Properties

Label 54.21.b.c.53.9
Level $54$
Weight $21$
Character 54.53
Analytic conductor $136.897$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [54,21,Mod(53,54)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("54.53"); S:= CuspForms(chi, 21); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(54, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 21, names="a")
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 21 \)
Character orbit: \([\chi]\) \(=\) 54.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(136.897433155\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 64181120673558 x^{10} + \cdots + 59\!\cdots\!25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{63}\cdot 3^{90} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 53.9
Root \(-674291. i\) of defining polynomial
Character \(\chi\) \(=\) 54.53
Dual form 54.21.b.c.53.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+724.077i q^{2} -524288. q^{4} -2.02287e6i q^{5} +4.37005e8 q^{7} -3.79625e8i q^{8} +1.46472e9 q^{10} -3.44048e10i q^{11} -1.96478e11 q^{13} +3.16425e11i q^{14} +2.74878e11 q^{16} +2.59646e12i q^{17} +8.61761e12 q^{19} +1.06057e12i q^{20} +2.49117e13 q^{22} -6.26414e12i q^{23} +9.12754e13 q^{25} -1.42265e14i q^{26} -2.29116e14 q^{28} +4.94120e14i q^{29} +1.00983e15 q^{31} +1.99033e14i q^{32} -1.88004e15 q^{34} -8.84004e14i q^{35} -5.04313e15 q^{37} +6.23982e15i q^{38} -7.67933e14 q^{40} -2.43341e16i q^{41} -4.15395e16 q^{43} +1.80380e16i q^{44} +4.53572e15 q^{46} +2.35165e16i q^{47} +1.11181e17 q^{49} +6.60905e16i q^{50} +1.03011e17 q^{52} -1.50617e17i q^{53} -6.95965e16 q^{55} -1.65898e17i q^{56} -3.57781e17 q^{58} -7.23785e17i q^{59} -2.58232e16 q^{61} +7.31194e17i q^{62} -1.44115e17 q^{64} +3.97450e17i q^{65} +2.83393e17 q^{67} -1.36129e18i q^{68} +6.40088e17 q^{70} +2.76579e18i q^{71} +4.43282e18 q^{73} -3.65162e18i q^{74} -4.51811e18 q^{76} -1.50351e19i q^{77} -5.86582e17 q^{79} -5.56043e17i q^{80} +1.76198e19 q^{82} +1.82456e19i q^{83} +5.25230e18 q^{85} -3.00778e19i q^{86} -1.30609e19 q^{88} -4.04529e19i q^{89} -8.58619e19 q^{91} +3.28421e18i q^{92} -1.70278e19 q^{94} -1.74323e19i q^{95} +7.22477e19 q^{97} +8.05035e19i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6291456 q^{4} + 355856172 q^{7} - 5360984064 q^{10} + 374332013160 q^{13} + 3298534883328 q^{16} + 13268452496064 q^{19} + 64109345587200 q^{22} - 10850992436544 q^{25} - 186571120705536 q^{28} + 13\!\cdots\!76 q^{31}+ \cdots - 30\!\cdots\!60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 724.077i 0.707107i
\(3\) 0 0
\(4\) −524288. −0.500000
\(5\) − 2.02287e6i − 0.207142i −0.994622 0.103571i \(-0.966973\pi\)
0.994622 0.103571i \(-0.0330269\pi\)
\(6\) 0 0
\(7\) 4.37005e8 1.54705 0.773527 0.633763i \(-0.218490\pi\)
0.773527 + 0.633763i \(0.218490\pi\)
\(8\) − 3.79625e8i − 0.353553i
\(9\) 0 0
\(10\) 1.46472e9 0.146472
\(11\) − 3.44048e10i − 1.32645i −0.748419 0.663227i \(-0.769187\pi\)
0.748419 0.663227i \(-0.230813\pi\)
\(12\) 0 0
\(13\) −1.96478e11 −1.42522 −0.712608 0.701562i \(-0.752486\pi\)
−0.712608 + 0.701562i \(0.752486\pi\)
\(14\) 3.16425e11i 1.09393i
\(15\) 0 0
\(16\) 2.74878e11 0.250000
\(17\) 2.59646e12i 1.28793i 0.765055 + 0.643965i \(0.222712\pi\)
−0.765055 + 0.643965i \(0.777288\pi\)
\(18\) 0 0
\(19\) 8.61761e12 1.40556 0.702782 0.711405i \(-0.251941\pi\)
0.702782 + 0.711405i \(0.251941\pi\)
\(20\) 1.06057e12i 0.103571i
\(21\) 0 0
\(22\) 2.49117e13 0.937944
\(23\) − 6.26414e12i − 0.151211i −0.997138 0.0756055i \(-0.975911\pi\)
0.997138 0.0756055i \(-0.0240890\pi\)
\(24\) 0 0
\(25\) 9.12754e13 0.957092
\(26\) − 1.42265e14i − 1.00778i
\(27\) 0 0
\(28\) −2.29116e14 −0.773527
\(29\) 4.94120e14i 1.17450i 0.809406 + 0.587249i \(0.199789\pi\)
−0.809406 + 0.587249i \(0.800211\pi\)
\(30\) 0 0
\(31\) 1.00983e15 1.23206 0.616028 0.787724i \(-0.288741\pi\)
0.616028 + 0.787724i \(0.288741\pi\)
\(32\) 1.99033e14i 0.176777i
\(33\) 0 0
\(34\) −1.88004e15 −0.910704
\(35\) − 8.84004e14i − 0.320460i
\(36\) 0 0
\(37\) −5.04313e15 −1.04878 −0.524388 0.851479i \(-0.675706\pi\)
−0.524388 + 0.851479i \(0.675706\pi\)
\(38\) 6.23982e15i 0.993884i
\(39\) 0 0
\(40\) −7.67933e14 −0.0732358
\(41\) − 2.43341e16i − 1.81291i −0.422300 0.906456i \(-0.638777\pi\)
0.422300 0.906456i \(-0.361223\pi\)
\(42\) 0 0
\(43\) −4.15395e16 −1.92211 −0.961053 0.276365i \(-0.910870\pi\)
−0.961053 + 0.276365i \(0.910870\pi\)
\(44\) 1.80380e16i 0.663227i
\(45\) 0 0
\(46\) 4.53572e15 0.106922
\(47\) 2.35165e16i 0.447089i 0.974694 + 0.223545i \(0.0717629\pi\)
−0.974694 + 0.223545i \(0.928237\pi\)
\(48\) 0 0
\(49\) 1.11181e17 1.39338
\(50\) 6.60905e16i 0.676766i
\(51\) 0 0
\(52\) 1.03011e17 0.712608
\(53\) − 1.50617e17i − 0.861224i −0.902537 0.430612i \(-0.858298\pi\)
0.902537 0.430612i \(-0.141702\pi\)
\(54\) 0 0
\(55\) −6.95965e16 −0.274764
\(56\) − 1.65898e17i − 0.546967i
\(57\) 0 0
\(58\) −3.57781e17 −0.830496
\(59\) − 7.23785e17i − 1.41608i −0.706170 0.708042i \(-0.749579\pi\)
