Properties

Label 54.21.b
Level $54$
Weight $21$
Character orbit 54.b
Rep. character $\chi_{54}(53,\cdot)$
Character field $\Q$
Dimension $26$
Newform subspaces $3$
Sturm bound $189$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 21 \)
Character orbit: \([\chi]\) \(=\) 54.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(189\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{21}(54, [\chi])\).

Total New Old
Modular forms 186 26 160
Cusp forms 174 26 148
Eisenstein series 12 0 12

Trace form

\( 26 q - 13631488 q^{4} + 100727518 q^{7} + 11410710528 q^{10} + 547231356730 q^{13} + 7146825580544 q^{16} + 12086489555314 q^{19} - 473825280000 q^{22} - 366869649935698 q^{25} - 52810228957184 q^{28} + 672588288988768 q^{31}+ \cdots - 59\!\cdots\!70 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{21}^{\mathrm{new}}(54, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
54.21.b.a 54.b 3.b $6$ $136.897$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 54.21.b.a \(0\) \(0\) \(0\) \(-218826006\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-2^{19}q^{4}+(776\beta _{1}-\beta _{4})q^{5}+\cdots\)
54.21.b.b 54.b 3.b $8$ $136.897$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 54.21.b.b \(0\) \(0\) \(0\) \(-36302648\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-2^{19}q^{4}+(-4581\beta _{1}-\beta _{5}+\cdots)q^{5}+\cdots\)
54.21.b.c 54.b 3.b $12$ $136.897$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 54.21.b.c \(0\) \(0\) \(0\) \(355856172\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{6}q^{2}-2^{19}q^{4}+(852\beta _{6}+\beta _{8})q^{5}+\cdots\)

Decomposition of \(S_{21}^{\mathrm{old}}(54, [\chi])\) into lower level spaces

\( S_{21}^{\mathrm{old}}(54, [\chi]) \simeq \) \(S_{21}^{\mathrm{new}}(3, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(6, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 2}\)