) 3.58125e24 2.06763e24i 0.349496 0.201781i −0.314968 0.949102i \(-0.601994\pi\)
0.664463 + 0.747321i \(0.268660\pi\)
\(318\) 0 0
\(319\) 1.28108e25 2.21890e25i 1.17401 2.03344i
\(320\) −9.48639e23 5.47697e23i −0.0842561 0.0486453i
\(321\) 0 0
\(322\) 3.70587e23 + 6.41876e23i 0.0309266 + 0.0535664i
\(323\) 1.88704e25i 1.52671i
\(324\) 0 0
\(325\) 8.42592e24 0.640890
\(326\) 1.03220e25 5.95939e24i 0.761353 0.439568i
\(327\) 0 0
\(328\) 7.63737e23 1.32283e24i 0.0529914 0.0917838i
\(329\) 2.69788e24 + 1.55762e24i 0.181578 + 0.104834i
\(330\) 0 0
\(331\) −7.88493e24 1.36571e25i −0.499480 0.865125i 0.500520 0.865725i \(-0.333142\pi\)
−1.00000 0.000600484i \(0.999809\pi\)
\(332\) 9.88568e24i 0.607611i
\(333\) 0 0
\(334\) −1.63963e25 −0.949035
\(335\) 2.80938e24 1.62199e24i 0.157820 0.0911174i
\(336\) 0 0
\(337\) −9.06706e24 + 1.57046e25i −0.479918 + 0.831243i −0.999735 0.0230352i \(-0.992667\pi\)
0.519816 + 0.854278i \(0.326000\pi\)
\(338\) 1.95812e25 + 1.13052e25i 1.00617 + 0.580915i
\(339\) 0 0
\(340\) 4.94525e24 + 8.56542e24i 0.239552 + 0.414915i
\(341\) 3.02490e25i 1.42287i
\(342\) 0 0
\(343\) 2.04984e25 0.909452
\(344\) 1.00094e25 5.77891e24i 0.431342 0.249035i
\(345\) 0 0
\(346\) −4.70060e21 + 8.14168e21i −0.000191158 + 0.000331095i
\(347\) −3.70313e25 2.13800e25i −1.46310 0.844722i −0.463947 0.885863i \(-0.653567\pi\)
−0.999153 + 0.0411410i \(0.986901\pi\)
\(348\) 0 0
\(349\) −2.08032e25 3.60322e25i −0.776026 1.34412i −0.934216 0.356708i \(-0.883899\pi\)
0.158190 0.987409i \(-0.449434\pi\)
\(350\) 4.06432e24i 0.147335i
\(351\) 0 0
\(352\) −7.06490e24 −0.241924
\(353\) 3.51532e25 2.02957e25i 1.17009 0.675550i 0.216387 0.976308i \(-0.430573\pi\)
0.953701 + 0.300757i \(0.0972394\pi\)
\(354\) 0 0
\(355\) 1.99165e24 3.44964e24i 0.0626512 0.108515i
\(356\) 1.80189e25 + 1.04032e25i 0.551097 + 0.318176i
\(357\) 0 0
\(358\) −2.71683e24 4.70569e24i −0.0785657 0.136080i
\(359\) 4.95875e25i 1.39453i −0.716813 0.697265i \(-0.754400\pi\)
0.716813 0.697265i \(-0.245600\pi\)
\(360\) 0 0
\(361\) 2.02180e25 0.537857
\(362\) −8.13351e24 + 4.69588e24i −0.210471 + 0.121515i
\(363\) 0 0
\(364\) −8.77207e24 + 1.51937e25i −0.214827 + 0.372091i
\(365\) −3.06859e25 1.77165e25i −0.731157 0.422133i
\(366\) 0 0
\(367\) −3.21235e25 5.56395e25i −0.724706 1.25523i −0.959095 0.283084i \(-0.908642\pi\)
0.234389 0.972143i \(-0.424691\pi\)
\(368\) 1.88452e24i 0.0413736i
\(369\) 0 0
\(370\) −3.15016e25 −0.655111
\(371\) −3.42051e25 + 1.97483e25i −0.692391 + 0.399752i
\(372\) 0 0
\(373\) −2.95448e23 + 5.11730e23i −0.00566751 + 0.00981642i −0.868845 0.495084i \(-0.835137\pi\)
0.863178 + 0.504900i \(0.168471\pi\)
\(374\) 5.52439e25 + 3.18951e25i 1.03174 + 0.595673i
\(375\) 0 0
\(376\) 3.96043e24 + 6.85967e24i 0.0701236 + 0.121458i
\(377\) 1.61776e26i 2.78933i
\(378\) 0 0
\(379\) −2.73780e25 −0.447724 −0.223862 0.974621i \(-0.571866\pi\)
−0.223862 + 0.974621i \(0.571866\pi\)
\(380\) −2.62395e25 + 1.51494e25i −0.417945 + 0.241301i
\(381\) 0 0
\(382\) −2.22017e25 + 3.84545e25i −0.335546 + 0.581183i
\(383\) 8.05273e25 + 4.64925e25i 1.18565 + 0.684534i 0.957314 0.289049i \(-0.0933391\pi\)
0.228333 + 0.973583i \(0.426672\pi\)
\(384\) 0 0
\(385\) −2.01412e25 3.48856e25i −0.281500 0.487573i
\(386\) 4.37509e25i 0.595818i
\(387\) 0 0
\(388\) 5.95860e25 0.770597
\(389\) −1.85413e25 + 1.07048e25i −0.233692 + 0.134922i −0.612274 0.790645i \(-0.709745\pi\)
0.378582 + 0.925568i \(0.376412\pi\)
\(390\) 0 0
\(391\) 8.50784e24 1.47360e25i 0.101871 0.176446i
\(392\) 1.89041e25 + 1.09143e25i 0.220646 + 0.127390i
\(393\) 0 0
\(394\) −4.14364e24 7.17700e24i −0.0459643 0.0796124i
\(395\) 2.89946e25i 0.313578i
\(396\) 0 0
\(397\) −1.11602e26 −1.14754 −0.573768 0.819018i \(-0.694519\pi\)
−0.573768 + 0.819018i \(0.694519\pi\)
\(398\) 8.25633e25 4.76679e25i 0.827859 0.477964i
\(399\) 0 0
\(400\) −5.16700e24 + 8.94951e24i −0.0492764 + 0.0853492i
\(401\) 4.79054e25 + 2.76582e25i 0.445596 + 0.257265i 0.705968 0.708243i \(-0.250512\pi\)
