Properties

Label 54.21.b.c.53.12
Level $54$
Weight $21$
Character 54.53
Analytic conductor $136.897$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [54,21,Mod(53,54)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("54.53"); S:= CuspForms(chi, 21); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(54, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 21, names="a")
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 21 \)
Character orbit: \([\chi]\) \(=\) 54.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(136.897433155\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 64181120673558 x^{10} + \cdots + 59\!\cdots\!25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{63}\cdot 3^{90} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 53.12
Root \(5.97401e6i\) of defining polynomial
Character \(\chi\) \(=\) 54.53
Dual form 54.21.b.c.53.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+724.077i q^{2} -524288. q^{4} +1.79220e7i q^{5} +3.70310e8 q^{7} -3.79625e8i q^{8} -1.29769e10 q^{10} -7.93961e9i q^{11} +8.82019e10 q^{13} +2.68133e11i q^{14} +2.74878e11 q^{16} -1.27952e12i q^{17} +6.13964e11 q^{19} -9.39630e12i q^{20} +5.74889e12 q^{22} +5.25696e13i q^{23} -2.25831e14 q^{25} +6.38650e13i q^{26} -1.94149e14 q^{28} +4.94778e14i q^{29} +4.08497e14 q^{31} +1.99033e14i q^{32} +9.26469e14 q^{34} +6.63671e15i q^{35} +8.86884e15 q^{37} +4.44558e14i q^{38} +6.80365e15 q^{40} +1.66486e16i q^{41} -5.50910e15 q^{43} +4.16264e15i q^{44} -3.80644e16 q^{46} -6.38595e16i q^{47} +5.73373e16 q^{49} -1.63519e17i q^{50} -4.62432e16 q^{52} +2.19038e17i q^{53} +1.42294e17 q^{55} -1.40579e17i q^{56} -3.58257e17 q^{58} -6.16324e17i q^{59} +4.13350e17 q^{61} +2.95784e17i q^{62} -1.44115e17 q^{64} +1.58076e18i q^{65} +7.34220e17 q^{67} +6.70835e17i q^{68} -4.80549e18 q^{70} +5.12039e18i q^{71} +5.57613e18 q^{73} +6.42173e18i q^{74} -3.21894e17 q^{76} -2.94012e18i q^{77} -9.30637e18 q^{79} +4.92637e18i q^{80} -1.20548e19 q^{82} +1.56494e19i q^{83} +2.29315e19 q^{85} -3.98902e18i q^{86} -3.01407e18 q^{88} -2.32089e19i q^{89} +3.26621e19 q^{91} -2.75616e19i q^{92} +4.62392e19 q^{94} +1.10035e19i q^{95} -1.26064e20 q^{97} +4.15167e19i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6291456 q^{4} + 355856172 q^{7} - 5360984064 q^{10} + 374332013160 q^{13} + 3298534883328 q^{16} + 13268452496064 q^{19} + 64109345587200 q^{22} - 10850992436544 q^{25} - 186571120705536 q^{28} + 13\!\cdots\!76 q^{31}+ \cdots - 30\!\cdots\!60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 724.077i 0.707107i
\(3\) 0 0
\(4\) −524288. −0.500000
\(5\) 1.79220e7i 1.83521i 0.397488 + 0.917607i \(0.369882\pi\)
−0.397488 + 0.917607i \(0.630118\pi\)
\(6\) 0 0
\(7\) 3.70310e8 1.31095 0.655474 0.755218i \(-0.272469\pi\)
0.655474 + 0.755218i \(0.272469\pi\)
\(8\) − 3.79625e8i − 0.353553i
\(9\) 0 0
\(10\) −1.29769e10 −1.29769
\(11\) − 7.93961e9i − 0.306106i −0.988218 0.153053i \(-0.951089\pi\)
0.988218 0.153053i \(-0.0489106\pi\)
\(12\) 0 0
\(13\) 8.82019e10 0.639800 0.319900 0.947451i \(-0.396351\pi\)
0.319900 + 0.947451i \(0.396351\pi\)
\(14\) 2.68133e11i 0.926980i
\(15\) 0 0
\(16\) 2.74878e11 0.250000
\(17\) − 1.27952e12i − 0.634683i −0.948311 0.317341i \(-0.897210\pi\)
0.948311 0.317341i \(-0.102790\pi\)
\(18\) 0 0
\(19\) 6.13964e11 0.100140 0.0500699 0.998746i \(-0.484056\pi\)
0.0500699 + 0.998746i \(0.484056\pi\)
\(20\) − 9.39630e12i − 0.917607i
\(21\) 0 0
\(22\) 5.74889e12 0.216450
\(23\) 5.25696e13i 1.26898i 0.772930 + 0.634492i \(0.218791\pi\)
−0.772930 + 0.634492i \(0.781209\pi\)
\(24\) 0 0
\(25\) −2.25831e14 −2.36801
\(26\) 6.38650e13i 0.452407i
\(27\) 0 0
\(28\) −1.94149e14 −0.655474
\(29\) 4.94778e14i 1.17606i 0.808839 + 0.588031i \(0.200097\pi\)
−0.808839 + 0.588031i \(0.799903\pi\)
\(30\) 0 0
\(31\) 4.08497e14 0.498393 0.249197 0.968453i \(-0.419833\pi\)
0.249197 + 0.968453i \(0.419833\pi\)
\(32\) 1.99033e14i 0.176777i
\(33\) 0 0
\(34\) 9.26469e14 0.448789
\(35\) 6.63671e15i 2.40587i
\(36\) 0 0
\(37\) 8.86884e15 1.84438 0.922188 0.386741i \(-0.126399\pi\)
0.922188 + 0.386741i \(0.126399\pi\)
\(38\) 4.44558e14i 0.0708096i
\(39\) 0 0
\(40\) 6.80365e15 0.648846
\(41\) 1.66486e16i 1.24033i 0.784471 + 0.620166i \(0.212935\pi\)
−0.784471 + 0.620166i \(0.787065\pi\)
\(42\) 0 0
\(43\) −5.50910e15 −0.254915 −0.127458 0.991844i \(-0.540682\pi\)
−0.127458 + 0.991844i \(0.540682\pi\)
\(44\) 4.16264e15i 0.153053i
\(45\) 0 0
\(46\) −3.80644e16 −0.897307
\(47\) − 6.38595e16i − 1.21408i −0.794671 0.607040i \(-0.792357\pi\)
0.794671 0.607040i \(-0.207643\pi\)
\(48\) 0 0
\(49\) 5.73373e16 0.718582
\(50\) − 1.63519e17i − 1.67444i
\(51\) 0 0
\(52\) −4.62432e16 −0.319900
\(53\) 2.19038e17i 1.25245i 0.779642 + 0.626225i \(0.215401\pi\)
−0.779642 + 0.626225i \(0.784599\pi\)
\(54\) 0 0
\(55\) 1.42294e17 0.561771
\(56\) − 1.40579e17i − 0.463490i
\(57\) 0 0
\(58\) −3.58257e17 −0.831601
\(59\) − 6.16324e17i − 1.20584i −0.797803 0.602919i \(-0.794004\pi\)
