Defining parameters
| Level: | \( N \) | \(=\) | \( 54 = 2 \cdot 3^{3} \) |
| Weight: | \( k \) | \(=\) | \( 21 \) |
| Character orbit: | \([\chi]\) | \(=\) | 54.b (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(189\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{21}(54, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 186 | 26 | 160 |
| Cusp forms | 174 | 26 | 148 |
| Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{21}^{\mathrm{new}}(54, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 54.21.b.a | $6$ | $136.897$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-218826006\) | \(q+\beta _{1}q^{2}-2^{19}q^{4}+(776\beta _{1}-\beta _{4})q^{5}+\cdots\) |
| 54.21.b.b | $8$ | $136.897$ | \(\mathbb{Q}[x]/(x^{8} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-36302648\) | \(q+\beta _{1}q^{2}-2^{19}q^{4}+(-4581\beta _{1}-\beta _{5}+\cdots)q^{5}+\cdots\) |
| 54.21.b.c | $12$ | $136.897$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(355856172\) | \(q+\beta _{6}q^{2}-2^{19}q^{4}+(852\beta _{6}+\beta _{8})q^{5}+\cdots\) |
Decomposition of \(S_{21}^{\mathrm{old}}(54, [\chi])\) into lower level spaces
\( S_{21}^{\mathrm{old}}(54, [\chi]) \simeq \) \(S_{21}^{\mathrm{new}}(3, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(6, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 2}\)