0.706170 0.708042i \(-0.250421\pi\)
\(60\) 0 0
\(61\) −2.58232e16 −0.0362003 −0.0181002 0.999836i \(-0.505762\pi\)
−0.0181002 + 0.999836i \(0.505762\pi\)
\(62\) 7.31194e17i 0.871196i
\(63\) 0 0
\(64\) −1.44115e17 −0.125000
\(65\) 3.97450e17i 0.295222i
\(66\) 0 0
\(67\) 2.83393e17 0.155468 0.0777339 0.996974i \(-0.475232\pi\)
0.0777339 + 0.996974i \(0.475232\pi\)
\(68\) − 1.36129e18i − 0.643965i
\(69\) 0 0
\(70\) 6.40088e17 0.226600
\(71\) 2.76579e18i 0.849643i 0.905277 + 0.424821i \(0.139663\pi\)
−0.905277 + 0.424821i \(0.860337\pi\)
\(72\) 0 0
\(73\) 4.43282e18 1.03146 0.515729 0.856752i \(-0.327521\pi\)
0.515729 + 0.856752i \(0.327521\pi\)
\(74\) − 3.65162e18i − 0.741597i
\(75\) 0 0
\(76\) −4.51811e18 −0.702782
\(77\) − 1.50351e19i − 2.05210i
\(78\) 0 0
\(79\) −5.86582e17 −0.0619524 −0.0309762 0.999520i \(-0.509862\pi\)
−0.0309762 + 0.999520i \(0.509862\pi\)
\(80\) − 5.56043e17i − 0.0517855i
\(81\) 0 0
\(82\) 1.76198e19 1.28192
\(83\) 1.82456e19i 1.17592i 0.808891 + 0.587959i \(0.200068\pi\)
−0.808891 + 0.587959i \(0.799932\pi\)
\(84\) 0 0
\(85\) 5.25230e18 0.266785
\(86\) − 3.00778e19i − 1.35913i
\(87\) 0 0
\(88\) −1.30609e19 −0.468972
\(89\) − 4.04529e19i − 1.29733i −0.761075 0.648664i \(-0.775328\pi\)
0.761075 0.648664i \(-0.224672\pi\)
\(90\) 0 0
\(91\) −8.58619e19 −2.20489
\(92\) 3.28421e18i 0.0756055i
\(93\) 0 0
\(94\) −1.70278e19 −0.316140
\(95\) − 1.74323e19i − 0.291152i
\(96\) 0 0
\(97\) 7.22477e19 0.979730 0.489865 0.871798i \(-0.337046\pi\)
0.489865 + 0.871798i \(0.337046\pi\)
\(98\) 8.05035e19i 0.985268i
\(99\) 0 0
\(100\) −4.78546e19 −0.478546
\(101\) − 1.69955e20i − 1.53858i −0.638899 0.769291i \(-0.720610\pi\)
0.638899 0.769291i \(-0.279390\pi\)
\(102\) 0 0
\(103\) 1.19580e20 0.889788 0.444894 0.895583i \(-0.353241\pi\)
0.444894 + 0.895583i \(0.353241\pi\)
\(104\) 7.45881e19i 0.503890i
\(105\) 0 0
\(106\) 1.09059e20 0.608977
\(107\) − 2.27746e20i − 1.15774i −0.815418 0.578872i \(-0.803493\pi\)
0.815418 0.578872i \(-0.196507\pi\)
\(108\) 0 0
\(109\) 2.62969e20 1.11081 0.555406 0.831579i \(-0.312563\pi\)
0.555406 + 0.831579i \(0.312563\pi\)
\(110\) − 5.03932e19i − 0.194288i
\(111\) 0 0
\(112\) 1.20123e20 0.386764
\(113\) 3.49988e20i 1.03102i 0.856882 + 0.515512i \(0.172398\pi\)
−0.856882 + 0.515512i \(0.827602\pi\)
\(114\) 0 0
\(115\) −1.26716e19 −0.0313221
\(116\) − 2.59061e20i − 0.587249i
\(117\) 0 0
\(118\) 5.24076e20 1.00132
\(119\) 1.13467e21i 1.99250i
\(120\) 0 0
\(121\) −5.10939e20 −0.759478
\(122\) − 1.86980e19i − 0.0255975i
\(123\) 0 0
\(124\) −5.29441e20 −0.616028
\(125\) − 3.77555e20i − 0.405396i
\(126\) 0 0
\(127\) −3.82486e20 −0.350411 −0.175206 0.984532i \(-0.556059\pi\)
−0.175206 + 0.984532i \(0.556059\pi\)
\(128\) − 1.04351e20i − 0.0883883i
\(129\) 0 0
\(130\) −2.87785e20 −0.208754
\(131\) − 1.36613e20i − 0.0917864i −0.998946 0.0458932i \(-0.985387\pi\)
0.998946 0.0458932i \(-0.0146134\pi\)
\(132\) 0 0
\(133\) 3.76594e21 2.17449
\(134\) 2.05198e20i 0.109932i
\(135\) 0 0
\(136\) 9.85681e20 0.455352
\(137\) 1.08042e21i 0.463859i 0.972733 + 0.231929i \(0.0745038\pi\)
−0.972733 + 0.231929i \(0.925496\pi\)
\(138\) 0 0
\(139\) 2.69108e21 0.999491 0.499746 0.866172i \(-0.333427\pi\)
0.499746 + 0.866172i \(0.333427\pi\)
\(140\) 4.63473e20i 0.160230i
\(141\) 0 0
\(142\) −2.00265e21 −0.600788
\(143\) 6.75979e21i 1.89048i
\(144\) 0 0
\(145\) 9.99541e20 0.243288
\(146\) 3.20971e21i 0.729351i
\(147\) 0 0
\(148\) 2.64405e21 0.524388
\(149\) − 6.56676e21i − 1.21755i −0.793341 0.608777i \(-0.791660\pi\)
0.793341 0.608777i \(-0.208340\pi\)
\(150\) 0 0
\(151\) 3.32243e21 0.539121 0.269560 0.962983i \(-0.413122\pi\)
0.269560 + 0.962983i \(0.413122\pi\)
\(152\) − 3.27146e21i − 0.496942i
\(153\) 0 0
\(154\) 1.08865e22 1.45105
\(155\) − 2.04275e21i − 0.255211i
\(156\) 0 0
\(157\) 1.46150e22 1.60621 0.803104 0.595839i \(-0.203181\pi\)
0.803104 + 0.595839i \(0.203181\pi\)
\(158\) − 4.24731e20i − 0.0438070i
\(159\) 0 0
\(160\) 4.02618e20 0.0366179
\(161\) − 2.73746e21i − 0.233932i
\(162\) 0 0
\(163\) −1.48548e21 −0.112200 −0.0560998 0.998425i \(-0.517867\pi\)
−0.0560998 + 0.998425i \(0.517867\pi\)
\(164\) 1.27581e22i 0.906456i
\(165\) 0 0
\(166\) −1.32112e22 −0.831499
\(167\) − 7.77950e21i − 0.461091i −0.973062 0.230546i \(-0.925949\pi\)
0.973062 0.230546i \(-0.0740511\pi\)
\(168\) 0 0
\(169\) 1.95987e22 1.03124
\(170\) 3.80307e21i 0.188645i
\(171\) 0 0
\(172\) 2.17787e22 0.961053
\(173\) − 1.20656e22i − 0.502444i −0.967930 0.251222i \(-0.919168\pi\)
0.967930 0.251222i \(-0.0808324\pi\)
\(174\) 0 0
\(175\) 3.98878e22 1.48067
\(176\) − 9.45711e21i − 0.331613i
\(177\) 0 0
\(178\) 2.92911e22 0.917350
\(179\) − 2.49361e22i − 0.738410i −0.929348 0.369205i \(-0.879630\pi\)
0.929348 0.369205i \(-0.120370\pi\)
\(180\) 0 0
\(181\) 4.79566e22 1.27076 0.635378 0.772201i \(-0.280844\pi\)
0.635378 + 0.772201i \(0.280844\pi\)
\(182\) − 6.21707e22i − 1.55909i
\(183\) 0 0