0.797803 0.602919i \(-0.205996\pi\)
\(60\) 0 0
\(61\) 4.13350e17 0.579455 0.289728 0.957109i \(-0.406435\pi\)
0.289728 + 0.957109i \(0.406435\pi\)
\(62\) 2.95784e17i 0.352417i
\(63\) 0 0
\(64\) −1.44115e17 −0.125000
\(65\) 1.58076e18i 1.17417i
\(66\) 0 0
\(67\) 7.34220e17 0.402789 0.201395 0.979510i \(-0.435453\pi\)
0.201395 + 0.979510i \(0.435453\pi\)
\(68\) 6.70835e17i 0.317341i
\(69\) 0 0
\(70\) −4.80549e18 −1.70121
\(71\) 5.12039e18i 1.57297i 0.617612 + 0.786483i \(0.288100\pi\)
−0.617612 + 0.786483i \(0.711900\pi\)
\(72\) 0 0
\(73\) 5.57613e18 1.29749 0.648745 0.761006i \(-0.275294\pi\)
0.648745 + 0.761006i \(0.275294\pi\)
\(74\) 6.42173e18i 1.30417i
\(75\) 0 0
\(76\) −3.21894e17 −0.0500699
\(77\) − 2.94012e18i − 0.401289i
\(78\) 0 0
\(79\) −9.30637e18 −0.982900 −0.491450 0.870906i \(-0.663533\pi\)
−0.491450 + 0.870906i \(0.663533\pi\)
\(80\) 4.92637e18i 0.458804i
\(81\) 0 0
\(82\) −1.20548e19 −0.877047
\(83\) 1.56494e19i 1.00859i 0.863531 + 0.504296i \(0.168248\pi\)
−0.863531 + 0.504296i \(0.831752\pi\)
\(84\) 0 0
\(85\) 2.29315e19 1.16478
\(86\) − 3.98902e18i − 0.180252i
\(87\) 0 0
\(88\) −3.01407e18 −0.108225
\(89\) − 2.32089e19i − 0.744311i −0.928170 0.372156i \(-0.878619\pi\)
0.928170 0.372156i \(-0.121381\pi\)
\(90\) 0 0
\(91\) 3.26621e19 0.838744
\(92\) − 2.75616e19i − 0.634492i
\(93\) 0 0
\(94\) 4.62392e19 0.858484
\(95\) 1.10035e19i 0.183778i
\(96\) 0 0
\(97\) −1.26064e20 −1.70952 −0.854758 0.519027i \(-0.826295\pi\)
−0.854758 + 0.519027i \(0.826295\pi\)
\(98\) 4.15167e19i 0.508114i
\(99\) 0 0
\(100\) 1.18401e20 1.18401
\(101\) 1.27785e20i 1.15682i 0.815746 + 0.578411i \(0.196327\pi\)
−0.815746 + 0.578411i \(0.803673\pi\)
\(102\) 0 0
\(103\) 5.93903e19 0.441919 0.220960 0.975283i \(-0.429081\pi\)
0.220960 + 0.975283i \(0.429081\pi\)
\(104\) − 3.34837e19i − 0.226204i
\(105\) 0 0
\(106\) −1.58600e20 −0.885616
\(107\) 2.59219e20i 1.31774i 0.752258 + 0.658868i \(0.228965\pi\)
−0.752258 + 0.658868i \(0.771035\pi\)
\(108\) 0 0
\(109\) −4.46833e20 −1.88747 −0.943735 0.330704i \(-0.892714\pi\)
−0.943735 + 0.330704i \(0.892714\pi\)
\(110\) 1.03032e20i 0.397232i
\(111\) 0 0
\(112\) 1.01790e20 0.327737
\(113\) 3.89079e20i 1.14618i 0.819492 + 0.573090i \(0.194256\pi\)
−0.819492 + 0.573090i \(0.805744\pi\)
\(114\) 0 0
\(115\) −9.42153e20 −2.32886
\(116\) − 2.59406e20i − 0.588031i
\(117\) 0 0
\(118\) 4.46266e20 0.852656
\(119\) − 4.73818e20i − 0.832036i
\(120\) 0 0
\(121\) 6.09713e20 0.906299
\(122\) 2.99298e20i 0.409737i
\(123\) 0 0
\(124\) −2.14170e20 −0.249197
\(125\) − 2.33818e21i − 2.51060i
\(126\) 0 0
\(127\) 8.65544e20 0.792961 0.396481 0.918043i \(-0.370231\pi\)
0.396481 + 0.918043i \(0.370231\pi\)
\(128\) − 1.04351e20i − 0.0883883i
\(129\) 0 0
\(130\) −1.14459e21 −0.830264
\(131\) − 2.05503e21i − 1.38072i −0.723466 0.690360i \(-0.757452\pi\)
0.723466 0.690360i \(-0.242548\pi\)
\(132\) 0 0
\(133\) 2.27357e20 0.131278
\(134\) 5.31632e20i 0.284815i
\(135\) 0 0
\(136\) −4.85737e20 −0.224394
\(137\) 5.57533e20i 0.239367i 0.992812 + 0.119684i \(0.0381880\pi\)
−0.992812 + 0.119684i \(0.961812\pi\)
\(138\) 0 0
\(139\) −2.78892e21 −1.03583 −0.517914 0.855433i \(-0.673291\pi\)
−0.517914 + 0.855433i \(0.673291\pi\)
\(140\) − 3.47954e21i − 1.20293i
\(141\) 0 0
\(142\) −3.70756e21 −1.11225
\(143\) − 7.00289e20i − 0.195847i
\(144\) 0 0
\(145\) −8.86741e21 −2.15833
\(146\) 4.03755e21i 0.917464i
\(147\) 0 0
\(148\) −4.64983e21 −0.922188
\(149\) 3.26701e21i 0.605743i 0.953031 + 0.302871i \(0.0979452\pi\)
−0.953031 + 0.302871i \(0.902055\pi\)
\(150\) 0 0
\(151\) 1.13621e22 1.84370 0.921852 0.387543i \(-0.126676\pi\)
0.921852 + 0.387543i \(0.126676\pi\)
\(152\) − 2.33076e20i − 0.0354048i
\(153\) 0 0
\(154\) 2.12887e21 0.283754
\(155\) 7.32109e21i 0.914659i
\(156\) 0 0
\(157\) −8.25874e21 −0.907648 −0.453824 0.891091i \(-0.649940\pi\)
−0.453824 + 0.891091i \(0.649940\pi\)
\(158\) − 6.73853e21i − 0.695015i
\(159\) 0 0
\(160\) −3.56707e21 −0.324423
\(161\) 1.94670e22i 1.66357i
\(162\) 0 0
\(163\) −2.26009e22 −1.70706 −0.853531 0.521042i \(-0.825543\pi\)
−0.853531 + 0.521042i \(0.825543\pi\)
\(164\) − 8.72864e21i − 0.620166i
\(165\) 0 0
\(166\) −1.13314e22 −0.713183
\(167\) − 1.47582e22i − 0.874721i −0.899286 0.437360i \(-0.855913\pi\)
0.899286 0.437360i \(-0.144087\pi\)
\(168\) 0 0
\(169\) −1.12254e22 −0.590655
\(170\) 1.66042e22i 0.823623i
\(171\) 0 0
\(172\) 2.88836e21 0.127458
\(173\) − 2.17119e22i − 0.904143i −0.891982 0.452071i \(-0.850685\pi\)
0.891982 0.452071i \(-0.149315\pi\)
\(174\) 0 0
\(175\) −8.36276e22 −3.10434
\(176\) − 2.18242e21i − 0.0765266i
\(177\) 0 0
\(178\) 1.68050e22 0.526308
\(179\) − 6.20662e22i − 1.83791i −0.394359 0.918956i \(-0.629033\pi\)
0.394359 0.918956i \(-0.370967\pi\)
\(180\) 0 0
\(181\) −5.26480e22 −1.39507 −0.697536 0.716550i \(-0.745720\pi\)
−0.697536 + 0.716550i \(0.745720\pi\)
\(182\) 2.36499e22i 0.593082i
\(183\) 0 0