−0.260373 + 0.965508i \(0.583845\pi\)
\(402\) 0 0
\(403\) 9.54965e25 + 1.65405e26i 0.845156 + 1.46385i
\(404\) 3.69745e25i 0.319219i
\(405\) 0 0
\(406\) 7.80340e25 0.641245
\(407\) −1.75954e26 + 1.01587e26i −1.41076 + 0.814505i
\(408\) 0 0
\(409\) 4.79100e25 8.29825e25i 0.365757 0.633510i −0.623140 0.782110i \(-0.714143\pi\)
0.988897 + 0.148600i \(0.0474767\pi\)
\(410\) 1.91776e25 + 1.10722e25i 0.142875 + 0.0824890i
\(411\) 0 0
\(412\) −1.64935e25 2.85676e25i −0.117042 0.202722i
\(413\) 2.74901e25i 0.190404i
\(414\) 0 0
\(415\) 1.43317e26 0.945837
\(416\) −3.86317e25 + 2.23040e25i −0.248892 + 0.143698i
\(417\) 0 0
\(418\) −9.77081e25 + 1.69235e26i −0.600023 + 1.03927i
\(419\) −1.42182e26 8.20890e25i −0.852521 0.492203i 0.00897958 0.999960i \(-0.497142\pi\)
−0.861501 + 0.507756i \(0.830475\pi\)
\(420\) 0 0
\(421\) −1.67320e26 2.89806e26i −0.956590 1.65686i −0.730687 0.682712i \(-0.760800\pi\)
−0.225902 0.974150i \(-0.572533\pi\)
\(422\) 1.31046e26i 0.731644i
\(423\) 0 0
\(424\) −1.00425e26 −0.534789
\(425\) 8.08067e25 4.66538e25i 0.420299 0.242659i
\(426\) 0 0
\(427\) 1.66823e25 2.88946e25i 0.0827899 0.143396i
\(428\) −1.74143e25 1.00541e25i −0.0844243 0.0487424i
\(429\) 0 0
\(430\) 8.37792e25 + 1.45110e26i 0.387661 + 0.671448i
\(431\) 1.33586e26i 0.603933i 0.953318 + 0.301967i \(0.0976431\pi\)
−0.953318 + 0.301967i \(0.902357\pi\)
\(432\) 0 0
\(433\) 3.10651e26 1.34089 0.670446 0.741958i \(-0.266103\pi\)
0.670446 + 0.741958i \(0.266103\pi\)
\(434\) −7.97845e25 + 4.60636e25i −0.336528 + 0.194294i
\(435\) 0 0
\(436\) −5.65313e25 + 9.79151e25i −0.227732 + 0.394443i
\(437\) 4.51426e25 + 2.60631e25i 0.177735 + 0.102615i
\(438\) 0 0
\(439\) −5.58564e25 9.67461e25i −0.210101 0.363905i 0.741645 0.670793i \(-0.234046\pi\)
−0.951746 + 0.306887i \(0.900713\pi\)
\(440\) 1.02423e26i 0.376591i
\(441\) 0 0
\(442\) 4.02773e26 1.41527
\(443\) −2.50501e26 + 1.44627e26i −0.860542 + 0.496834i −0.864194 0.503159i \(-0.832171\pi\)
0.00365183 + 0.999993i \(0.498838\pi\)
\(444\) 0 0
\(445\) −1.50820e26 + 2.61228e26i −0.495288 + 0.857865i
\(446\) −1.80213e26 1.04046e26i −0.578678 0.334100i
\(447\) 0 0
\(448\) −1.07585e25 1.86343e25i −0.0330349 0.0572182i
\(449\) 3.29826e26i 0.990426i 0.868772 + 0.495213i \(0.164910\pi\)
−0.868772 + 0.495213i \(0.835090\pi\)
\(450\) 0 0
\(451\) 1.42824e26 0.410237
\(452\) −3.17994e25 + 1.83594e25i −0.0893377 + 0.0515791i
\(453\) 0 0
\(454\) 5.45856e25 9.45450e25i 0.146730 0.254144i
\(455\) −2.20269e26 1.27172e26i −0.579214 0.334410i
\(456\) 0 0
\(457\) 3.15710e26 + 5.46825e26i 0.794559 + 1.37622i 0.923119 + 0.384515i \(0.125631\pi\)
−0.128560 + 0.991702i \(0.541035\pi\)
\(458\) 4.61883e26i 1.13731i
\(459\) 0 0
\(460\) −2.73207e25 −0.0644042
\(461\) 1.34579e26 7.76995e25i 0.310434 0.179229i −0.336687 0.941617i \(-0.609306\pi\)
0.647121 + 0.762388i \(0.275973\pi\)
\(462\) 0 0
\(463\) −1.94143e26 + 3.36266e26i −0.428857 + 0.742803i −0.996772 0.0802848i \(-0.974417\pi\)
0.567915 + 0.823087i \(0.307750\pi\)
\(464\) 1.71829e26 + 9.92054e25i 0.371463 + 0.214465i
\(465\) 0 0
\(466\) −2.26591e25 3.92466e25i −0.0469227 0.0812725i
\(467\) 4.39240e26i 0.890293i −0.895458 0.445147i \(-0.853152\pi\)
0.895458 0.445147i \(-0.146848\pi\)
\(468\) 0 0
\(469\) 6.37224e25 0.123755
\(470\) −9.94475e25 + 5.74160e25i −0.189067 + 0.109158i
\(471\) 0 0
\(472\) −3.49485e25 + 6.05325e25i −0.0636807 + 0.110298i
\(473\) 9.35907e26 + 5.40346e26i 1.66963 + 0.963964i
\(474\) 0 0
\(475\) 1.42920e26 + 2.47545e26i 0.244431 + 0.423367i
\(476\) 1.94281e26i 0.325358i
\(477\) 0 0
\(478\) −2.35883e26 −0.378807
\(479\) −1.71483e26 + 9.90056e25i −0.269690 + 0.155706i −0.628747 0.777610i \(-0.716432\pi\)
0.359057 + 0.933316i \(0.383098\pi\)
\(480\) 0 0
\(481\) −6.41423e26 + 1.11098e27i −0.967596 + 1.67592i
\(482\) −9.25923e25 5.34582e25i −0.136806 0.0789849i
\(483\) 0 0
\(484\) −1.53938e26 2.66629e26i −0.218219 0.377967i
\(485\) 8.63844e26i 1.19955i
\(486\) 0 0