\(184\) −2.37803e21 −0.0534611
\(185\) 1.02016e22i 0.217246i
\(186\) 0 0
\(187\) 8.93306e22 1.70838
\(188\) − 1.23294e22i − 0.223545i
\(189\) 0 0
\(190\) 1.26223e22 0.205875
\(191\) 4.12830e22i 0.638907i 0.947602 + 0.319454i \(0.103499\pi\)
−0.947602 + 0.319454i \(0.896501\pi\)
\(192\) 0 0
\(193\) −9.88033e22 −1.37784 −0.688919 0.724838i \(-0.741915\pi\)
−0.688919 + 0.724838i \(0.741915\pi\)
\(194\) 5.23129e22i 0.692774i
\(195\) 0 0
\(196\) −5.82908e22 −0.696689
\(197\) − 6.33931e22i − 0.720079i −0.932937 0.360039i \(-0.882763\pi\)
0.932937 0.360039i \(-0.117237\pi\)
\(198\) 0 0
\(199\) 6.55536e22 0.673079 0.336540 0.941669i \(-0.390743\pi\)
0.336540 + 0.941669i \(0.390743\pi\)
\(200\) − 3.46504e22i − 0.338383i
\(201\) 0 0
\(202\) 1.23061e23 1.08794
\(203\) 2.15933e23i 1.81701i
\(204\) 0 0
\(205\) −4.92248e22 −0.375530
\(206\) 8.65853e22i 0.629175i
\(207\) 0 0
\(208\) −5.40075e22 −0.356304
\(209\) − 2.96487e23i − 1.86442i
\(210\) 0 0
\(211\) 9.18557e22 0.525148 0.262574 0.964912i \(-0.415429\pi\)
0.262574 + 0.964912i \(0.415429\pi\)
\(212\) 7.89668e22i 0.430612i
\(213\) 0 0
\(214\) 1.64906e23 0.818649
\(215\) 8.40292e22i 0.398149i
\(216\) 0 0
\(217\) 4.41300e23 1.90606
\(218\) 1.90410e23i 0.785462i
\(219\) 0 0
\(220\) 3.64886e22 0.137382
\(221\) − 5.10148e23i − 1.83558i
\(222\) 0 0
\(223\) 2.18805e23 0.719462 0.359731 0.933056i \(-0.382868\pi\)
0.359731 + 0.933056i \(0.382868\pi\)
\(224\) 8.69783e22i 0.273483i
\(225\) 0 0
\(226\) −2.53419e23 −0.729045
\(227\) 5.79232e23i 1.59439i 0.603723 + 0.797194i \(0.293683\pi\)
−0.603723 + 0.797194i \(0.706317\pi\)
\(228\) 0 0
\(229\) −5.45270e23 −1.37485 −0.687427 0.726253i \(-0.741260\pi\)
−0.687427 + 0.726253i \(0.741260\pi\)
\(230\) − 9.17519e21i − 0.0221481i
\(231\) 0 0
\(232\) 1.87580e23 0.415248
\(233\) 5.06658e23i 1.07437i 0.843463 + 0.537187i \(0.180513\pi\)
−0.843463 + 0.537187i \(0.819487\pi\)
\(234\) 0 0
\(235\) 4.75709e22 0.0926110
\(236\) 3.79472e23i 0.708042i
\(237\) 0 0
\(238\) −8.21585e23 −1.40891
\(239\) − 5.13059e22i − 0.0843701i −0.999110 0.0421850i \(-0.986568\pi\)
0.999110 0.0421850i \(-0.0134319\pi\)
\(240\) 0 0
\(241\) −4.12898e23 −0.624701 −0.312350 0.949967i \(-0.601116\pi\)
−0.312350 + 0.949967i \(0.601116\pi\)
\(242\) − 3.69959e23i − 0.537032i
\(243\) 0 0
\(244\) 1.35388e22 0.0181002
\(245\) − 2.24905e23i − 0.288627i
\(246\) 0 0
\(247\) −1.69317e24 −2.00323
\(248\) − 3.83356e23i − 0.435598i
\(249\) 0 0
\(250\) 2.73379e23 0.286658
\(251\) − 1.89093e23i − 0.190519i −0.995452 0.0952594i \(-0.969632\pi\)
0.995452 0.0952594i \(-0.0303680\pi\)
\(252\) 0 0
\(253\) −2.15516e23 −0.200574
\(254\) − 2.76949e23i − 0.247778i
\(255\) 0 0
\(256\) 7.55579e22 0.0625000
\(257\) − 1.34603e23i − 0.107084i −0.998566 0.0535420i \(-0.982949\pi\)
0.998566 0.0535420i \(-0.0170511\pi\)
\(258\) 0 0
\(259\) −2.20387e24 −1.62251
\(260\) − 2.08378e23i − 0.147611i
\(261\) 0 0
\(262\) 9.89182e22 0.0649028
\(263\) − 1.47156e24i − 0.929437i −0.885458 0.464718i \(-0.846156\pi\)
0.885458 0.464718i \(-0.153844\pi\)
\(264\) 0 0
\(265\) −3.04679e23 −0.178396
\(266\) 2.72683e24i 1.53759i
\(267\) 0 0
\(268\) −1.48579e23 −0.0777339
\(269\) − 1.36350e24i − 0.687279i −0.939102 0.343640i \(-0.888340\pi\)
0.939102 0.343640i \(-0.111660\pi\)
\(270\) 0 0
\(271\) −5.31859e23 −0.248945 −0.124472 0.992223i \(-0.539724\pi\)
−0.124472 + 0.992223i \(0.539724\pi\)
\(272\) 7.13709e23i 0.321983i
\(273\) 0 0
\(274\) −7.82305e23 −0.327998
\(275\) − 3.14031e24i − 1.26954i
\(276\) 0 0
\(277\) 2.09322e24 0.787078 0.393539 0.919308i \(-0.371251\pi\)
0.393539 + 0.919308i \(0.371251\pi\)
\(278\) 1.94855e24i 0.706747i
\(279\) 0 0
\(280\) −3.35590e23 −0.113300
\(281\) 6.39104e23i 0.208213i 0.994566 + 0.104107i \(0.0331983\pi\)
−0.994566 + 0.104107i \(0.966802\pi\)
\(282\) 0 0
\(283\) −1.84721e24 −0.560597 −0.280299 0.959913i \(-0.590434\pi\)
−0.280299 + 0.959913i \(0.590434\pi\)
\(284\) − 1.45007e24i − 0.424821i
\(285\) 0 0
\(286\) −4.89461e24 −1.33677
\(287\) − 1.06341e25i − 2.80467i
\(288\) 0 0
\(289\) −2.67737e24 −0.658764
\(290\) 7.23745e23i 0.172031i
\(291\) 0 0
\(292\) −2.32408e24 −0.515729
\(293\) 5.62853e24i 1.20703i 0.797351 + 0.603516i \(0.206234\pi\)
−0.797351 + 0.603516i \(0.793766\pi\)
\(294\) 0 0
\(295\) −1.46412e24 −0.293331
\(296\) 1.91450e24i 0.370798i
\(297\) 0 0
\(298\) 4.75484e24 0.860941
\(299\) 1.23077e24i 0.215508i
\(300\) 0 0
\(301\) −1.81530e25 −2.97360
\(302\) 2.40570e24i 0.381216i
\(303\) 0 0
\(304\) 2.36879e24 0.351391
\(305\) 5.22371e22i 0.00749861i
\(306\) 0 0
\(307\) 8.97493e24 1.20683 0.603417 0.797426i \(-0.293805\pi\)
0.603417 + 0.797426i \(0.293805\pi\)
\(308\) 7.88270e24i 1.02605i
\(309\) 0 0
\(310\) 1.47911e24 0.180461
\(311\) − 1.00332e25i − 1.18531i −0.805455 0.592657i \(-0.798079\pi\)
0.805455 0.592657i \(-0.201921\pi\)
\(312\) 0 0
\(313\) 1.24338e25 1.37771 0.688857 0.724897i \(-0.258113\pi\)
0.688857 + 0.724897i \(0.258113\pi\)
\(314\) 1.05824e25i 1.13576i
\(315\) 0 0