\(184\) 1.99567e22 0.448653
\(185\) 1.58948e23i 3.38483i
\(186\) 0 0
\(187\) −1.01589e22 −0.194280
\(188\) 3.34808e22i 0.607040i
\(189\) 0 0
\(190\) −7.96737e21 −0.129951
\(191\) − 2.32314e22i − 0.359536i −0.983709 0.179768i \(-0.942465\pi\)
0.983709 0.179768i \(-0.0575347\pi\)
\(192\) 0 0
\(193\) −1.61258e22 −0.224878 −0.112439 0.993659i \(-0.535866\pi\)
−0.112439 + 0.993659i \(0.535866\pi\)
\(194\) − 9.12800e22i − 1.20881i
\(195\) 0 0
\(196\) −3.00613e22 −0.359291
\(197\) − 4.46555e22i − 0.507239i −0.967304 0.253620i \(-0.918379\pi\)
0.967304 0.253620i \(-0.0816212\pi\)
\(198\) 0 0
\(199\) 7.41394e22 0.761234 0.380617 0.924733i \(-0.375712\pi\)
0.380617 + 0.924733i \(0.375712\pi\)
\(200\) 8.57312e22i 0.837219i
\(201\) 0 0
\(202\) −9.25263e22 −0.817997
\(203\) 1.83221e23i 1.54175i
\(204\) 0 0
\(205\) −2.98376e23 −2.27628
\(206\) 4.30032e22i 0.312484i
\(207\) 0 0
\(208\) 2.42448e22 0.159950
\(209\) − 4.87464e21i − 0.0306534i
\(210\) 0 0
\(211\) 1.49478e23 0.854581 0.427291 0.904114i \(-0.359468\pi\)
0.427291 + 0.904114i \(0.359468\pi\)
\(212\) − 1.14839e23i − 0.626225i
\(213\) 0 0
\(214\) −1.87694e23 −0.931780
\(215\) − 9.87342e22i − 0.467825i
\(216\) 0 0
\(217\) 1.51271e23 0.653367
\(218\) − 3.23541e23i − 1.33464i
\(219\) 0 0
\(220\) −7.46029e22 −0.280885
\(221\) − 1.12856e23i − 0.406070i
\(222\) 0 0
\(223\) −8.55234e22 −0.281214 −0.140607 0.990066i \(-0.544905\pi\)
−0.140607 + 0.990066i \(0.544905\pi\)
\(224\) 7.37039e22i 0.231745i
\(225\) 0 0
\(226\) −2.81723e23 −0.810472
\(227\) − 6.04428e23i − 1.66374i −0.554970 0.831870i \(-0.687270\pi\)
0.554970 0.831870i \(-0.312730\pi\)
\(228\) 0 0
\(229\) −4.82857e23 −1.21749 −0.608743 0.793368i \(-0.708326\pi\)
−0.608743 + 0.793368i \(0.708326\pi\)
\(230\) − 6.82191e23i − 1.64675i
\(231\) 0 0
\(232\) 1.87830e23 0.415800
\(233\) 6.98154e22i 0.148044i 0.997257 + 0.0740222i \(0.0235836\pi\)
−0.997257 + 0.0740222i \(0.976416\pi\)
\(234\) 0 0
\(235\) 1.14449e24 2.22810
\(236\) 3.23131e23i 0.602919i
\(237\) 0 0
\(238\) 3.43081e23 0.588338
\(239\) − 2.05591e23i − 0.338084i −0.985609 0.169042i \(-0.945933\pi\)
0.985609 0.169042i \(-0.0540674\pi\)
\(240\) 0 0
\(241\) 3.09008e23 0.467518 0.233759 0.972295i \(-0.424897\pi\)
0.233759 + 0.972295i \(0.424897\pi\)
\(242\) 4.41479e23i 0.640850i
\(243\) 0 0
\(244\) −2.16715e23 −0.289728
\(245\) 1.02760e24i 1.31875i
\(246\) 0 0
\(247\) 5.41528e22 0.0640695
\(248\) − 1.55076e23i − 0.176209i
\(249\) 0 0
\(250\) 1.69302e24 1.77526
\(251\) 3.58739e23i 0.361445i 0.983534 + 0.180722i \(0.0578435\pi\)
−0.983534 + 0.180722i \(0.942156\pi\)
\(252\) 0 0
\(253\) 4.17382e23 0.388444
\(254\) 6.26721e23i 0.560708i
\(255\) 0 0
\(256\) 7.55579e22 0.0625000
\(257\) 1.92190e24i 1.52897i 0.644640 + 0.764486i \(0.277007\pi\)
−0.644640 + 0.764486i \(0.722993\pi\)
\(258\) 0 0
\(259\) 3.28422e24 2.41788
\(260\) − 8.28772e23i − 0.587086i
\(261\) 0 0
\(262\) 1.48800e24 0.976316
\(263\) 1.30638e24i 0.825112i 0.910932 + 0.412556i \(0.135364\pi\)
−0.910932 + 0.412556i \(0.864636\pi\)
\(264\) 0 0
\(265\) −3.92560e24 −2.29851
\(266\) 1.64624e23i 0.0928276i
\(267\) 0 0
\(268\) −3.84943e23 −0.201395
\(269\) − 2.89981e24i − 1.46166i −0.682558 0.730832i \(-0.739132\pi\)
0.682558 0.730832i \(-0.260868\pi\)
\(270\) 0 0
\(271\) 2.75714e23 0.129052 0.0645262 0.997916i \(-0.479446\pi\)
0.0645262 + 0.997916i \(0.479446\pi\)
\(272\) − 3.51711e23i − 0.158671i
\(273\) 0 0
\(274\) −4.03697e23 −0.169258
\(275\) 1.79301e24i 0.724864i
\(276\) 0 0
\(277\) 1.27944e24 0.481086 0.240543 0.970639i \(-0.422675\pi\)
0.240543 + 0.970639i \(0.422675\pi\)
\(278\) − 2.01939e24i − 0.732441i
\(279\) 0 0
\(280\) 2.51946e24 0.850603
\(281\) 1.00119e24i 0.326175i 0.986612 + 0.163088i \(0.0521454\pi\)
−0.986612 + 0.163088i \(0.947855\pi\)
\(282\) 0 0
\(283\) 3.53395e24 1.07250 0.536249 0.844060i \(-0.319841\pi\)
0.536249 + 0.844060i \(0.319841\pi\)
\(284\) − 2.68456e24i − 0.786483i
\(285\) 0 0
\(286\) 5.07063e23 0.138485
\(287\) 6.16513e24i 1.62601i
\(288\) 0 0
\(289\) 2.42707e24 0.597178
\(290\) − 6.42069e24i − 1.52617i
\(291\) 0 0
\(292\) −2.92350e24 −0.648745
\(293\) − 1.47544e24i − 0.316407i −0.987407 0.158203i \(-0.949430\pi\)
0.987407 0.158203i \(-0.0505702\pi\)
\(294\) 0 0
\(295\) 1.10458e25 2.21297
\(296\) − 3.36683e24i − 0.652086i
\(297\) 0 0
\(298\) −2.36557e24 −0.428325
\(299\) 4.63674e24i 0.811896i
\(300\) 0 0
\(301\) −2.04008e24 −0.334181
\(302\) 8.22707e24i 1.30369i
\(303\) 0 0
\(304\) 1.68765e23 0.0250350
\(305\) 7.40808e24i 1.06343i
\(306\) 0 0
\(307\) 1.00958e25 1.35755 0.678776 0.734345i \(-0.262511\pi\)
0.678776 + 0.734345i \(0.262511\pi\)
\(308\) 1.54147e24i 0.200645i
\(309\) 0 0
\(310\) −5.30104e24 −0.646761
\(311\) − 2.60865e24i − 0.308185i −0.988056 0.154093i \(-0.950755\pi\)
0.988056 0.154093i \(-0.0492454\pi\)
\(312\) 0 0
\(313\) −1.34890e25 −1.49464 −0.747320 0.664464i \(-0.768660\pi\)
−0.747320 + 0.664464i \(0.768660\pi\)
\(314\) − 5.97997e24i − 0.641804i
\(315\) 0 0