\(487\) 1.08075e27 1.44025 0.720123 0.693847i \(-0.244086\pi\)
0.720123 + 0.693847i \(0.244086\pi\)
\(488\) 7.34679e25 4.24167e25i 0.0959179 0.0553782i
\(489\) 0 0
\(490\) −1.58229e26 + 2.74061e26i −0.198301 + 0.343468i
\(491\) −1.14696e27 6.62200e26i −1.40843 0.813157i −0.413193 0.910644i \(-0.635586\pi\)
−0.995237 + 0.0974864i \(0.968920\pi\)
\(492\) 0 0
\(493\) −8.95742e26 1.55147e27i −1.05612 1.82926i
\(494\) 1.23386e27i 1.42560i
\(495\) 0 0
\(496\) −2.34244e26 −0.259927
\(497\) 6.77621e25 3.91224e25i 0.0736924 0.0425463i
\(498\) 0 0
\(499\) −6.50855e26 + 1.12731e27i −0.679953 + 1.17771i 0.295041 + 0.955484i \(0.404667\pi\)
−0.974995 + 0.222229i \(0.928667\pi\)
\(500\) −4.58870e26 2.64929e26i −0.469883 0.271287i
\(501\) 0 0
\(502\) −5.37153e26 9.30376e26i −0.528519 0.915421i
\(503\) 1.23825e26i 0.119434i 0.998215 + 0.0597170i \(0.0190198\pi\)
−0.998215 + 0.0597170i \(0.980980\pi\)
\(504\) 0 0
\(505\) 5.36035e26 0.496912
\(506\) −1.52602e26 + 8.81045e25i −0.138693 + 0.0800743i
\(507\) 0 0
\(508\) 4.80089e26 8.31539e26i 0.419455 0.726517i
\(509\) 3.75697e26 + 2.16909e26i 0.321855 + 0.185823i 0.652219 0.758030i \(-0.273838\pi\)
−0.330364 + 0.943854i \(0.607172\pi\)
\(510\) 0 0
\(511\) −3.48010e26 6.02771e26i −0.286670 0.496527i
\(512\) 5.47097e25i 0.0441942i
\(513\) 0 0
\(514\) 1.72996e27 1.34402
\(515\) 4.14156e26 2.39113e26i 0.315567 0.182193i
\(516\) 0 0
\(517\) −3.70313e26 + 6.41401e26i −0.271434 + 0.470137i
\(518\) −5.35890e26 3.09396e26i −0.385281 0.222442i
\(519\) 0 0
\(520\) −3.23351e26 5.60060e26i −0.223687 0.387437i
\(521\) 1.03233e27i 0.700556i −0.936646 0.350278i \(-0.886087\pi\)
0.936646 0.350278i \(-0.113913\pi\)
\(522\) 0 0
\(523\) 2.32816e26 0.152053 0.0760267 0.997106i \(-0.475777\pi\)
0.0760267 + 0.997106i \(0.475777\pi\)
\(524\) 4.09052e26 2.36166e26i 0.262099 0.151323i
\(525\) 0 0
\(526\) 5.73070e26 9.92586e26i 0.353468 0.612225i
\(527\) 1.83167e27 + 1.05752e27i 1.10851 + 0.640001i
\(528\) 0 0
\(529\) −8.34577e26 1.44553e27i −0.486306 0.842306i
\(530\) 1.45590e27i 0.832478i
\(531\) 0 0
\(532\) −5.95165e26 −0.327734
\(533\) 7.80976e26 4.50897e26i 0.422052 0.243672i
\(534\) 0 0
\(535\) 1.45759e26 2.52462e26i 0.0758748 0.131419i
\(536\) 1.40315e26 + 8.10109e25i 0.0716896 + 0.0413900i
\(537\) 0 0
\(538\) −1.02291e27 1.77174e27i −0.503520 0.872122i
\(539\) 2.04104e27i 0.986199i
\(540\) 0 0
\(541\) −2.89168e27 −1.34641 −0.673206 0.739455i \(-0.735083\pi\)
−0.673206 + 0.739455i \(0.735083\pi\)
\(542\) −6.14075e26 + 3.54537e26i −0.280691 + 0.162057i
\(543\) 0 0
\(544\) −2.46992e26 + 4.27802e26i −0.108816 + 0.188475i
\(545\) −1.41952e27 8.19558e26i −0.614010 0.354499i
\(546\) 0 0
\(547\) 5.87270e26 + 1.01718e27i 0.244887 + 0.424156i 0.962100 0.272698i \(-0.0879160\pi\)
−0.717213 + 0.696854i \(0.754583\pi\)
\(548\) 2.06938e27i 0.847293i
\(549\) 0 0
\(550\) −9.66263e26 −0.381477
\(551\) 4.75281e27 2.74403e27i 1.84261 1.06383i
\(552\) 0 0
\(553\) −2.84774e26 + 4.93243e26i −0.106475 + 0.184421i
\(554\) −1.78817e26 1.03240e26i −0.0656615 0.0379097i
\(555\) 0 0
\(556\) 9.53199e25 + 1.65099e26i 0.0337626 + 0.0584785i
\(557\) 2.65590e27i 0.923975i −0.886887 0.461987i \(-0.847137\pi\)
0.886887 0.461987i \(-0.152863\pi\)
\(558\) 0 0
\(559\) 6.82353e27 2.29029
\(560\) 2.70150e26 1.55971e26i 0.0890686 0.0514238i
\(561\) 0 0
\(562\) 1.44369e27 2.50054e27i 0.459314 0.795555i
\(563\) 9.29295e26 + 5.36529e26i 0.290449 + 0.167691i 0.638144 0.769917i \(-0.279702\pi\)
−0.347695 + 0.937608i \(0.613036\pi\)
\(564\) 0 0
\(565\) −2.66164e26 4.61010e26i −0.0802906 0.139067i
\(566\) 2.62768e27i 0.778768i
\(567\) 0 0
\(568\) 1.98947e26 0.0569185
\(569\) 2.86879e27 1.65630e27i 0.806447 0.465602i −0.0392736 0.999228i \(-0.512504\pi\)
0.845720 + 0.533626i \(0.179171\pi\)
\(570\) 0 0
\(571\) 2.67320e26 4.63013e26i 0.0725556 0.125670i −0.827465 0.561517i \(-0.810218\pi\)
0.900021 + 0.435847i \(0.143551\pi\)
\(572\) −3.61219e27 2.08550e27i −0.963407 0.556224i
\(573\) 0 0