\(316\) 3.07538e23 0.0309762
\(317\) − 8.79433e24i − 0.858243i −0.903247 0.429122i \(-0.858823\pi\)
0.903247 0.429122i \(-0.141177\pi\)
\(318\) 0 0
\(319\) 1.70001e25 1.55792
\(320\) 2.91527e23i 0.0258928i
\(321\) 0 0
\(322\) 1.98213e24 0.165415
\(323\) 2.23753e25i 1.81027i
\(324\) 0 0
\(325\) −1.79336e25 −1.36406
\(326\) − 1.07560e24i − 0.0793371i
\(327\) 0 0
\(328\) −9.23783e24 −0.640961
\(329\) 1.02768e25i 0.691672i
\(330\) 0 0
\(331\) −6.80745e24 −0.431225 −0.215613 0.976479i \(-0.569175\pi\)
−0.215613 + 0.976479i \(0.569175\pi\)
\(332\) − 9.56594e24i − 0.587959i
\(333\) 0 0
\(334\) 5.63296e24 0.326041
\(335\) − 5.73267e23i − 0.0322039i
\(336\) 0 0
\(337\) 2.86535e25 1.51663 0.758314 0.651889i \(-0.226023\pi\)
0.758314 + 0.651889i \(0.226023\pi\)
\(338\) 1.41910e25i 0.729199i
\(339\) 0 0
\(340\) −2.75372e24 −0.133392
\(341\) − 3.47429e25i − 1.63427i
\(342\) 0 0
\(343\) 1.37170e25 0.608579
\(344\) 1.57695e25i 0.679567i
\(345\) 0 0
\(346\) 8.73642e24 0.355281
\(347\) − 2.91446e25i − 1.15150i −0.817626 0.575749i \(-0.804710\pi\)
0.817626 0.575749i \(-0.195290\pi\)
\(348\) 0 0
\(349\) 2.34394e25 0.874362 0.437181 0.899373i \(-0.355977\pi\)
0.437181 + 0.899373i \(0.355977\pi\)
\(350\) 2.88818e25i 1.04699i
\(351\) 0 0
\(352\) 6.84768e24 0.234486
\(353\) 1.28443e24i 0.0427527i 0.999772 + 0.0213763i \(0.00680481\pi\)
−0.999772 + 0.0213763i \(0.993195\pi\)
\(354\) 0 0
\(355\) 5.59485e24 0.175997
\(356\) 2.12090e25i 0.648664i
\(357\) 0 0
\(358\) 1.80556e25 0.522135
\(359\) − 4.53333e25i − 1.27489i −0.770495 0.637446i \(-0.779991\pi\)
0.770495 0.637446i \(-0.220009\pi\)
\(360\) 0 0
\(361\) 3.66732e25 0.975613
\(362\) 3.47243e25i 0.898561i
\(363\) 0 0
\(364\) 4.50164e25 1.10244
\(365\) − 8.96703e24i − 0.213658i
\(366\) 0 0
\(367\) 1.72256e25 0.388610 0.194305 0.980941i \(-0.437755\pi\)
0.194305 + 0.980941i \(0.437755\pi\)
\(368\) − 1.72187e24i − 0.0378027i
\(369\) 0 0
\(370\) −7.38675e24 −0.153616
\(371\) − 6.58204e25i − 1.33236i
\(372\) 0 0
\(373\) 3.32998e25 0.638783 0.319392 0.947623i \(-0.396521\pi\)
0.319392 + 0.947623i \(0.396521\pi\)
\(374\) 6.46823e25i 1.20801i
\(375\) 0 0
\(376\) 8.92746e24 0.158070
\(377\) − 9.70838e25i − 1.67391i
\(378\) 0 0
\(379\) 3.09816e25 0.506654 0.253327 0.967381i \(-0.418475\pi\)
0.253327 + 0.967381i \(0.418475\pi\)
\(380\) 9.13956e24i 0.145576i
\(381\) 0 0
\(382\) −2.98921e25 −0.451775
\(383\) 3.01209e25i 0.443486i 0.975105 + 0.221743i \(0.0711746\pi\)
−0.975105 + 0.221743i \(0.928825\pi\)
\(384\) 0 0
\(385\) −3.04140e25 −0.425075
\(386\) − 7.15412e25i − 0.974279i
\(387\) 0 0
\(388\) −3.78786e25 −0.489865
\(389\) − 1.97965e25i − 0.249513i −0.992187 0.124756i \(-0.960185\pi\)
0.992187 0.124756i \(-0.0398149\pi\)
\(390\) 0 0
\(391\) 1.62646e25 0.194749
\(392\) − 4.22070e25i − 0.492634i
\(393\) 0 0
\(394\) 4.59015e25 0.509173
\(395\) 1.18658e24i 0.0128329i
\(396\) 0 0
\(397\) −1.41656e25 −0.145657 −0.0728284 0.997344i \(-0.523203\pi\)
−0.0728284 + 0.997344i \(0.523203\pi\)
\(398\) 4.74659e25i 0.475939i
\(399\) 0 0
\(400\) 2.50896e25 0.239273
\(401\) 5.88256e25i 0.547170i 0.961848 + 0.273585i \(0.0882095\pi\)
−0.961848 + 0.273585i \(0.911791\pi\)
\(402\) 0 0
\(403\) −1.98409e26 −1.75595
\(404\) 8.91054e25i 0.769291i
\(405\) 0 0
\(406\) −1.56352e26 −1.28482
\(407\) 1.73508e26i 1.39115i
\(408\) 0 0
\(409\) 9.40317e25 0.717863 0.358931 0.933364i \(-0.383141\pi\)
0.358931 + 0.933364i \(0.383141\pi\)
\(410\) − 3.56425e25i − 0.265540i
\(411\) 0 0
\(412\) −6.26944e25 −0.444894
\(413\) − 3.16297e26i − 2.19076i
\(414\) 0 0
\(415\) 3.69085e25 0.243582
\(416\) − 3.91056e25i − 0.251945i
\(417\) 0 0
\(418\) 2.14680e26 1.31834
\(419\) − 2.47253e26i − 1.48252i −0.671217 0.741261i \(-0.734228\pi\)
0.671217 0.741261i \(-0.265772\pi\)
\(420\) 0 0
\(421\) 7.68761e25 0.439511 0.219756 0.975555i \(-0.429474\pi\)
0.219756 + 0.975555i \(0.429474\pi\)
\(422\) 6.65106e25i 0.371335i
\(423\) 0 0
\(424\) −5.71781e25 −0.304489
\(425\) 2.36993e26i 1.23267i
\(426\) 0 0
\(427\) −1.12849e25 −0.0560039
\(428\) 1.19404e26i 0.578872i
\(429\) 0 0
\(430\) −6.08436e25 −0.281534
\(431\) 1.10445e26i 0.499313i 0.968334 + 0.249657i \(0.0803178\pi\)
−0.968334 + 0.249657i \(0.919682\pi\)
\(432\) 0 0
\(433\) −3.58985e26 −1.54952 −0.774760 0.632255i \(-0.782129\pi\)
−0.774760 + 0.632255i \(0.782129\pi\)
\(434\) 3.19535e26i 1.34779i
\(435\) 0 0
\(436\) −1.37872e26 −0.555406
\(437\) − 5.39819e25i − 0.212537i
\(438\) 0 0
\(439\) 1.49169e26 0.561090 0.280545 0.959841i \(-0.409485\pi\)
0.280545 + 0.959841i \(0.409485\pi\)
\(440\) 2.64206e25i 0.0971438i
\(441\) 0 0
\(442\) 3.69386e26 1.29795
\(443\) 5.23216e26i 1.79740i 0.438569 + 0.898698i \(0.355486\pi\)
−0.438569 + 0.898698i \(0.644514\pi\)
\(444\) 0 0
\(445\) −8.18311e25 −0.268731
\(446\) 1.58431e26i 0.508736i
\(447\) 0 0
\(448\) −6.29790e25 −0.193382
\(449\) − 2.97258e26i − 0.892628i −0.894876 0.446314i \(-0.852736\pi\)
0.894876 0.446314i \(-0.147264\pi\)
\(450\) 0 0