\(316\) 4.87922e24 0.491450
\(317\) 5.50004e24i 0.536752i 0.963314 + 0.268376i \(0.0864869\pi\)
−0.963314 + 0.268376i \(0.913513\pi\)
\(318\) 0 0
\(319\) 3.92834e24 0.360000
\(320\) − 2.58284e24i − 0.229402i
\(321\) 0 0
\(322\) −1.40956e25 −1.17632
\(323\) − 7.85578e23i − 0.0635571i
\(324\) 0 0
\(325\) −1.99188e25 −1.51506
\(326\) − 1.63648e25i − 1.20707i
\(327\) 0 0
\(328\) 6.32021e24 0.438524
\(329\) − 2.36478e25i − 1.59159i
\(330\) 0 0
\(331\) −1.36160e25 −0.862518 −0.431259 0.902228i \(-0.641930\pi\)
−0.431259 + 0.902228i \(0.641930\pi\)
\(332\) − 8.20478e24i − 0.504296i
\(333\) 0 0
\(334\) 1.06861e25 0.618521
\(335\) 1.31587e25i 0.739205i
\(336\) 0 0
\(337\) 2.43469e25 1.28868 0.644341 0.764739i \(-0.277132\pi\)
0.644341 + 0.764739i \(0.277132\pi\)
\(338\) − 8.12805e24i − 0.417656i
\(339\) 0 0
\(340\) −1.20227e25 −0.582390
\(341\) − 3.24331e24i − 0.152561i
\(342\) 0 0
\(343\) −8.31529e24 −0.368924
\(344\) 2.09139e24i 0.0901262i
\(345\) 0 0
\(346\) 1.57211e25 0.639325
\(347\) 2.22862e25i 0.880525i 0.897869 + 0.440263i \(0.145115\pi\)
−0.897869 + 0.440263i \(0.854885\pi\)
\(348\) 0 0
\(349\) −4.54909e25 −1.69696 −0.848478 0.529231i \(-0.822481\pi\)
−0.848478 + 0.529231i \(0.822481\pi\)
\(350\) − 6.05529e25i − 2.19510i
\(351\) 0 0
\(352\) 1.58024e24 0.0541124
\(353\) − 9.99616e24i − 0.332726i −0.986065 0.166363i \(-0.946798\pi\)
0.986065 0.166363i \(-0.0532023\pi\)
\(354\) 0 0
\(355\) −9.17677e25 −2.88673
\(356\) 1.21682e25i 0.372156i
\(357\) 0 0
\(358\) 4.49407e25 1.29960
\(359\) 3.43781e25i 0.966800i 0.875399 + 0.483400i \(0.160598\pi\)
−0.875399 + 0.483400i \(0.839402\pi\)
\(360\) 0 0
\(361\) −3.72130e25 −0.989972
\(362\) − 3.81212e25i − 0.986464i
\(363\) 0 0
\(364\) −1.71243e25 −0.419372
\(365\) 9.99355e25i 2.38117i
\(366\) 0 0
\(367\) −5.51538e24 −0.124427 −0.0622135 0.998063i \(-0.519816\pi\)
−0.0622135 + 0.998063i \(0.519816\pi\)
\(368\) 1.44502e25i 0.317246i
\(369\) 0 0
\(370\) −1.15090e26 −2.39343
\(371\) 8.11119e25i 1.64190i
\(372\) 0 0
\(373\) −9.56724e23 −0.0183526 −0.00917632 0.999958i \(-0.502921\pi\)
−0.00917632 + 0.999958i \(0.502921\pi\)
\(374\) − 7.35580e24i − 0.137377i
\(375\) 0 0
\(376\) −2.42427e25 −0.429242
\(377\) 4.36403e25i 0.752444i
\(378\) 0 0
\(379\) 9.44840e24 0.154513 0.0772567 0.997011i \(-0.475384\pi\)
0.0772567 + 0.997011i \(0.475384\pi\)
\(380\) − 5.76899e24i − 0.0918891i
\(381\) 0 0
\(382\) 1.68214e25 0.254230
\(383\) − 1.22672e25i − 0.180616i −0.995914 0.0903080i \(-0.971215\pi\)
0.995914 0.0903080i \(-0.0287851\pi\)
\(384\) 0 0
\(385\) 5.26928e25 0.736452
\(386\) − 1.16763e25i − 0.159013i
\(387\) 0 0
\(388\) 6.60938e25 0.854758
\(389\) 1.01074e26i 1.27392i 0.770897 + 0.636960i \(0.219808\pi\)
−0.770897 + 0.636960i \(0.780192\pi\)
\(390\) 0 0
\(391\) 6.72636e25 0.805402
\(392\) − 2.17667e25i − 0.254057i
\(393\) 0 0
\(394\) 3.23341e25 0.358672
\(395\) − 1.66789e26i − 1.80383i
\(396\) 0 0
\(397\) 5.51713e25 0.567294 0.283647 0.958929i \(-0.408456\pi\)
0.283647 + 0.958929i \(0.408456\pi\)
\(398\) 5.36826e25i 0.538274i
\(399\) 0 0
\(400\) −6.20760e25 −0.592003
\(401\) 1.22452e26i 1.13900i 0.821992 + 0.569498i \(0.192863\pi\)
−0.821992 + 0.569498i \(0.807137\pi\)
\(402\) 0 0
\(403\) 3.60302e25 0.318872
\(404\) − 6.69962e25i − 0.578411i
\(405\) 0 0
\(406\) −1.32666e26 −1.09018
\(407\) − 7.04151e25i − 0.564575i
\(408\) 0 0
\(409\) 9.48941e25 0.724446 0.362223 0.932091i \(-0.382018\pi\)
0.362223 + 0.932091i \(0.382018\pi\)
\(410\) − 2.16047e26i − 1.60957i
\(411\) 0 0
\(412\) −3.11376e25 −0.220960
\(413\) − 2.28231e26i − 1.58079i
\(414\) 0 0
\(415\) −2.80468e26 −1.85098
\(416\) 1.75551e25i 0.113102i
\(417\) 0 0
\(418\) 3.52961e24 0.0216753
\(419\) 2.42017e25i 0.145113i 0.997364 + 0.0725563i \(0.0231157\pi\)
−0.997364 + 0.0725563i \(0.976884\pi\)
\(420\) 0 0
\(421\) 1.18993e26 0.680299 0.340149 0.940371i \(-0.389522\pi\)
0.340149 + 0.940371i \(0.389522\pi\)
\(422\) 1.08234e26i 0.604280i
\(423\) 0 0
\(424\) 8.31522e25 0.442808
\(425\) 2.88955e26i 1.50294i
\(426\) 0 0
\(427\) 1.53068e26 0.759636
\(428\) − 1.35905e26i − 0.658868i
\(429\) 0 0
\(430\) 7.14912e25 0.330802
\(431\) − 2.57610e26i − 1.16464i −0.812961 0.582319i \(-0.802146\pi\)
0.812961 0.582319i \(-0.197854\pi\)
\(432\) 0 0
\(433\) 2.61817e26 1.13011 0.565054 0.825054i \(-0.308855\pi\)
0.565054 + 0.825054i \(0.308855\pi\)
\(434\) 1.09532e26i 0.462000i
\(435\) 0 0
\(436\) 2.34269e26 0.943735
\(437\) 3.22758e25i 0.127076i
\(438\) 0 0
\(439\) −3.87193e26 −1.45640 −0.728202 0.685363i \(-0.759644\pi\)
−0.728202 + 0.685363i \(0.759644\pi\)
\(440\) − 5.40183e25i − 0.198616i
\(441\) 0 0
\(442\) 8.17163e25 0.287135
\(443\) 3.50390e26i 1.20369i 0.798613 + 0.601845i \(0.205567\pi\)
−0.798613 + 0.601845i \(0.794433\pi\)
\(444\) 0 0
\(445\) 4.15950e26 1.36597
\(446\) − 6.19256e25i − 0.198848i
\(447\) 0 0
\(448\) −5.33673e25 −0.163868
\(449\) 3.06377e25i 0.0920011i 0.998941 + 0.0460005i \(0.0146476\pi\)