\(574\) 2.17494e26 + 3.76711e26i 0.0560182 + 0.0970263i
\(575\) 2.57745e26i 0.0652398i
\(576\) 0 0
\(577\) 1.90115e27 0.464791 0.232395 0.972621i \(-0.425344\pi\)
0.232395 + 0.972621i \(0.425344\pi\)
\(578\) 1.31414e27 7.58721e26i 0.315765 0.182307i
\(579\) 0 0
\(580\) −1.43822e27 + 2.49107e27i −0.333846 + 0.578238i
\(581\) 2.43804e27 + 1.40760e27i 0.556262 + 0.321158i
\(582\) 0 0
\(583\) −4.69502e27 8.13201e27i −1.03503 1.79272i
\(584\) 1.76971e27i 0.383508i
\(585\) 0 0
\(586\) 2.99441e27 0.627098
\(587\) −3.13416e27 + 1.80951e27i −0.645269 + 0.372546i −0.786641 0.617410i \(-0.788182\pi\)
0.141373 + 0.989956i \(0.454848\pi\)
\(588\) 0 0
\(589\) −3.23961e27 + 5.61117e27i −0.644674 + 1.11661i
\(590\) −8.77565e26 5.06663e26i −0.171696 0.0991285i
\(591\) 0 0
\(592\) −7.86677e26 1.36256e27i −0.148792 0.257715i
\(593\) 5.02313e27i 0.934174i 0.884211 + 0.467087i \(0.154696\pi\)
−0.884211 + 0.467087i \(0.845304\pi\)
\(594\) 0 0
\(595\) −2.81658e27 −0.506468
\(596\) −2.93899e27 + 1.69683e27i −0.519679 + 0.300037i
\(597\) 0 0
\(598\) −5.56295e26 + 9.63531e26i −0.0951247 + 0.164761i
\(599\) −3.45144e27 1.99269e27i −0.580406 0.335098i 0.180889 0.983504i \(-0.442103\pi\)
−0.761295 + 0.648406i \(0.775436\pi\)
\(600\) 0 0
\(601\) 2.97714e27 + 5.15656e27i 0.484233 + 0.838716i 0.999836 0.0181115i \(-0.00576538\pi\)
−0.515603 + 0.856828i \(0.672432\pi\)
\(602\) 3.29139e27i 0.526520i
\(603\) 0 0
\(604\) 2.55544e26 0.0395454
\(605\) 3.86543e27 2.23171e27i 0.588362 0.339691i
\(606\) 0 0
\(607\) −3.31580e27 + 5.74313e27i −0.488316 + 0.845788i −0.999910 0.0134392i \(-0.995722\pi\)
0.511594 + 0.859228i \(0.329055\pi\)
\(608\) −1.31054e27 7.56639e26i −0.189851 0.109611i
\(609\) 0 0
\(610\) 6.14933e26 + 1.06510e27i 0.0862044 + 0.149310i
\(611\) 4.67634e27i 0.644902i
\(612\) 0 0
\(613\) −4.20248e26 −0.0560920 −0.0280460 0.999607i \(-0.508928\pi\)
−0.0280460 + 0.999607i \(0.508928\pi\)
\(614\) −5.08467e26 + 2.93564e26i −0.0667697 + 0.0385495i
\(615\) 0 0
\(616\) 1.00596e27 1.74237e27i 0.127871 0.221480i
\(617\) −6.17174e27 3.56326e27i −0.771891 0.445652i 0.0616577 0.998097i \(-0.480361\pi\)
−0.833549 + 0.552446i \(0.813695\pi\)
\(618\) 0 0
\(619\) −5.18300e27 8.97721e27i −0.627588 1.08701i −0.988034 0.154234i \(-0.950709\pi\)
0.360447 0.932780i \(-0.382624\pi\)
\(620\) 3.39594e27i 0.404616i
\(621\) 0 0
\(622\) 3.80172e27 0.438607
\(623\) −5.13135e27 + 2.96259e27i −0.582575 + 0.336350i
\(624\) 0 0
\(625\) 2.04812e27 3.54745e27i 0.225193 0.390046i
\(626\) 8.32332e27 + 4.80547e27i 0.900644 + 0.519987i
\(627\) 0 0
\(628\) −4.09037e27 7.08472e27i −0.428712 0.742551i
\(629\) 1.42061e28i 1.46544i
\(630\) 0 0
\(631\) 1.08984e28 1.08910 0.544550 0.838728i \(-0.316700\pi\)
0.544550 + 0.838728i \(0.316700\pi\)
\(632\) −1.25413e27 + 7.24071e26i −0.123359 + 0.0712214i
\(633\) 0 0
\(634\) −1.49713e27 + 2.59310e27i −0.142681 + 0.247131i
\(635\) 1.20552e28 + 6.96006e27i 1.13093 + 0.652944i
\(636\) 0 0
\(637\) 6.44360e27 + 1.11606e28i 0.585780 + 1.01460i
\(638\) 1.85521e28i 1.66029i
\(639\) 0 0
\(640\) 7.93150e26 0.0687948
\(641\) −1.93720e28 + 1.11844e28i −1.65423 + 0.955068i −0.678919 + 0.734213i \(0.737551\pi\)
−0.975307 + 0.220855i \(0.929115\pi\)
\(642\) 0 0
\(643\) −1.08420e28 + 1.87789e28i −0.897430 + 1.55439i −0.0666624 + 0.997776i \(0.521235\pi\)
−0.830768 + 0.556619i \(0.812098\pi\)
\(644\) −4.64768e26 2.68334e26i −0.0378772 0.0218684i
\(645\) 0 0
\(646\) 6.83182e27 + 1.18331e28i 0.539773 + 0.934915i
\(647\) 1.59598e28i 1.24161i −0.783966 0.620804i \(-0.786806\pi\)
0.783966 0.620804i \(-0.213194\pi\)
\(648\) 0 0
\(649\) −6.53559e27 −0.492990
\(650\) −5.28364e27 + 3.05051e27i −0.392463 + 0.226589i
\(651\) 0 0
\(652\) −4.31506e27 + 7.47390e27i −0.310821 + 0.538358i
\(653\) 2.49877e27 + 1.44266e27i 0.177253 + 0.102337i 0.586001 0.810310i \(-0.300701\pi\)
−0.408748 + 0.912647i \(0.634035\pi\)
\(654\) 0 0
\(655\) 3.42380e27 + 5.93020e27i 0.235557 + 0.407996i
\(656\) 1.10601e27i 0.0749412i