\(451\) −8.37209e26 −2.40474
\(452\) − 1.83495e26i − 0.515512i
\(453\) 0 0
\(454\) −4.19409e26 −1.12740
\(455\) 1.73688e26i 0.456725i
\(456\) 0 0
\(457\) −7.27800e26 −1.83168 −0.915841 0.401541i \(-0.868475\pi\)
−0.915841 + 0.401541i \(0.868475\pi\)
\(458\) − 3.94818e26i − 0.972169i
\(459\) 0 0
\(460\) 6.64354e24 0.0156611
\(461\) − 5.49413e26i − 1.26733i −0.773607 0.633665i \(-0.781550\pi\)
0.773607 0.633665i \(-0.218450\pi\)
\(462\) 0 0
\(463\) −5.42201e26 −1.19771 −0.598853 0.800859i \(-0.704377\pi\)
−0.598853 + 0.800859i \(0.704377\pi\)
\(464\) 1.35823e26i 0.293625i
\(465\) 0 0
\(466\) −3.66859e26 −0.759697
\(467\) − 6.11109e26i − 1.23865i −0.785133 0.619327i \(-0.787405\pi\)
0.785133 0.619327i \(-0.212595\pi\)
\(468\) 0 0
\(469\) 1.23844e26 0.240517
\(470\) 3.44450e25i 0.0654859i
\(471\) 0 0
\(472\) −2.74767e26 −0.500662
\(473\) 1.42916e27i 2.54958i
\(474\) 0 0
\(475\) 7.86576e26 1.34526
\(476\) − 5.94891e26i − 0.996249i
\(477\) 0 0
\(478\) 3.71494e25 0.0596586
\(479\) 1.41791e26i 0.222994i 0.993765 + 0.111497i \(0.0355645\pi\)
−0.993765 + 0.111497i \(0.964436\pi\)
\(480\) 0 0
\(481\) 9.90865e26 1.49473
\(482\) − 2.98970e26i − 0.441730i
\(483\) 0 0
\(484\) 2.67879e26 0.379739
\(485\) − 1.46148e26i − 0.202943i
\(486\) 0 0
\(487\) 9.47193e26 1.26226 0.631130 0.775677i \(-0.282591\pi\)
0.631130 + 0.775677i \(0.282591\pi\)
\(488\) 9.80315e24i 0.0127987i
\(489\) 0 0
\(490\) 1.62848e26 0.204090
\(491\) 4.90571e26i 0.602402i 0.953561 + 0.301201i \(0.0973876\pi\)
−0.953561 + 0.301201i \(0.902612\pi\)
\(492\) 0 0
\(493\) −1.28296e27 −1.51267
\(494\) − 1.22599e27i − 1.41650i
\(495\) 0 0
\(496\) 2.77580e26 0.308014
\(497\) 1.20867e27i 1.31444i
\(498\) 0 0
\(499\) −1.48885e27 −1.55542 −0.777708 0.628625i \(-0.783618\pi\)
−0.777708 + 0.628625i \(0.783618\pi\)
\(500\) 1.97947e26i 0.202698i
\(501\) 0 0
\(502\) 1.36918e26 0.134717
\(503\) − 2.00385e27i − 1.93279i −0.257065 0.966394i \(-0.582755\pi\)
0.257065 0.966394i \(-0.417245\pi\)
\(504\) 0 0
\(505\) −3.43797e26 −0.318705
\(506\) − 1.56051e26i − 0.141827i
\(507\) 0 0
\(508\) 2.00533e26 0.175206
\(509\) − 8.96927e26i − 0.768386i −0.923253 0.384193i \(-0.874480\pi\)
0.923253 0.384193i \(-0.125520\pi\)
\(510\) 0 0
\(511\) 1.93716e27 1.59572
\(512\) 5.47097e25i 0.0441942i
\(513\) 0 0
\(514\) 9.74632e25 0.0757198
\(515\) − 2.41895e26i − 0.184313i
\(516\) 0 0
\(517\) 8.09080e26 0.593043
\(518\) − 1.59577e27i − 1.14729i
\(519\) 0 0
\(520\) 1.50882e26 0.104377
\(521\) 6.00174e26i 0.407286i 0.979045 + 0.203643i \(0.0652782\pi\)
−0.979045 + 0.203643i \(0.934722\pi\)
\(522\) 0 0
\(523\) 3.68249e26 0.240505 0.120253 0.992743i \(-0.461630\pi\)
0.120253 + 0.992743i \(0.461630\pi\)
\(524\) 7.16245e25i 0.0458932i
\(525\) 0 0
\(526\) 1.06552e27 0.657211
\(527\) 2.62198e27i 1.58680i
\(528\) 0 0
\(529\) 1.67692e27 0.977135
\(530\) − 2.20611e26i − 0.126145i
\(531\) 0 0
\(532\) −1.97444e27 −1.08724
\(533\) 4.78112e27i 2.58379i
\(534\) 0 0
\(535\) −4.60701e26 −0.239818
\(536\) − 1.07583e26i − 0.0549662i
\(537\) 0 0
\(538\) 9.87281e26 0.485980
\(539\) − 3.82515e27i − 1.84825i
\(540\) 0 0
\(541\) 3.59844e27 1.67549 0.837744 0.546063i \(-0.183874\pi\)
0.837744 + 0.546063i \(0.183874\pi\)
\(542\) − 3.85107e26i − 0.176031i
\(543\) 0 0
\(544\) −5.16781e26 −0.227676
\(545\) − 5.31954e26i − 0.230096i
\(546\) 0 0
\(547\) −5.33365e26 −0.222408 −0.111204 0.993798i \(-0.535471\pi\)
−0.111204 + 0.993798i \(0.535471\pi\)
\(548\) − 5.66450e26i − 0.231929i
\(549\) 0 0
\(550\) 2.27383e27 0.897699
\(551\) 4.25813e27i 1.65083i
\(552\) 0 0
\(553\) −2.56339e26 −0.0958438
\(554\) 1.51566e27i 0.556548i
\(555\) 0 0
\(556\) −1.41090e27 −0.499746
\(557\) − 2.49124e26i − 0.0866689i −0.999061 0.0433345i \(-0.986202\pi\)
0.999061 0.0433345i \(-0.0137981\pi\)
\(558\) 0 0
\(559\) 8.16162e27 2.73942
\(560\) − 2.42993e26i − 0.0801150i
\(561\) 0 0
\(562\) −4.62761e26 −0.147229
\(563\) 7.35341e24i 0.00229829i 0.999999 + 0.00114915i \(0.000365785\pi\)
−0.999999 + 0.00114915i \(0.999634\pi\)
\(564\) 0 0
\(565\) 7.07981e26 0.213569
\(566\) − 1.33752e27i − 0.396402i
\(567\) 0 0
\(568\) 1.04997e27 0.300394
\(569\) 8.95392e26i 0.251704i 0.992049 + 0.125852i \(0.0401665\pi\)
−0.992049 + 0.125852i \(0.959834\pi\)
\(570\) 0 0
\(571\) −4.54342e27 −1.23317 −0.616583 0.787290i \(-0.711483\pi\)
−0.616583 + 0.787290i \(0.711483\pi\)
\(572\) − 3.54408e27i − 0.945242i
\(573\) 0 0
\(574\) 7.69992e27 1.98320
\(575\) − 5.71762e26i − 0.144723i
\(576\) 0 0
\(577\) −6.50735e27 −1.59091 −0.795456 0.606012i \(-0.792768\pi\)
−0.795456 + 0.606012i \(0.792768\pi\)
\(578\) − 1.93862e27i − 0.465817i
\(579\) 0 0
\(580\) −5.24048e26 −0.121644
\(581\) 7.97341e27i 1.81921i
\(582\) 0 0
\(583\) −5.18195e27 −1.14237
\(584\) − 1.68281e27i − 0.364676i
\(585\) 0 0
\(586\) −4.07549e27 −0.853500
\(587\) 8.38706e27i 1.72675i 0.504564 + 0.863374i \(0.331653\pi\)
−0.504564 + 0.863374i \(0.668347\pi\)
\(588\) 0 0
\(589\) 8.70231e27 1.73174
\(590\) − 1.06014e27i − 0.207416i