−0.998941 + 0.0460005i \(0.985352\pi\)
\(450\) 0 0
\(451\) 1.32183e26 0.379673
\(452\) − 2.03989e26i − 0.573090i
\(453\) 0 0
\(454\) 4.37652e26 1.17644
\(455\) 5.85370e26i 1.53928i
\(456\) 0 0
\(457\) 1.33467e26 0.335900 0.167950 0.985795i \(-0.446285\pi\)
0.167950 + 0.985795i \(0.446285\pi\)
\(458\) − 3.49626e26i − 0.860892i
\(459\) 0 0
\(460\) 4.93959e26 1.16443
\(461\) − 5.24477e26i − 1.20981i −0.796298 0.604905i \(-0.793211\pi\)
0.796298 0.604905i \(-0.206789\pi\)
\(462\) 0 0
\(463\) 5.76823e25 0.127419 0.0637093 0.997969i \(-0.479707\pi\)
0.0637093 + 0.997969i \(0.479707\pi\)
\(464\) 1.36003e26i 0.294015i
\(465\) 0 0
\(466\) −5.05517e25 −0.104683
\(467\) − 5.24346e26i − 1.06279i −0.847123 0.531397i \(-0.821667\pi\)
0.847123 0.531397i \(-0.178333\pi\)
\(468\) 0 0
\(469\) 2.71889e26 0.528036
\(470\) 8.28701e26i 1.57550i
\(471\) 0 0
\(472\) −2.33972e26 −0.426328
\(473\) 4.37401e25i 0.0780312i
\(474\) 0 0
\(475\) −1.38652e26 −0.237133
\(476\) 2.48417e26i 0.416018i
\(477\) 0 0
\(478\) 1.48864e26 0.239062
\(479\) − 4.90998e26i − 0.772191i −0.922459 0.386095i \(-0.873824\pi\)
0.922459 0.386095i \(-0.126176\pi\)
\(480\) 0 0
\(481\) 7.82249e26 1.18003
\(482\) 2.23745e26i 0.330585i
\(483\) 0 0
\(484\) −3.19665e26 −0.453149
\(485\) − 2.25932e27i − 3.13733i
\(486\) 0 0
\(487\) 3.91048e26 0.521123 0.260562 0.965457i \(-0.416092\pi\)
0.260562 + 0.965457i \(0.416092\pi\)
\(488\) − 1.56918e26i − 0.204868i
\(489\) 0 0
\(490\) −7.44062e26 −0.932499
\(491\) 1.26266e26i 0.155050i 0.996990 + 0.0775252i \(0.0247018\pi\)
−0.996990 + 0.0775252i \(0.975298\pi\)
\(492\) 0 0
\(493\) 6.33076e26 0.746426
\(494\) 3.92108e25i 0.0453040i
\(495\) 0 0
\(496\) 1.12287e26 0.124598
\(497\) 1.89613e27i 2.06207i
\(498\) 0 0
\(499\) −1.49652e27 −1.56343 −0.781714 0.623637i \(-0.785654\pi\)
−0.781714 + 0.623637i \(0.785654\pi\)
\(500\) 1.22588e27i 1.25530i
\(501\) 0 0
\(502\) −2.59755e26 −0.255580
\(503\) 2.05910e26i 0.198609i 0.995057 + 0.0993044i \(0.0316617\pi\)
−0.995057 + 0.0993044i \(0.968338\pi\)
\(504\) 0 0
\(505\) −2.29017e27 −2.12302
\(506\) 3.02217e26i 0.274671i
\(507\) 0 0
\(508\) −4.53794e26 −0.396481
\(509\) 1.05248e27i 0.901646i 0.892613 + 0.450823i \(0.148869\pi\)
−0.892613 + 0.450823i \(0.851131\pi\)
\(510\) 0 0
\(511\) 2.06490e27 1.70094
\(512\) 5.47097e25i 0.0441942i
\(513\) 0 0
\(514\) −1.39160e27 −1.08115
\(515\) 1.06439e27i 0.811017i
\(516\) 0 0
\(517\) −5.07020e26 −0.371637
\(518\) 2.37803e27i 1.70970i
\(519\) 0 0
\(520\) 6.00095e26 0.415132
\(521\) − 1.57372e27i − 1.06795i −0.845500 0.533975i \(-0.820698\pi\)
0.845500 0.533975i \(-0.179302\pi\)
\(522\) 0 0
\(523\) 2.77555e27 1.81273 0.906364 0.422497i \(-0.138846\pi\)
0.906364 + 0.422497i \(0.138846\pi\)
\(524\) 1.07743e27i 0.690360i
\(525\) 0 0
\(526\) −9.45922e26 −0.583442
\(527\) − 5.22679e26i − 0.316322i
\(528\) 0 0
\(529\) −1.04740e27 −0.610319
\(530\) − 2.84244e27i − 1.62530i
\(531\) 0 0
\(532\) −1.19201e26 −0.0656391
\(533\) 1.46843e27i 0.793565i
\(534\) 0 0
\(535\) −4.64572e27 −2.41833
\(536\) − 2.78728e26i − 0.142408i
\(537\) 0 0
\(538\) 2.09969e27 1.03355
\(539\) − 4.55236e26i − 0.219963i
\(540\) 0 0
\(541\) −1.61554e27 −0.752221 −0.376111 0.926575i \(-0.622739\pi\)
−0.376111 + 0.926575i \(0.622739\pi\)
\(542\) 1.99638e26i 0.0912539i
\(543\) 0 0
\(544\) 2.54666e26 0.112197
\(545\) − 8.00814e27i − 3.46391i
\(546\) 0 0
\(547\) −8.51258e26 −0.354967 −0.177483 0.984124i \(-0.556796\pi\)
−0.177483 + 0.984124i \(0.556796\pi\)
\(548\) − 2.92308e26i − 0.119684i
\(549\) 0 0
\(550\) −1.29828e27 −0.512556
\(551\) 3.03776e26i 0.117771i
\(552\) 0 0
\(553\) −3.44624e27 −1.28853
\(554\) 9.26414e26i 0.340179i
\(555\) 0 0
\(556\) 1.46220e27 0.517914
\(557\) − 2.85564e27i − 0.993462i −0.867905 0.496731i \(-0.834534\pi\)
0.867905 0.496731i \(-0.165466\pi\)
\(558\) 0 0
\(559\) −4.85913e26 −0.163095
\(560\) 1.82428e27i 0.601467i
\(561\) 0 0
\(562\) −7.24936e26 −0.230641
\(563\) − 1.04630e27i − 0.327017i −0.986542 0.163509i \(-0.947719\pi\)
0.986542 0.163509i \(-0.0522811\pi\)
\(564\) 0 0
\(565\) −6.97308e27 −2.10349
\(566\) 2.55886e27i 0.758371i
\(567\) 0 0
\(568\) 1.94383e27 0.556127
\(569\) − 1.50905e27i − 0.424210i −0.977247 0.212105i \(-0.931968\pi\)
0.977247 0.212105i \(-0.0680319\pi\)
\(570\) 0 0
\(571\) 2.32597e27 0.631311 0.315656 0.948874i \(-0.397776\pi\)
0.315656 + 0.948874i \(0.397776\pi\)
\(572\) 3.67153e26i 0.0979234i
\(573\) 0 0
\(574\) −4.46403e27 −1.14976
\(575\) − 1.18719e28i − 3.00497i
\(576\) 0 0
\(577\) 1.87613e26 0.0458674 0.0229337 0.999737i \(-0.492699\pi\)
0.0229337 + 0.999737i \(0.492699\pi\)
\(578\) 1.75739e27i 0.422268i
\(579\) 0 0
\(580\) 4.64908e27 1.07916
\(581\) 5.79512e27i 1.32221i
\(582\) 0 0
\(583\) 1.73907e27 0.383383
\(584\) − 2.11684e27i − 0.458732i
\(585\) 0 0
\(586\) 1.06833e27 0.223734
\(587\) 3.52653e27i 0.726049i 0.931780 + 0.363025i \(0.118256\pi\)
−0.931780 + 0.363025i \(0.881744\pi\)
\(588\) 0 0
\(589\) 2.50803e26 0.0499090