\(657\) 0 0
\(658\) −2.25567e27 −0.148258
\(659\) −1.70060e28 + 9.81842e27i −1.10090 + 0.635605i −0.936457 0.350781i \(-0.885916\pi\)
−0.164443 + 0.986387i \(0.552583\pi\)
\(660\) 0 0
\(661\) 1.29251e28 2.23869e28i 0.811743 1.40598i −0.0999008 0.994997i \(-0.531853\pi\)
0.911643 0.410982i \(-0.134814\pi\)
\(662\) 9.88880e27 + 5.70930e27i 0.611735 + 0.353186i
\(663\) 0 0
\(664\) 3.57900e27 + 6.19901e27i 0.214823 + 0.372084i
\(665\) 8.62836e27i 0.510166i
\(666\) 0 0
\(667\) 4.94866e27 0.283942
\(668\) 1.02816e28 5.93611e27i 0.581163 0.335534i
\(669\) 0 0
\(670\) −1.17445e27 + 2.03421e27i −0.0644297 + 0.111596i
\(671\) 6.86949e27 + 3.96610e27i 0.371278 + 0.214357i
\(672\) 0 0
\(673\) 2.02522e27 + 3.50778e27i 0.106248 + 0.184027i 0.914247 0.405156i \(-0.132783\pi\)
−0.807999 + 0.589183i \(0.799450\pi\)
\(674\) 1.31305e28i 0.678707i
\(675\) 0 0
\(676\) −1.63717e28 −0.821537
\(677\) 1.06064e28 6.12359e27i 0.524421 0.302775i −0.214321 0.976763i \(-0.568754\pi\)
0.738742 + 0.673989i \(0.235420\pi\)
\(678\) 0 0
\(679\) −8.48434e27 + 1.46953e28i −0.407306 + 0.705474i
\(680\) −6.20203e27 3.58074e27i −0.293390 0.169389i
\(681\) 0 0
\(682\) −1.09513e28 1.89682e28i −0.503062 0.871329i
\(683\) 3.28560e28i 1.48733i −0.668552 0.743665i \(-0.733086\pi\)
0.668552 0.743665i \(-0.266914\pi\)
\(684\) 0 0
\(685\) 3.00006e28 1.31894
\(686\) −1.28539e28 + 7.42123e27i −0.556923 + 0.321540i
\(687\) 0 0
\(688\) −4.18437e27 + 7.24755e27i −0.176095 + 0.305005i
\(689\) −5.13458e28 2.96445e28i −2.12967 1.22957i
\(690\) 0 0
\(691\) 1.76374e28 + 3.05489e28i 0.710647 + 1.23088i 0.964615 + 0.263664i \(0.0849311\pi\)
−0.253967 + 0.967213i \(0.581736\pi\)
\(692\) 6.80719e24i 0.000270338i
\(693\) 0 0
\(694\) 3.09616e28 1.19462
\(695\) −2.39351e27 + 1.38189e27i −0.0910305 + 0.0525565i
\(696\) 0 0
\(697\) 4.99317e27 8.64843e27i 0.184522 0.319602i
\(698\) 2.60901e28 + 1.50631e28i 0.950434 + 0.548733i
\(699\) 0 0
\(700\) −1.47144e27 2.54861e27i −0.0520909 0.0902242i
\(701\) 7.70743e27i 0.268986i −0.990915 0.134493i \(-0.957059\pi\)
0.990915 0.134493i \(-0.0429406\pi\)
\(702\) 0 0
\(703\) −4.35191e28 −1.47614
\(704\) 4.43019e27 2.55777e27i 0.148148 0.0855332i
\(705\) 0 0
\(706\) −1.46957e28 + 2.54537e28i −0.477686 + 0.827377i
\(707\) 9.11877e27 + 5.26473e27i 0.292242 + 0.168726i
\(708\) 0 0
\(709\) −9.62818e27 1.66765e28i −0.299973 0.519568i 0.676157 0.736758i \(-0.263644\pi\)
−0.976129 + 0.217190i \(0.930311\pi\)
\(710\) 2.88422e27i 0.0886022i
\(711\) 0 0
\(712\) −1.50655e28 −0.449969
\(713\) −5.05966e27 + 2.92120e27i −0.149014 + 0.0860331i
\(714\) 0 0
\(715\) 3.02343e28 5.23674e28i 0.865845 1.49969i
\(716\) 3.40729e27 + 1.96720e27i 0.0962229 + 0.0555543i
\(717\) 0 0
\(718\) 1.79526e28 + 3.10948e28i 0.493041 + 0.853972i
\(719\) 2.73891e28i 0.741804i 0.928672 + 0.370902i \(0.120951\pi\)
−0.928672 + 0.370902i \(0.879049\pi\)
\(720\) 0 0
\(721\) 9.39392e27 0.247454
\(722\) −1.26781e28 + 7.31971e27i −0.329369 + 0.190161i
\(723\) 0 0
\(724\) 3.40018e27 5.88929e27i 0.0859244 0.148825i
\(725\) 2.35009e28 + 1.35683e28i 0.585740 + 0.338177i
\(726\) 0 0
\(727\) −3.18180e28 5.51104e28i −0.771488 1.33626i −0.936748 0.350006i \(-0.886180\pi\)
0.165260 0.986250i \(-0.447154\pi\)
\(728\) 1.27033e28i 0.303811i
\(729\) 0 0
\(730\) 2.56563e28 0.596987
\(731\) 6.54393e28 3.77814e28i 1.50198 0.867171i
\(732\) 0 0
\(733\) 2.90889e28 5.03834e28i 0.649661 1.12525i −0.333543 0.942735i \(-0.608244\pi\)
0.983204 0.182511i \(-0.0584226\pi\)
\(734\) 4.02873e28 + 2.32599e28i 0.887580 + 0.512444i
\(735\) 0 0
\(736\) −6.82270e26 1.18173e27i −0.0146278 0.0253361i
\(737\) 1.51496e28i 0.320424i
\(738\) 0 0
\(739\) −2.99816e28 −0.617178 −0.308589 0.951195i \(-0.599857\pi\)
−0.308589 + 0.951195i \(0.599857\pi\)
\(740\) 1.97537e28 1.14048e28i 0.401172 0.231617i
\(741\) 0 0
\(742\) 1.42993e28 2.47671e28i 0.282667 0.489594i
\(743\) −4.07816e28 2.35453e28i −0.795383 0.459215i 0.0464709 0.998920i \(-0.485203\pi\)