\(591\) 0 0
\(592\) −1.38624e27 −0.262194
\(593\) − 5.84892e27i − 1.08775i −0.839167 0.543875i \(-0.816957\pi\)
0.839167 0.543875i \(-0.183043\pi\)
\(594\) 0 0
\(595\) 2.29528e27 0.412730
\(596\) 3.44287e27i 0.608777i
\(597\) 0 0
\(598\) −8.91171e26 −0.152387
\(599\) 9.02366e27i 1.51745i 0.651411 + 0.758725i \(0.274178\pi\)
−0.651411 + 0.758725i \(0.725822\pi\)
\(600\) 0 0
\(601\) 2.54045e27 0.413205 0.206602 0.978425i \(-0.433759\pi\)
0.206602 + 0.978425i \(0.433759\pi\)
\(602\) − 1.31442e28i − 2.10265i
\(603\) 0 0
\(604\) −1.74191e27 −0.269560
\(605\) 1.03356e27i 0.157320i
\(606\) 0 0
\(607\) −1.72349e27 −0.253818 −0.126909 0.991914i \(-0.540506\pi\)
−0.126909 + 0.991914i \(0.540506\pi\)
\(608\) 1.71519e27i 0.248471i
\(609\) 0 0
\(610\) −3.78237e25 −0.00530232
\(611\) − 4.62048e27i − 0.637199i
\(612\) 0 0
\(613\) −7.86108e27 −1.04925 −0.524623 0.851334i \(-0.675794\pi\)
−0.524623 + 0.851334i \(0.675794\pi\)
\(614\) 6.49855e27i 0.853360i
\(615\) 0 0
\(616\) −5.70768e27 −0.725526
\(617\) − 1.15044e28i − 1.43884i −0.694577 0.719418i \(-0.744408\pi\)
0.694577 0.719418i \(-0.255592\pi\)
\(618\) 0 0
\(619\) 7.80551e27 0.945138 0.472569 0.881294i \(-0.343327\pi\)
0.472569 + 0.881294i \(0.343327\pi\)
\(620\) 1.07099e27i 0.127605i
\(621\) 0 0
\(622\) 7.26478e27 0.838144
\(623\) − 1.76781e28i − 2.00704i
\(624\) 0 0
\(625\) 7.94096e27 0.873118
\(626\) 9.00301e27i 0.974191i
\(627\) 0 0
\(628\) −7.66246e27 −0.803104
\(629\) − 1.30943e28i − 1.35075i
\(630\) 0 0
\(631\) −3.60278e27 −0.360035 −0.180017 0.983663i \(-0.557615\pi\)
−0.180017 + 0.983663i \(0.557615\pi\)
\(632\) 2.22681e26i 0.0219035i
\(633\) 0 0
\(634\) 6.36778e27 0.606870
\(635\) 7.73720e26i 0.0725850i
\(636\) 0 0
\(637\) −2.18446e28 −1.98587
\(638\) 1.23094e28i 1.10161i
\(639\) 0 0
\(640\) −2.11088e26 −0.0183089
\(641\) − 5.30941e27i − 0.453384i −0.973967 0.226692i \(-0.927209\pi\)
0.973967 0.226692i \(-0.0727911\pi\)
\(642\) 0 0
\(643\) −1.69621e28 −1.40401 −0.702004 0.712173i \(-0.747711\pi\)
−0.702004 + 0.712173i \(0.747711\pi\)
\(644\) 1.43522e27i 0.116966i
\(645\) 0 0
\(646\) −1.62014e28 −1.28005
\(647\) 2.03420e28i 1.58253i 0.611475 + 0.791264i \(0.290576\pi\)
−0.611475 + 0.791264i \(0.709424\pi\)
\(648\) 0 0
\(649\) −2.49017e28 −1.87837
\(650\) − 1.29853e28i − 0.964539i
\(651\) 0 0
\(652\) 7.78820e26 0.0560998
\(653\) − 1.76479e28i − 1.25188i −0.779873 0.625938i \(-0.784716\pi\)
0.779873 0.625938i \(-0.215284\pi\)
\(654\) 0 0
\(655\) −2.76350e26 −0.0190128
\(656\) − 6.68891e27i − 0.453228i
\(657\) 0 0
\(658\) −7.44122e27 −0.489086
\(659\) 1.78828e28i 1.15766i 0.815448 + 0.578830i \(0.196491\pi\)
−0.815448 + 0.578830i \(0.803509\pi\)
\(660\) 0 0
\(661\) −1.98883e28 −1.24906 −0.624531 0.781000i \(-0.714710\pi\)
−0.624531 + 0.781000i \(0.714710\pi\)
\(662\) − 4.92912e27i − 0.304922i
\(663\) 0 0
\(664\) 6.92648e27 0.415750
\(665\) − 7.61801e27i − 0.450427i
\(666\) 0 0
\(667\) 3.09524e27 0.177597
\(668\) 4.07870e27i 0.230546i
\(669\) 0 0
\(670\) 4.15090e26 0.0227716
\(671\) 8.88443e26i 0.0480180i
\(672\) 0 0
\(673\) −5.09355e26 −0.0267221 −0.0133610 0.999911i \(-0.504253\pi\)
−0.0133610 + 0.999911i \(0.504253\pi\)
\(674\) 2.07474e28i 1.07242i
\(675\) 0 0
\(676\) −1.02754e28 −0.515621
\(677\) 9.08552e27i 0.449224i 0.974448 + 0.224612i \(0.0721115\pi\)
−0.974448 + 0.224612i \(0.927889\pi\)
\(678\) 0 0
\(679\) 3.15726e28 1.51570
\(680\) − 1.99391e27i − 0.0943226i
\(681\) 0 0
\(682\) 2.51566e28 1.15560
\(683\) − 2.99545e28i − 1.35599i −0.735069 0.677993i \(-0.762850\pi\)
0.735069 0.677993i \(-0.237150\pi\)
\(684\) 0 0
\(685\) 2.18554e27 0.0960846
\(686\) 9.93214e27i 0.430330i
\(687\) 0 0
\(688\) −1.14183e28 −0.480526
\(689\) 2.95930e28i 1.22743i
\(690\) 0 0
\(691\) −2.63516e28 −1.06176 −0.530879 0.847447i \(-0.678138\pi\)
−0.530879 + 0.847447i \(0.678138\pi\)
\(692\) 6.32584e27i 0.251222i
\(693\) 0 0
\(694\) 2.11030e28 0.814233
\(695\) − 5.44372e27i − 0.207037i
\(696\) 0 0
\(697\) 6.31825e28 2.33490
\(698\) 1.69719e28i 0.618268i
\(699\) 0 0
\(700\) −2.09127e28 −0.740337
\(701\) 5.04547e28i 1.76085i 0.474189 + 0.880423i \(0.342741\pi\)
−0.474189 + 0.880423i \(0.657259\pi\)
\(702\) 0 0
\(703\) −4.34597e28 −1.47412
\(704\) 4.95825e27i 0.165807i
\(705\) 0 0
\(706\) −9.30026e26 −0.0302307
\(707\) − 7.42712e28i − 2.38027i
\(708\) 0 0
\(709\) 1.12224e28 0.349643 0.174821 0.984600i \(-0.444065\pi\)
0.174821 + 0.984600i \(0.444065\pi\)
\(710\) 4.05110e27i 0.124449i
\(711\) 0 0
\(712\) −1.53570e28 −0.458675
\(713\) − 6.32571e27i − 0.186300i
\(714\) 0 0
\(715\) 1.36742e28 0.391599
\(716\) 1.30737e28i 0.369205i
\(717\) 0 0
\(718\) 3.28248e28 0.901484
\(719\) − 9.66414e27i − 0.261743i −0.991399 0.130871i \(-0.958223\pi\)
0.991399 0.130871i \(-0.0417775\pi\)
\(720\) 0 0
\(721\) 5.22571e28 1.37655
\(722\) 2.65543e28i 0.689862i
\(723\) 0 0
\(724\) −2.51431e28 −0.635378
\(725\) 4.51010e28i 1.12410i
\(726\) 0 0
\(727\) −4.58365e28 −1.11139 −0.555696 0.831386i \(-0.687548\pi\)