\(590\) 7.99799e27i 1.56481i
\(591\) 0 0
\(592\) 2.43785e27 0.461094
\(593\) 9.16023e26i 0.170357i 0.996366 + 0.0851784i \(0.0271460\pi\)
−0.996366 + 0.0851784i \(0.972854\pi\)
\(594\) 0 0
\(595\) 8.49177e27 1.52696
\(596\) − 1.71286e27i − 0.302871i
\(597\) 0 0
\(598\) −3.35735e27 −0.574097
\(599\) 4.92879e27i 0.828843i 0.910085 + 0.414422i \(0.136016\pi\)
−0.910085 + 0.414422i \(0.863984\pi\)
\(600\) 0 0
\(601\) −3.14905e27 −0.512195 −0.256097 0.966651i \(-0.582437\pi\)
−0.256097 + 0.966651i \(0.582437\pi\)
\(602\) − 1.47717e27i − 0.236301i
\(603\) 0 0
\(604\) −5.95704e27 −0.921852
\(605\) 1.09273e28i 1.66325i
\(606\) 0 0
\(607\) 2.25730e27 0.332431 0.166216 0.986089i \(-0.446845\pi\)
0.166216 + 0.986089i \(0.446845\pi\)
\(608\) 1.22199e26i 0.0177024i
\(609\) 0 0
\(610\) −5.36402e27 −0.751955
\(611\) − 5.63253e27i − 0.776769i
\(612\) 0 0
\(613\) −2.54609e27 −0.339836 −0.169918 0.985458i \(-0.554350\pi\)
−0.169918 + 0.985458i \(0.554350\pi\)
\(614\) 7.31013e27i 0.959934i
\(615\) 0 0
\(616\) −1.11614e27 −0.141877
\(617\) 3.58358e27i 0.448194i 0.974567 + 0.224097i \(0.0719432\pi\)
−0.974567 + 0.224097i \(0.928057\pi\)
\(618\) 0 0
\(619\) −4.86472e27 −0.589049 −0.294525 0.955644i \(-0.595161\pi\)
−0.294525 + 0.955644i \(0.595161\pi\)
\(620\) − 3.83836e27i − 0.457329i
\(621\) 0 0
\(622\) 1.88886e27 0.217920
\(623\) − 8.59449e27i − 0.975753i
\(624\) 0 0
\(625\) 2.03679e28 2.23947
\(626\) − 9.76709e27i − 1.05687i
\(627\) 0 0
\(628\) 4.32996e27 0.453824
\(629\) − 1.13478e28i − 1.17059i
\(630\) 0 0
\(631\) 5.80990e27 0.580597 0.290299 0.956936i \(-0.406245\pi\)
0.290299 + 0.956936i \(0.406245\pi\)
\(632\) 3.53293e27i 0.347508i
\(633\) 0 0
\(634\) −3.98246e27 −0.379541
\(635\) 1.55123e28i 1.45525i
\(636\) 0 0
\(637\) 5.05726e27 0.459749
\(638\) 2.84442e27i 0.254558i
\(639\) 0 0
\(640\) 1.87017e27 0.162212
\(641\) 3.97009e27i 0.339016i 0.985529 + 0.169508i \(0.0542178\pi\)
−0.985529 + 0.169508i \(0.945782\pi\)
\(642\) 0 0
\(643\) 1.29641e28 1.07308 0.536542 0.843873i \(-0.319730\pi\)
0.536542 + 0.843873i \(0.319730\pi\)
\(644\) − 1.02063e28i − 0.831785i
\(645\) 0 0
\(646\) 5.68819e26 0.0449416
\(647\) 1.41306e28i 1.09930i 0.835395 + 0.549651i \(0.185239\pi\)
−0.835395 + 0.549651i \(0.814761\pi\)
\(648\) 0 0
\(649\) −4.89337e27 −0.369114
\(650\) − 1.44227e28i − 1.07131i
\(651\) 0 0
\(652\) 1.18494e28 0.853531
\(653\) − 1.12247e27i − 0.0796236i −0.999207 0.0398118i \(-0.987324\pi\)
0.999207 0.0398118i \(-0.0126758\pi\)
\(654\) 0 0
\(655\) 3.68303e28 2.53392
\(656\) 4.57632e27i 0.310083i
\(657\) 0 0
\(658\) 1.71229e28 1.12543
\(659\) − 6.43837e27i − 0.416795i −0.978044 0.208397i \(-0.933175\pi\)
0.978044 0.208397i \(-0.0668247\pi\)
\(660\) 0 0
\(661\) 1.60160e28 1.00587 0.502933 0.864326i \(-0.332254\pi\)
0.502933 + 0.864326i \(0.332254\pi\)
\(662\) − 9.85900e27i − 0.609892i
\(663\) 0 0
\(664\) 5.94089e27 0.356591
\(665\) 4.07470e27i 0.240924i
\(666\) 0 0
\(667\) −2.60102e28 −1.49240
\(668\) 7.73756e27i 0.437360i
\(669\) 0 0
\(670\) −9.52792e27 −0.522697
\(671\) − 3.28184e27i − 0.177375i
\(672\) 0 0
\(673\) 2.40723e28 1.26289 0.631446 0.775420i \(-0.282462\pi\)
0.631446 + 0.775420i \(0.282462\pi\)
\(674\) 1.76291e28i 0.911235i
\(675\) 0 0
\(676\) 5.88534e27 0.295328
\(677\) 2.04502e28i 1.01114i 0.862785 + 0.505570i \(0.168718\pi\)
−0.862785 + 0.505570i \(0.831282\pi\)
\(678\) 0 0
\(679\) −4.66827e28 −2.24109
\(680\) − 8.70538e27i − 0.411812i
\(681\) 0 0
\(682\) 2.34841e27 0.107877
\(683\) 1.09771e28i 0.496914i 0.968643 + 0.248457i \(0.0799234\pi\)
−0.968643 + 0.248457i \(0.920077\pi\)
\(684\) 0 0
\(685\) −9.99211e27 −0.439290
\(686\) − 6.02092e27i − 0.260868i
\(687\) 0 0
\(688\) −1.51433e27 −0.0637289
\(689\) 1.93196e28i 0.801318i
\(690\) 0 0
\(691\) −4.38615e28 −1.76727 −0.883635 0.468176i \(-0.844911\pi\)
−0.883635 + 0.468176i \(0.844911\pi\)
\(692\) 1.13833e28i 0.452071i
\(693\) 0 0
\(694\) −1.61370e28 −0.622625
\(695\) − 4.99830e28i − 1.90097i
\(696\) 0 0
\(697\) 2.13021e28 0.787217
\(698\) − 3.29390e28i − 1.19993i
\(699\) 0 0
\(700\) 4.38450e28 1.55217
\(701\) − 6.56979e27i − 0.229283i −0.993407 0.114641i \(-0.963428\pi\)
0.993407 0.114641i \(-0.0365719\pi\)
\(702\) 0 0
\(703\) 5.44515e27 0.184696
\(704\) 1.14422e27i 0.0382633i
\(705\) 0 0
\(706\) 7.23799e27 0.235273
\(707\) 4.73201e28i 1.51653i
\(708\) 0 0
\(709\) −5.35721e28 −1.66908 −0.834539 0.550949i \(-0.814266\pi\)
−0.834539 + 0.550949i \(0.814266\pi\)
\(710\) − 6.64469e28i − 2.04123i
\(711\) 0 0
\(712\) −8.81068e27 −0.263154
\(713\) 2.14745e28i 0.632453i
\(714\) 0 0
\(715\) 1.25506e28 0.359421
\(716\) 3.25406e28i 0.918956i
\(717\) 0 0
\(718\) −2.48924e28 −0.683631
\(719\) − 4.01717e27i − 0.108801i −0.998519 0.0544003i \(-0.982675\pi\)
0.998519 0.0544003i \(-0.0173247\pi\)
\(720\) 0 0
\(721\) 2.19928e28 0.579333
\(722\) − 2.69451e28i − 0.700016i
\(723\) 0 0
\(724\) 2.76027e28 0.697536
\(725\) − 1.11736e29i − 2.78493i
\(726\) 0 0