−0.841854 + 0.539705i \(0.818536\pi\)
\(744\) 0 0
\(745\) −2.45996e28 4.26078e28i −0.467052 0.808958i
\(746\) 4.27854e26i 0.00801507i
\(747\) 0 0
\(748\) −4.61890e28 −0.842409
\(749\) 4.95917e27 2.86318e27i 0.0892464 0.0515265i
\(750\) 0 0
\(751\) 3.74640e28 6.48896e28i 0.656470 1.13704i −0.325053 0.945696i \(-0.605382\pi\)
0.981523 0.191344i \(-0.0612846\pi\)
\(752\) −4.96693e27 2.86766e27i −0.0858835 0.0495849i
\(753\) 0 0
\(754\) 5.85691e28 + 1.01445e29i 0.986178 + 1.70811i
\(755\) 3.70473e27i 0.0615583i
\(756\) 0 0
\(757\) −8.81836e28 −1.42702 −0.713508 0.700647i \(-0.752895\pi\)
−0.713508 + 0.700647i \(0.752895\pi\)
\(758\) 1.71679e28 9.91190e27i 0.274174 0.158294i
\(759\) 0 0
\(760\) 1.09693e28 1.89994e28i 0.170625 0.295532i
\(761\) −4.68643e28 2.70571e28i −0.719441 0.415370i 0.0951057 0.995467i \(-0.469681\pi\)
−0.814547 + 0.580098i \(0.803014\pi\)
\(762\) 0 0
\(763\) −1.60988e28 2.78839e28i −0.240739 0.416973i
\(764\) 3.21515e28i 0.474534i
\(765\) 0 0
\(766\) −6.73283e28 −0.968077
\(767\) −3.57373e28 + 2.06330e28i −0.507187 + 0.292825i
\(768\) 0 0
\(769\) −2.50794e28 + 4.34388e28i −0.346779 + 0.600640i −0.985675 0.168654i \(-0.946058\pi\)
0.638896 + 0.769293i \(0.279391\pi\)
\(770\) 2.52599e28 + 1.45838e28i 0.344766 + 0.199051i
\(771\) 0 0
\(772\) −1.58395e28 2.74348e28i −0.210654 0.364863i
\(773\) 3.86083e28i 0.506857i −0.967354 0.253429i \(-0.918442\pi\)
0.967354 0.253429i \(-0.0815583\pi\)
\(774\) 0 0
\(775\) −3.20375e28 −0.409865
\(776\) −3.73646e28 + 2.15724e28i −0.471892 + 0.272447i
\(777\) 0 0
\(778\) 7.75113e27 1.34253e28i 0.0954045 0.165245i
\(779\) 2.64938e28 + 1.52962e28i 0.321936 + 0.185870i
\(780\) 0 0
\(781\) 9.30109e27 + 1.61100e28i 0.110160 + 0.190802i
\(782\) 1.23207e28i 0.144068i
\(783\) 0 0
\(784\) −1.58056e28 −0.180156
\(785\) 1.02710e29 5.92998e28i 1.15589 0.667354i
\(786\) 0 0
\(787\) 1.73290e28 3.00147e28i 0.190119 0.329296i −0.755171 0.655528i \(-0.772446\pi\)
0.945290 + 0.326233i \(0.105779\pi\)
\(788\) 5.19670e27 + 3.00032e27i 0.0562945 + 0.0325016i
\(789\) 0 0
\(790\) −1.04972e28 1.81816e28i −0.110867 0.192027i
\(791\) 1.04566e28i 0.109050i
\(792\) 0 0
\(793\) 5.00842e28 0.509294
\(794\) 6.99821e28 4.04042e28i 0.702720 0.405715i
\(795\) 0 0
\(796\) −3.45153e28 + 5.97822e28i −0.337972 + 0.585384i
\(797\) −3.24969e28 1.87621e28i −0.314238 0.181426i 0.334583 0.942366i \(-0.391404\pi\)
−0.648821 + 0.760941i \(0.724738\pi\)
\(798\) 0 0
\(799\) 2.58926e28 + 4.48473e28i 0.244178 + 0.422930i
\(800\) 7.48262e27i 0.0696873i
\(801\) 0 0
\(802\) −4.00534e28 −0.363827
\(803\) 1.43304e29 8.27369e28i 1.28560 0.742239i
\(804\) 0 0
\(805\) 3.89015e27 6.73793e27i 0.0340414 0.0589614i
\(806\) −1.19766e29 6.91468e28i −1.03510 0.597615i
\(807\) 0 0
\(808\) 1.33862e28 + 2.31856e28i 0.112861 + 0.195481i
\(809\) 1.20471e29i 1.00322i 0.865093 + 0.501611i \(0.167259\pi\)
−0.865093 + 0.501611i \(0.832741\pi\)
\(810\) 0 0
\(811\) −9.11156e28 −0.740260 −0.370130 0.928980i \(-0.620687\pi\)
−0.370130 + 0.928980i \(0.620687\pi\)
\(812\) −4.89328e28 + 2.82513e28i −0.392681 + 0.226714i
\(813\) 0 0
\(814\) 7.35568e28 1.27404e29i 0.575942 0.997561i
\(815\) −1.08352e29 6.25572e28i −0.838034 0.483839i
\(816\) 0 0
\(817\) 1.15740e29 + 2.00468e29i 0.873502 + 1.51295i
\(818\) 6.93811e28i 0.517259i
\(819\) 0 0
\(820\) −1.60343e28 −0.116657
\(821\) −1.66645e29 + 9.62123e28i −1.19773 + 0.691511i −0.960049 0.279832i \(-0.909721\pi\)
−0.237683 + 0.971343i \(0.576388\pi\)
\(822\) 0 0
\(823\) −7.38735e28 + 1.27953e29i −0.518191 + 0.897534i 0.481585 + 0.876399i \(0.340061\pi\)
−0.999777 + 0.0211346i \(0.993272\pi\)
\(824\) 2.06851e28 + 1.19426e28i 0.143346 + 0.0827610i
\(825\) 0 0
\(826\) −9.95249e27 1.72382e28i −0.0673180 0.116598i
\(827\) 1.21783e29i 0.813829i 0.913466 + 0.406915i \(0.133395\pi\)
−0.913466 + 0.406915i \(0.866605\pi\)
\(828\) 0 0
\(829\) −6.95492e28 −0.453677 −0.226839 0.973932i \(-0.572839\pi\)
−0.226839 + 0.973932i \(0.572839\pi\)