−0.555696 + 0.831386i \(0.687548\pi\)
\(728\) 3.25953e28i 0.779546i
\(729\) 0 0
\(730\) 6.49282e27 0.151079
\(731\) − 1.07856e29i − 2.47554i
\(732\) 0 0
\(733\) −6.80792e27 −0.152046 −0.0760230 0.997106i \(-0.524222\pi\)
−0.0760230 + 0.997106i \(0.524222\pi\)
\(734\) 1.24727e28i 0.274788i
\(735\) 0 0
\(736\) 1.24677e27 0.0267306
\(737\) − 9.75006e27i − 0.206221i
\(738\) 0 0
\(739\) 6.36178e28 1.30959 0.654793 0.755808i \(-0.272756\pi\)
0.654793 + 0.755808i \(0.272756\pi\)
\(740\) − 5.34858e27i − 0.108623i
\(741\) 0 0
\(742\) 4.76591e28 0.942121
\(743\) 5.30528e28i 1.03471i 0.855770 + 0.517356i \(0.173084\pi\)
−0.855770 + 0.517356i \(0.826916\pi\)
\(744\) 0 0
\(745\) −1.32837e28 −0.252207
\(746\) 2.41116e28i 0.451688i
\(747\) 0 0
\(748\) −4.68350e28 −0.854190
\(749\) − 9.95260e28i − 1.79109i
\(750\) 0 0
\(751\) −4.38712e28 −0.768742 −0.384371 0.923179i \(-0.625582\pi\)
−0.384371 + 0.923179i \(0.625582\pi\)
\(752\) 6.46417e27i 0.111772i
\(753\) 0 0
\(754\) 7.02962e28 1.18364
\(755\) − 6.72085e27i − 0.111675i
\(756\) 0 0
\(757\) 3.02822e28 0.490037 0.245018 0.969518i \(-0.421206\pi\)
0.245018 + 0.969518i \(0.421206\pi\)
\(758\) 2.24331e28i 0.358259i
\(759\) 0 0
\(760\) −6.61775e27 −0.102938
\(761\) − 1.13048e29i − 1.73547i −0.497024 0.867737i \(-0.665574\pi\)
0.497024 0.867737i \(-0.334426\pi\)
\(762\) 0 0
\(763\) 1.14919e29 1.71849
\(764\) − 2.16442e28i − 0.319454i
\(765\) 0 0
\(766\) −2.18098e28 −0.313592
\(767\) 1.42208e29i 2.01823i
\(768\) 0 0
\(769\) 2.18062e28 0.301521 0.150760 0.988570i \(-0.451828\pi\)
0.150760 + 0.988570i \(0.451828\pi\)
\(770\) − 2.20221e28i − 0.300574i
\(771\) 0 0
\(772\) 5.18014e28 0.688919
\(773\) 6.78621e28i 0.890907i 0.895305 + 0.445454i \(0.146958\pi\)
−0.895305 + 0.445454i \(0.853042\pi\)
\(774\) 0 0
\(775\) 9.21725e28 1.17919
\(776\) − 2.74270e28i − 0.346387i
\(777\) 0 0
\(778\) 1.43342e28 0.176432
\(779\) − 2.09702e29i − 2.54817i
\(780\) 0 0
\(781\) 9.51566e28 1.12701
\(782\) 1.17768e28i 0.137708i
\(783\) 0 0
\(784\) 3.05612e28 0.348345
\(785\) − 2.95642e28i − 0.332713i
\(786\) 0 0
\(787\) 9.08113e27 0.0996306 0.0498153 0.998758i \(-0.484137\pi\)
0.0498153 + 0.998758i \(0.484137\pi\)
\(788\) 3.32363e28i 0.360039i
\(789\) 0 0
\(790\) −8.59176e26 −0.00907426
\(791\) 1.52947e29i 1.59505i
\(792\) 0 0
\(793\) 5.07370e27 0.0515933
\(794\) − 1.02570e28i − 0.102995i
\(795\) 0 0
\(796\) −3.43690e28 −0.336540
\(797\) − 7.42199e27i − 0.0717690i −0.999356 0.0358845i \(-0.988575\pi\)
0.999356 0.0358845i \(-0.0114249\pi\)
\(798\) 0 0
\(799\) −6.10597e28 −0.575820
\(800\) 1.81668e28i 0.169192i
\(801\) 0 0
\(802\) −4.25943e28 −0.386908
\(803\) − 1.52510e29i − 1.36818i
\(804\) 0 0
\(805\) −5.53753e27 −0.0484571
\(806\) − 1.43664e29i − 1.24164i
\(807\) 0 0
\(808\) −6.45192e28 −0.543971
\(809\) 1.40247e29i 1.16791i 0.811787 + 0.583954i \(0.198495\pi\)
−0.811787 + 0.583954i \(0.801505\pi\)
\(810\) 0 0
\(811\) 8.98295e28 0.729811 0.364905 0.931045i \(-0.381101\pi\)
0.364905 + 0.931045i \(0.381101\pi\)
\(812\) − 1.13211e29i − 0.908507i
\(813\) 0 0
\(814\) −1.25633e29 −0.983693
\(815\) 3.00494e27i 0.0232413i
\(816\) 0 0
\(817\) −3.57972e29 −2.70164
\(818\) 6.80863e28i 0.507606i
\(819\) 0 0
\(820\) 2.58080e28 0.187765
\(821\) − 1.25263e29i − 0.900307i −0.892951 0.450154i \(-0.851369\pi\)
0.892951 0.450154i \(-0.148631\pi\)
\(822\) 0 0
\(823\) 4.35515e28 0.305496 0.152748 0.988265i \(-0.451188\pi\)
0.152748 + 0.988265i \(0.451188\pi\)
\(824\) − 4.53956e28i − 0.314588i
\(825\) 0 0
\(826\) 2.29024e29 1.54910
\(827\) 2.20901e29i 1.47619i 0.674697 + 0.738095i \(0.264274\pi\)
−0.674697 + 0.738095i \(0.735726\pi\)
\(828\) 0 0
\(829\) −4.46162e28 −0.291036 −0.145518 0.989356i \(-0.546485\pi\)
−0.145518 + 0.989356i \(0.546485\pi\)
\(830\) 2.67246e28i 0.172238i
\(831\) 0 0
\(832\) 2.83155e28 0.178152
\(833\) 2.88677e29i 1.79457i
\(834\) 0 0
\(835\) −1.57369e28 −0.0955114
\(836\) 1.55445e29i 0.932208i
\(837\) 0 0
\(838\) 1.79030e29 1.04830
\(839\) 2.92527e28i 0.169257i 0.996413 + 0.0846285i \(0.0269703\pi\)
−0.996413 + 0.0846285i \(0.973030\pi\)
\(840\) 0 0
\(841\) −6.71600e28 −0.379447
\(842\) 5.56642e28i 0.310782i
\(843\) 0 0
\(844\) −4.81588e28 −0.262574
\(845\) − 3.96457e28i − 0.213614i
\(846\) 0 0
\(847\) −2.23283e29 −1.17495
\(848\) − 4.14014e28i − 0.215306i
\(849\) 0 0
\(850\) −1.71601e29 −0.871628
\(851\) 3.15909e28i 0.158586i
\(852\) 0 0
\(853\) 1.18249e29 0.579839 0.289919 0.957051i \(-0.406371\pi\)
0.289919 + 0.957051i \(0.406371\pi\)
\(854\) − 8.17112e27i − 0.0396007i
\(855\) 0 0
\(856\) −8.64581e28 −0.409325
\(857\) − 3.33774e28i − 0.156187i −0.996946 0.0780934i \(-0.975117\pi\)
0.996946 0.0780934i \(-0.0248832\pi\)
\(858\) 0 0
\(859\) −5.32644e27 −0.0243504 −0.0121752 0.999926i \(-0.503876\pi\)
−0.0121752 + 0.999926i \(0.503876\pi\)
\(860\) − 4.40555e28i − 0.199074i
\(861\) 0 0
\(862\) −7.99707e28 −0.353068
\(863\) − 5.70074e28i − 0.248785i −0.992233 0.124392i \(-0.960302\pi\)