\(727\) 2.02877e28 0.491913 0.245957 0.969281i \(-0.420898\pi\)
0.245957 + 0.969281i \(0.420898\pi\)
\(728\) − 1.23993e28i − 0.296541i
\(729\) 0 0
\(730\) −7.23610e28 −1.68374
\(731\) 7.04899e27i 0.161790i
\(732\) 0 0
\(733\) 6.60151e28 1.47436 0.737179 0.675697i \(-0.236157\pi\)
0.737179 + 0.675697i \(0.236157\pi\)
\(734\) − 3.99356e27i − 0.0879832i
\(735\) 0 0
\(736\) −1.04631e28 −0.224327
\(737\) − 5.82942e27i − 0.123296i
\(738\) 0 0
\(739\) 3.98588e28 0.820503 0.410252 0.911972i \(-0.365441\pi\)
0.410252 + 0.911972i \(0.365441\pi\)
\(740\) − 8.33343e28i − 1.69241i
\(741\) 0 0
\(742\) −5.87313e28 −1.16100
\(743\) 5.81918e28i 1.13494i 0.823394 + 0.567471i \(0.192078\pi\)
−0.823394 + 0.567471i \(0.807922\pi\)
\(744\) 0 0
\(745\) −5.85515e28 −1.11167
\(746\) − 6.92743e26i − 0.0129773i
\(747\) 0 0
\(748\) 5.32617e27 0.0971402
\(749\) 9.59913e28i 1.72748i
\(750\) 0 0
\(751\) −1.06188e29 −1.86070 −0.930352 0.366667i \(-0.880499\pi\)
−0.930352 + 0.366667i \(0.880499\pi\)
\(752\) − 1.75536e28i − 0.303520i
\(753\) 0 0
\(754\) −3.15990e28 −0.532059
\(755\) 2.03633e29i 3.38359i
\(756\) 0 0
\(757\) 2.17859e28 0.352547 0.176273 0.984341i \(-0.443596\pi\)
0.176273 + 0.984341i \(0.443596\pi\)
\(758\) 6.84137e27i 0.109257i
\(759\) 0 0
\(760\) 4.17720e27 0.0649754
\(761\) − 4.01925e28i − 0.617019i −0.951221 0.308509i \(-0.900170\pi\)
0.951221 0.308509i \(-0.0998301\pi\)
\(762\) 0 0
\(763\) −1.65467e29 −2.47437
\(764\) 1.21800e28i 0.179768i
\(765\) 0 0
\(766\) 8.88237e27 0.127715
\(767\) − 5.43609e28i − 0.771495i
\(768\) 0 0
\(769\) 4.34858e28 0.601290 0.300645 0.953736i \(-0.402798\pi\)
0.300645 + 0.953736i \(0.402798\pi\)
\(770\) 3.81537e28i 0.520750i
\(771\) 0 0
\(772\) 8.45455e27 0.112439
\(773\) 1.20791e29i 1.58576i 0.609377 + 0.792881i \(0.291420\pi\)
−0.609377 + 0.792881i \(0.708580\pi\)
\(774\) 0 0
\(775\) −9.22515e28 −1.18020
\(776\) 4.78570e28i 0.604405i
\(777\) 0 0
\(778\) −7.31852e28 −0.900798
\(779\) 1.02216e28i 0.124207i
\(780\) 0 0
\(781\) 4.06539e28 0.481495
\(782\) 4.87041e28i 0.569505i
\(783\) 0 0
\(784\) 1.57608e28 0.179646
\(785\) − 1.48013e29i − 1.66573i
\(786\) 0 0
\(787\) 9.03878e28 0.991660 0.495830 0.868420i \(-0.334864\pi\)
0.495830 + 0.868420i \(0.334864\pi\)
\(788\) 2.34124e28i 0.253620i
\(789\) 0 0
\(790\) 1.20768e29 1.27550
\(791\) 1.44080e29i 1.50258i
\(792\) 0 0
\(793\) 3.64583e28 0.370736
\(794\) 3.99483e28i 0.401138i
\(795\) 0 0
\(796\) −3.88704e28 −0.380617
\(797\) − 7.89198e28i − 0.763138i −0.924340 0.381569i \(-0.875384\pi\)
0.924340 0.381569i \(-0.124616\pi\)
\(798\) 0 0
\(799\) −8.17093e28 −0.770556
\(800\) − 4.49479e28i − 0.418610i
\(801\) 0 0
\(802\) −8.86648e28 −0.805392
\(803\) − 4.42723e28i − 0.397170i
\(804\) 0 0
\(805\) −3.48889e29 −3.05301
\(806\) 2.60887e28i 0.225477i
\(807\) 0 0
\(808\) 4.85104e28 0.408998
\(809\) 6.67905e28i 0.556198i 0.960552 + 0.278099i \(0.0897043\pi\)
−0.960552 + 0.278099i \(0.910296\pi\)
\(810\) 0 0
\(811\) 1.08205e29 0.879103 0.439552 0.898217i \(-0.355137\pi\)
0.439552 + 0.898217i \(0.355137\pi\)
\(812\) − 9.60606e28i − 0.770877i
\(813\) 0 0
\(814\) 5.09860e28 0.399215
\(815\) − 4.05053e29i − 3.13282i
\(816\) 0 0
\(817\) −3.38239e27 −0.0255272
\(818\) 6.87106e28i 0.512261i
\(819\) 0 0
\(820\) 1.56435e29 1.13814
\(821\) 8.56226e28i 0.615399i 0.951484 + 0.307700i \(0.0995592\pi\)
−0.951484 + 0.307700i \(0.900441\pi\)
\(822\) 0 0
\(823\) 1.37589e29 0.965131 0.482566 0.875860i \(-0.339705\pi\)
0.482566 + 0.875860i \(0.339705\pi\)
\(824\) − 2.25460e28i − 0.156242i
\(825\) 0 0
\(826\) 1.65257e29 1.11779
\(827\) 3.93801e28i 0.263161i 0.991306 + 0.131580i \(0.0420051\pi\)
−0.991306 + 0.131580i \(0.957995\pi\)
\(828\) 0 0
\(829\) −1.83729e29 −1.19848 −0.599241 0.800568i \(-0.704531\pi\)
−0.599241 + 0.800568i \(0.704531\pi\)
\(830\) − 2.03081e29i − 1.30884i
\(831\) 0 0
\(832\) −1.27112e28 −0.0799750
\(833\) − 7.33641e28i − 0.456072i
\(834\) 0 0
\(835\) 2.64497e29 1.60530
\(836\) 2.55571e27i 0.0153267i
\(837\) 0 0
\(838\) −1.75239e28 −0.102610
\(839\) − 3.01869e29i − 1.74662i −0.487161 0.873312i \(-0.661967\pi\)
0.487161 0.873312i \(-0.338033\pi\)
\(840\) 0 0
\(841\) −6.78102e28 −0.383120
\(842\) 8.61600e28i 0.481044i
\(843\) 0 0
\(844\) −7.83697e28 −0.427291
\(845\) − 2.01182e29i − 1.08398i
\(846\) 0 0
\(847\) 2.25783e29 1.18811
\(848\) 6.02086e28i 0.313112i
\(849\) 0 0
\(850\) −2.09226e29 −1.06274
\(851\) 4.66231e29i 2.34048i
\(852\) 0 0
\(853\) 1.94621e29 0.954330 0.477165 0.878814i \(-0.341664\pi\)
0.477165 + 0.878814i \(0.341664\pi\)
\(854\) 1.10833e29i 0.537143i
\(855\) 0 0
\(856\) 9.84059e28 0.465890
\(857\) 2.07350e29i 0.970279i 0.874437 + 0.485140i \(0.161231\pi\)
−0.874437 + 0.485140i \(0.838769\pi\)
\(858\) 0 0
\(859\) 1.03740e29 0.474256 0.237128 0.971478i \(-0.423794\pi\)
0.237128 + 0.971478i \(0.423794\pi\)
\(860\) 5.17652e28i 0.233912i
\(861\) 0 0
\(862\) 1.86530e29 0.823523
\(863\) 2.81523e28i 0.122859i 0.998111 + 0.0614293i \(0.0195659\pi\)