\(830\) −8.98696e28 + 5.18863e28i −0.579205 + 0.334404i
\(831\) 0 0
\(832\) 1.61498e28 2.79723e28i 0.101610 0.175993i
\(833\) 1.23592e29 + 7.13556e28i 0.768314 + 0.443586i
\(834\) 0 0
\(835\) 8.60583e28 + 1.49057e29i 0.522309 + 0.904666i
\(836\) 1.41496e29i 0.848560i
\(837\) 0 0
\(838\) 1.18878e29 0.696081
\(839\) 9.81035e28 5.66401e28i 0.567629 0.327721i −0.188573 0.982059i \(-0.560386\pi\)
0.756202 + 0.654338i \(0.227053\pi\)
\(840\) 0 0
\(841\) 1.72011e29 2.97931e29i 0.971841 1.68328i
\(842\) 2.09842e29 + 1.21152e29i 1.17158 + 0.676411i
\(843\) 0 0
\(844\) −4.74438e28 8.21751e28i −0.258675 0.448039i
\(845\) 2.37348e29i 1.27885i
\(846\) 0 0
\(847\) 8.76760e28 0.461367
\(848\) 6.29733e28 3.63576e28i 0.327490 0.189076i
\(849\) 0 0
\(850\) −3.37809e28 + 5.85103e28i −0.171586 + 0.297196i
\(851\) −3.39843e28 1.96209e28i −0.170602 0.0984969i
\(852\) 0 0
\(853\) 4.37710e28 + 7.58137e28i 0.214633 + 0.371755i 0.953159 0.302470i \(-0.0978111\pi\)
−0.738526 + 0.674225i \(0.764478\pi\)
\(854\) 2.41586e28i 0.117083i
\(855\) 0 0
\(856\) 1.45599e28 0.0689322
\(857\) −1.45693e29 + 8.41156e28i −0.681756 + 0.393612i −0.800516 0.599311i \(-0.795441\pi\)
0.118760 + 0.992923i \(0.462108\pi\)
\(858\) 0 0
\(859\) −1.11663e27 + 1.93406e27i −0.00510479 + 0.00884176i −0.868567 0.495573i \(-0.834958\pi\)
0.863462 + 0.504414i \(0.168292\pi\)
\(860\) −1.05071e29 6.06626e28i −0.474786 0.274118i
\(861\) 0 0
\(862\) −4.83634e28 8.37678e28i −0.213523 0.369832i
\(863\) 2.63875e29i 1.15157i 0.817602 + 0.575784i \(0.195303\pi\)
−0.817602 + 0.575784i \(0.804697\pi\)
\(864\) 0 0
\(865\) 9.86868e25 0.000420821
\(866\) −1.94800e29 + 1.12468e29i −0.821126 + 0.474077i
\(867\) 0 0
\(868\) 3.33536e28 5.77701e28i 0.137387 0.237961i
\(869\) −1.17265e29 6.77030e28i −0.477497 0.275683i
\(870\) 0 0
\(871\) 4.78274e28 + 8.28395e28i 0.190325 + 0.329652i
\(872\) 8.18661e28i 0.322062i
\(873\) 0 0
\(874\) −3.77434e28 −0.145120
\(875\) 1.30675e29 7.54454e28i 0.496722 0.286782i
\(876\) 0 0
\(877\) −9.34026e28 + 1.61778e29i −0.347027 + 0.601068i −0.985720 0.168393i \(-0.946142\pi\)
0.638693 + 0.769462i \(0.279475\pi\)
\(878\) 7.00517e28 + 4.04444e28i 0.257320 + 0.148564i
\(879\) 0 0
\(880\) 3.70811e28 + 6.42263e28i 0.133145 + 0.230614i
\(881\) 3.16713e29i 1.12436i 0.827013 + 0.562182i \(0.190038\pi\)
−0.827013 + 0.562182i \(0.809962\pi\)
\(882\) 0 0
\(883\) 2.71760e29 0.943146 0.471573 0.881827i \(-0.343686\pi\)
0.471573 + 0.881827i \(0.343686\pi\)
\(884\) −2.52567e29 + 1.45820e29i −0.866670 + 0.500372i
\(885\) 0 0
\(886\) 1.04721e29 1.81382e29i 0.351315 0.608495i
\(887\) −1.06647e29 6.15726e28i −0.353762 0.204245i 0.312579 0.949892i \(-0.398807\pi\)
−0.666341 + 0.745647i \(0.732141\pi\)
\(888\) 0 0
\(889\) 1.36718e29 + 2.36803e29i 0.443413 + 0.768014i
\(890\) 2.18410e29i 0.700444i
\(891\) 0 0
\(892\) 1.50675e29 0.472489
\(893\) −1.37386e29 + 7.93198e28i −0.426018 + 0.245961i
\(894\) 0 0
\(895\) −2.85193e28 + 4.93969e28i −0.0864786 + 0.149785i
\(896\) 1.34927e28 + 7.79002e27i 0.0404594 + 0.0233592i
\(897\) 0 0
\(898\) −1.19410e29 2.06824e29i −0.350169 0.606510i
\(899\) 6.15112e29i 1.78385i
\(900\) 0 0
\(901\) −6.56559e29 −1.86220
\(902\) −8.95604e28 + 5.17077e28i −0.251218 + 0.145041i
\(903\) 0 0
\(904\) 1.32936e28 2.30252e28i 0.0364720 0.0631713i
\(905\) 8.53795e28 + 4.92939e28i 0.231669 + 0.133754i
\(906\) 0 0
\(907\) 2.34821e29 + 4.06721e29i 0.623252 + 1.07950i 0.988876 + 0.148741i \(0.0475221\pi\)
−0.365624 + 0.930762i \(0.619145\pi\)
\(908\) 7.90484e28i 0.207508i
\(909\) 0 0
\(910\) 1.84165e29 0.472927
\(911\) 1.59507e29 9.20916e28i 0.405132 0.233903i −0.283564 0.958953i \(-0.591517\pi\)
0.688696 + 0.725050i \(0.258183\pi\)
\(912\) 0 0
\(913\) −3.34648e29 + 5.79627e29i −0.831535 + 1.44026i
\(914\) −3.95944e29 2.28598e29i −0.973132 0.561838i
\(915\) 0 0
\(916\) 1.67220e29 + 2.89633e29i 0.402099 + 0.696455i
\(917\) 1.34509e29i 0.319932i
\(918\) 0 0
\(919\) 2.44861e29 0.569855 0.284928 0.958549i \(-0.408030\pi\)