0.992233 0.124392i \(-0.0396981\pi\)
\(864\) 0 0
\(865\) −2.44071e28 −0.104077
\(866\) − 2.59933e29i − 1.09568i
\(867\) 0 0
\(868\) −2.31368e29 −0.953030
\(869\) 2.01812e28i 0.0821770i
\(870\) 0 0
\(871\) −5.56805e28 −0.221575
\(872\) − 9.98298e28i − 0.392731i
\(873\) 0 0
\(874\) 3.90871e28 0.150286
\(875\) − 1.64993e29i − 0.627170i
\(876\) 0 0
\(877\) −3.10649e29 −1.15418 −0.577090 0.816681i \(-0.695812\pi\)
−0.577090 + 0.816681i \(0.695812\pi\)
\(878\) 1.08010e29i 0.396750i
\(879\) 0 0
\(880\) −1.91305e28 −0.0686911
\(881\) 3.03041e29i 1.07583i 0.843000 + 0.537914i \(0.180787\pi\)
−0.843000 + 0.537914i \(0.819213\pi\)
\(882\) 0 0
\(883\) −3.20453e29 −1.11213 −0.556067 0.831138i \(-0.687690\pi\)
−0.556067 + 0.831138i \(0.687690\pi\)
\(884\) 2.67464e29i 0.917790i
\(885\) 0 0
\(886\) −3.78849e29 −1.27095
\(887\) 2.87528e29i 0.953772i 0.878965 + 0.476886i \(0.158235\pi\)
−0.878965 + 0.476886i \(0.841765\pi\)
\(888\) 0 0
\(889\) −1.67148e29 −0.542106
\(890\) − 5.92521e28i − 0.190022i
\(891\) 0 0
\(892\) −1.14717e29 −0.359731
\(893\) 2.02656e29i 0.628413i
\(894\) 0 0
\(895\) −5.04425e28 −0.152956
\(896\) − 4.56017e28i − 0.136742i
\(897\) 0 0
\(898\) 2.15238e29 0.631183
\(899\) 4.98976e29i 1.44705i
\(900\) 0 0
\(901\) 3.91072e29 1.10920
\(902\) − 6.06204e29i − 1.70041i
\(903\) 0 0
\(904\) 1.32864e29 0.364522
\(905\) − 9.70100e28i − 0.263227i
\(906\) 0 0
\(907\) −5.42973e29 −1.44114 −0.720569 0.693383i \(-0.756119\pi\)
−0.720569 + 0.693383i \(0.756119\pi\)
\(908\) − 3.03684e29i − 0.797194i
\(909\) 0 0
\(910\) −1.25763e29 −0.322953
\(911\) 3.84639e29i 0.976943i 0.872580 + 0.488472i \(0.162445\pi\)
−0.872580 + 0.488472i \(0.837555\pi\)
\(912\) 0 0
\(913\) 6.27735e29 1.55980
\(914\) − 5.26983e29i − 1.29519i
\(915\) 0 0
\(916\) 2.85879e29 0.687427
\(917\) − 5.97004e28i − 0.141999i
\(918\) 0 0
\(919\) −1.81942e29 −0.423426 −0.211713 0.977332i \(-0.567904\pi\)
−0.211713 + 0.977332i \(0.567904\pi\)
\(920\) 4.81044e27i 0.0110741i
\(921\) 0 0
\(922\) 3.97818e29 0.896138
\(923\) − 5.43418e29i − 1.21093i
\(924\) 0 0
\(925\) −4.60314e29 −1.00378
\(926\) − 3.92595e29i − 0.846906i
\(927\) 0 0
\(928\) −9.83461e28 −0.207624
\(929\) − 6.54217e28i − 0.136636i −0.997664 0.0683179i \(-0.978237\pi\)
0.997664 0.0683179i \(-0.0217632\pi\)
\(930\) 0 0
\(931\) 9.58113e29 1.95848
\(932\) − 2.65635e29i − 0.537187i
\(933\) 0 0
\(934\) 4.42490e29 0.875861
\(935\) − 1.80704e29i − 0.353877i
\(936\) 0 0
\(937\) 1.83998e29 0.352709 0.176355 0.984327i \(-0.443569\pi\)
0.176355 + 0.984327i \(0.443569\pi\)
\(938\) 8.96726e28i 0.170071i
\(939\) 0 0
\(940\) −2.49408e28 −0.0463055
\(941\) − 5.17567e29i − 0.950758i −0.879781 0.475379i \(-0.842311\pi\)
0.879781 0.475379i \(-0.157689\pi\)
\(942\) 0 0
\(943\) −1.52432e29 −0.274132
\(944\) − 1.98952e29i − 0.354021i
\(945\) 0 0
\(946\) −1.03482e30 −1.80283
\(947\) 5.11825e28i 0.0882311i 0.999026 + 0.0441156i \(0.0140470\pi\)
−0.999026 + 0.0441156i \(0.985953\pi\)
\(948\) 0 0
\(949\) −8.70953e29 −1.47005
\(950\) 5.69542e29i 0.951239i
\(951\) 0 0
\(952\) 4.30747e29 0.704455
\(953\) 5.65872e29i 0.915776i 0.889010 + 0.457888i \(0.151394\pi\)
−0.889010 + 0.457888i \(0.848606\pi\)
\(954\) 0 0
\(955\) 8.35102e28 0.132345
\(956\) 2.68991e28i 0.0421850i
\(957\) 0 0
\(958\) −1.02667e29 −0.157680
\(959\) 4.72147e29i 0.717615i
\(960\) 0 0
\(961\) 3.47963e29 0.517963
\(962\) 7.17463e29i 1.05694i
\(963\) 0 0
\(964\) 2.16477e29 0.312350
\(965\) 1.99866e29i 0.285408i
\(966\) 0 0
\(967\) 1.18187e30 1.65312 0.826558 0.562851i \(-0.190296\pi\)
0.826558 + 0.562851i \(0.190296\pi\)
\(968\) 1.93965e29i 0.268516i
\(969\) 0 0
\(970\) 1.05822e29 0.143503
\(971\) − 9.56785e29i − 1.28417i −0.766634 0.642084i \(-0.778070\pi\)
0.766634 0.642084i \(-0.221930\pi\)
\(972\) 0 0
\(973\) 1.17602e30 1.54627
\(974\) 6.85841e29i 0.892553i
\(975\) 0 0
\(976\) −7.09824e27 −0.00905008
\(977\) − 4.09410e28i − 0.0516670i −0.999666 0.0258335i \(-0.991776\pi\)
0.999666 0.0258335i \(-0.00822397\pi\)
\(978\) 0 0
\(979\) −1.39177e30 −1.72085
\(980\) 1.17915e29i 0.144314i
\(981\) 0 0
\(982\) −3.55211e29 −0.425963
\(983\) − 1.13576e30i − 1.34819i −0.738644 0.674095i \(-0.764534\pi\)
0.738644 0.674095i \(-0.235466\pi\)
\(984\) 0 0
\(985\) −1.28236e29 −0.149159
\(986\) − 9.28964e29i − 1.06962i
\(987\) 0 0
\(988\) 8.87710e29 1.00162
\(989\) 2.60210e29i 0.290643i
\(990\) 0 0
\(991\) 7.51652e29 0.822774 0.411387 0.911461i \(-0.365045\pi\)
0.411387 + 0.911461i \(0.365045\pi\)
\(992\) 2.00989e29i 0.217799i
\(993\) 0 0
\(994\) −8.75167e29 −0.929453
\(995\) − 1.32607e29i − 0.139423i
\(996\) 0 0
\(997\) −2.03179e29 −0.209376 −0.104688 0.994505i \(-0.533384\pi\)
−0.104688 + 0.994505i \(0.533384\pi\)
\(998\) − 1.07805e30i − 1.09985i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 54.21.b.c.53.9 yes 12
3.2 odd 2 inner 54.21.b.c.53.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.21.b.c.53.4 12 3.2 odd 2 inner
54.21.b.c.53.9 yes 12 1.1 even 1 trivial