−0.998111 + 0.0614293i \(0.980434\pi\)
\(864\) 0 0
\(865\) 3.89121e29 1.65930
\(866\) 1.89576e29i 0.799106i
\(867\) 0 0
\(868\) −7.93094e28 −0.326684
\(869\) 7.38889e28i 0.300872i
\(870\) 0 0
\(871\) 6.47596e28 0.257705
\(872\) 1.69629e29i 0.667321i
\(873\) 0 0
\(874\) −2.33702e28 −0.0898562
\(875\) − 8.65851e29i − 3.29126i
\(876\) 0 0
\(877\) −7.33263e28 −0.272436 −0.136218 0.990679i \(-0.543495\pi\)
−0.136218 + 0.990679i \(0.543495\pi\)
\(878\) − 2.80357e29i − 1.02983i
\(879\) 0 0
\(880\) 3.91134e28 0.140443
\(881\) 1.56240e29i 0.554669i 0.960773 + 0.277335i \(0.0894511\pi\)
−0.960773 + 0.277335i \(0.910549\pi\)
\(882\) 0 0
\(883\) −4.14726e29 −1.43931 −0.719654 0.694333i \(-0.755700\pi\)
−0.719654 + 0.694333i \(0.755700\pi\)
\(884\) 5.91690e28i 0.203035i
\(885\) 0 0
\(886\) −2.53709e29 −0.851137
\(887\) 2.74914e29i 0.911929i 0.889998 + 0.455965i \(0.150706\pi\)
−0.889998 + 0.455965i \(0.849294\pi\)
\(888\) 0 0
\(889\) 3.20520e29 1.03953
\(890\) 3.01180e29i 0.965887i
\(891\) 0 0
\(892\) 4.48389e28 0.140607
\(893\) − 3.92075e28i − 0.121578i
\(894\) 0 0
\(895\) 1.11235e30 3.37297
\(896\) − 3.86421e28i − 0.115872i
\(897\) 0 0
\(898\) −2.21841e28 −0.0650546
\(899\) 2.02115e29i 0.586141i
\(900\) 0 0
\(901\) 2.80262e29 0.794908
\(902\) 9.57107e28i 0.268470i
\(903\) 0 0
\(904\) 1.47704e29 0.405236
\(905\) − 9.43559e29i − 2.56026i
\(906\) 0 0
\(907\) −2.38915e29 −0.634119 −0.317060 0.948406i \(-0.602696\pi\)
−0.317060 + 0.948406i \(0.602696\pi\)
\(908\) 3.16894e29i 0.831870i
\(909\) 0 0
\(910\) −4.23853e29 −1.08843
\(911\) − 6.69574e29i − 1.70065i −0.526258 0.850325i \(-0.676405\pi\)
0.526258 0.850325i \(-0.323595\pi\)
\(912\) 0 0
\(913\) 1.24250e29 0.308737
\(914\) 9.66401e28i 0.237517i
\(915\) 0 0
\(916\) 2.53156e29 0.608743
\(917\) − 7.60999e29i − 1.81005i
\(918\) 0 0
\(919\) 4.35929e29 1.01452 0.507260 0.861793i \(-0.330658\pi\)
0.507260 + 0.861793i \(0.330658\pi\)
\(920\) 3.57665e29i 0.823375i
\(921\) 0 0
\(922\) 3.79762e29 0.855464
\(923\) 4.51628e29i 1.00638i
\(924\) 0 0
\(925\) −2.00286e30 −4.36751
\(926\) 4.17664e28i 0.0900985i
\(927\) 0 0
\(928\) −9.84770e28 −0.207900
\(929\) 7.97362e29i 1.66532i 0.553783 + 0.832661i \(0.313184\pi\)
−0.553783 + 0.832661i \(0.686816\pi\)
\(930\) 0 0
\(931\) 3.52031e28 0.0719588
\(932\) − 3.66034e28i − 0.0740222i
\(933\) 0 0
\(934\) 3.79667e29 0.751509
\(935\) − 1.82067e29i − 0.356546i
\(936\) 0 0
\(937\) −3.21295e28 −0.0615896 −0.0307948 0.999526i \(-0.509804\pi\)
−0.0307948 + 0.999526i \(0.509804\pi\)
\(938\) 1.96869e29i 0.373378i
\(939\) 0 0
\(940\) −6.00043e29 −1.11405
\(941\) − 1.49046e29i − 0.273794i −0.990585 0.136897i \(-0.956287\pi\)
0.990585 0.136897i \(-0.0437129\pi\)
\(942\) 0 0
\(943\) −8.75207e29 −1.57396
\(944\) − 1.69414e29i − 0.301459i
\(945\) 0 0
\(946\) −3.16712e28 −0.0551764
\(947\) 1.03653e30i 1.78682i 0.449243 + 0.893410i \(0.351694\pi\)
−0.449243 + 0.893410i \(0.648306\pi\)
\(948\) 0 0
\(949\) 4.91825e29 0.830135
\(950\) − 1.00395e29i − 0.167678i
\(951\) 0 0
\(952\) −1.79873e29 −0.294169
\(953\) 4.46099e29i 0.721942i 0.932577 + 0.360971i \(0.117555\pi\)
−0.932577 + 0.360971i \(0.882445\pi\)
\(954\) 0 0
\(955\) 4.16354e29 0.659826
\(956\) 1.07789e29i 0.169042i
\(957\) 0 0
\(958\) 3.55521e29 0.546021
\(959\) 2.06460e29i 0.313798i
\(960\) 0 0
\(961\) −5.04921e29 −0.751604
\(962\) 5.66409e29i 0.834409i
\(963\) 0 0
\(964\) −1.62009e29 −0.233759
\(965\) − 2.89006e29i − 0.412700i
\(966\) 0 0
\(967\) −1.29392e29 −0.180985 −0.0904923 0.995897i \(-0.528844\pi\)
−0.0904923 + 0.995897i \(0.528844\pi\)
\(968\) − 2.31462e29i − 0.320425i
\(969\) 0 0
\(970\) 1.63592e30 2.21843
\(971\) − 4.60306e29i − 0.617810i −0.951093 0.308905i \(-0.900038\pi\)
0.951093 0.308905i \(-0.0999624\pi\)
\(972\) 0 0
\(973\) −1.03276e30 −1.35792
\(974\) 2.83149e29i 0.368490i
\(975\) 0 0
\(976\) 1.13621e29 0.144864
\(977\) − 4.70028e29i − 0.593169i −0.955007 0.296584i \(-0.904152\pi\)
0.955007 0.296584i \(-0.0958476\pi\)
\(978\) 0 0
\(979\) −1.84270e29 −0.227838
\(980\) − 5.38759e29i − 0.659377i
\(981\) 0 0
\(982\) −9.14266e28 −0.109637
\(983\) 8.69352e29i 1.03195i 0.856602 + 0.515977i \(0.172571\pi\)
−0.856602 + 0.515977i \(0.827429\pi\)
\(984\) 0 0
\(985\) 8.00317e29 0.930893
\(986\) 4.58396e29i 0.527803i
\(987\) 0 0
\(988\) −2.83917e28 −0.0320348
\(989\) − 2.89611e29i − 0.323484i
\(990\) 0 0
\(991\) −1.67605e30 −1.83463 −0.917317 0.398158i \(-0.869650\pi\)
−0.917317 + 0.398158i \(0.869650\pi\)
\(992\) 8.13044e28i 0.0881043i
\(993\) 0 0
\(994\) −1.37295e30 −1.45811
\(995\) 1.32873e30i 1.39703i
\(996\) 0 0
\(997\) 1.13481e30 1.16942 0.584709 0.811243i \(-0.301209\pi\)
0.584709 + 0.811243i \(0.301209\pi\)
\(998\) − 1.08360e30i − 1.10551i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 54.21.b.c.53.12 yes 12
3.2 odd 2 inner 54.21.b.c.53.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.21.b.c.53.1 12 3.2 odd 2 inner
54.21.b.c.53.12 yes 12 1.1 even 1 trivial