0.284928 + 0.958549i \(0.408030\pi\)
\(920\) 1.71320e28 9.89116e27i 0.0394393 0.0227703i
\(921\) 0 0
\(922\) −5.62604e28 + 9.74459e28i −0.126734 + 0.219510i
\(923\) 1.01719e29 + 5.87274e28i 0.226665 + 0.130865i
\(924\) 0 0
\(925\) −1.07593e29 1.86357e29i −0.234622 0.406377i
\(926\) 2.81150e29i 0.606496i
\(927\) 0 0
\(928\) −1.43665e29 −0.303299
\(929\) 5.42304e29 3.13099e29i 1.13262 0.653921i 0.188031 0.982163i \(-0.439790\pi\)
0.944594 + 0.328242i \(0.106456\pi\)
\(930\) 0 0
\(931\) −2.18592e29 + 3.78613e29i −0.446825 + 0.773924i
\(932\) 2.84176e28 + 1.64069e28i 0.0574683 + 0.0331793i
\(933\) 0 0
\(934\) 1.59022e29 + 2.75434e29i 0.314766 + 0.545191i
\(935\) 6.69622e29i 1.31134i
\(936\) 0 0
\(937\) −9.05889e29 −1.73652 −0.868258 0.496112i \(-0.834760\pi\)
−0.868258 + 0.496112i \(0.834760\pi\)
\(938\) −3.99584e28 + 2.30700e28i −0.0757844 + 0.0437541i
\(939\) 0 0
\(940\) 4.15737e28 7.20077e28i 0.0771862 0.133690i
\(941\) 2.45478e29 + 1.41727e29i 0.450938 + 0.260349i 0.708226 0.705985i \(-0.249496\pi\)
−0.257288 + 0.966335i \(0.582829\pi\)
\(942\) 0 0
\(943\) 1.37927e28 + 2.38897e28i 0.0248047 + 0.0429630i
\(944\) 5.06108e28i 0.0900582i
\(945\) 0 0
\(946\) −7.82505e29 −1.36325
\(947\) −2.77884e29 + 1.60437e29i −0.479032 + 0.276569i −0.720013 0.693961i \(-0.755864\pi\)
0.240981 + 0.970530i \(0.422531\pi\)
\(948\) 0 0
\(949\) 5.22403e29 9.04829e29i 0.881747 1.52723i
\(950\) −1.79241e29 1.03485e29i −0.299366 0.172839i
\(951\) 0 0
\(952\) −7.03374e28 1.21828e29i −0.115031 0.199240i
\(953\) 5.97459e29i 0.966895i 0.875373 + 0.483447i \(0.160616\pi\)
−0.875373 + 0.483447i \(0.839384\pi\)
\(954\) 0 0
\(955\) 4.66114e29 0.738683
\(956\) 1.47915e29 8.53989e28i 0.231971 0.133929i
\(957\) 0 0
\(958\) 7.16877e28 1.24167e29i 0.110101 0.190700i
\(959\) 5.10357e29 + 2.94655e29i 0.775689 + 0.447844i
\(960\) 0 0
\(961\) −2.72062e28 4.71225e28i −0.0404981 0.0701447i
\(962\) 9.28880e29i 1.36839i
\(963\) 0 0
\(964\) 7.74157e28 0.111701
\(965\) 3.97734e29 2.29632e29i 0.567963 0.327914i
\(966\) 0 0
\(967\) 3.60948e29 6.25180e29i 0.504870 0.874461i −0.495114 0.868828i \(-0.664874\pi\)
0.999984 0.00563284i \(-0.00179300\pi\)
\(968\) 1.93060e29 + 1.11463e29i 0.267263 + 0.154304i
\(969\) 0 0
\(970\) −3.12745e29 5.41690e29i −0.424105 0.734571i
\(971\) 1.69506e29i 0.227505i 0.993509 + 0.113753i \(0.0362872\pi\)
−0.993509 + 0.113753i \(0.963713\pi\)
\(972\) 0 0
\(973\) −5.42897e28 −0.0713821
\(974\) −6.77706e29 + 3.91274e29i −0.881966 + 0.509204i
\(975\) 0 0
\(976\) −3.07130e28 + 5.31965e28i −0.0391583 + 0.0678242i
\(977\) −1.87816e29 1.08436e29i −0.237021 0.136844i 0.376786 0.926300i \(-0.377029\pi\)
−0.613807 + 0.789456i \(0.710363\pi\)
\(978\) 0 0
\(979\) −7.04335e29 1.21994e30i −0.870868 1.50839i
\(980\) 2.29140e29i 0.280440i
\(981\) 0 0
\(982\) 9.58969e29 1.14998
\(983\) −7.33174e29 + 4.23298e29i −0.870305 + 0.502471i −0.867450 0.497525i \(-0.834242\pi\)
−0.00285568 + 0.999996i \(0.500909\pi\)
\(984\) 0 0
\(985\) −4.34969e28 + 7.53388e28i −0.0505936 + 0.0876307i
\(986\) 1.12339e30 + 6.48587e29i 1.29348 + 0.746791i
\(987\) 0 0
\(988\) −4.46706e29 7.73718e29i −0.504026 0.872998i
\(989\) 2.08729e29i 0.233142i
\(990\) 0 0
\(991\) 1.23295e30 1.34961 0.674805 0.737996i \(-0.264228\pi\)
0.674805 + 0.737996i \(0.264228\pi\)
\(992\) 1.46887e29 8.48055e28i 0.159172 0.0918982i
\(993\) 0 0
\(994\) −2.83277e28 + 4.90650e28i −0.0300848 + 0.0521084i
\(995\) −8.66688e29 5.00382e29i −0.911238 0.526103i
\(996\) 0 0
\(997\) −2.36157e29 4.09036e29i −0.243360 0.421512i 0.718309 0.695724i \(-0.244916\pi\)
−0.961669 + 0.274212i \(0.911583\pi\)
\(998\) 9.42539e29i 0.961599i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 54.21.d.a.17.6 40
3.2 odd 2 18.21.d.a.5.15 40
9.2 odd 6 inner 54.21.d.a.35.6 40
9.7 even 3 18.21.d.a.11.15 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.21.d.a.5.15 40 3.2 odd 2
18.21.d.a.11.15 yes 40 9.7 even 3
54.21.d.a.17.6 40 1.1 even 1 trivial
54.21.d.a.35.6 40 9.2 odd 6 inner