Properties

Label 54.21.b.a.53.1
Level $54$
Weight $21$
Character 54.53
Analytic conductor $136.897$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [54,21,Mod(53,54)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("54.53"); S:= CuspForms(chi, 21); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(54, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 21, names="a")
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 21 \)
Character orbit: \([\chi]\) \(=\) 54.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(136.897433155\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2 x^{5} - 40125045 x^{4} - 40221949036 x^{3} + 402545211574772 x^{2} + \cdots + 40\!\cdots\!12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{31}\cdot 3^{18}\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 53.1
Root \(-1063.41 + 1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 54.53
Dual form 54.21.b.a.53.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-724.077i q^{2} -524288. q^{4} -1.04203e7i q^{5} +3.13964e8 q^{7} +3.79625e8i q^{8} -7.54511e9 q^{10} -5.11515e9i q^{11} -8.38857e10 q^{13} -2.27334e11i q^{14} +2.74878e11 q^{16} -3.93049e11i q^{17} +2.35664e12 q^{19} +5.46324e12i q^{20} -3.70377e12 q^{22} +3.96304e13i q^{23} -1.32154e13 q^{25} +6.07397e13i q^{26} -1.64608e14 q^{28} +2.25420e14i q^{29} -7.57278e14 q^{31} -1.99033e14i q^{32} -2.84598e14 q^{34} -3.27161e15i q^{35} -7.93436e15 q^{37} -1.70639e15i q^{38} +3.95581e15 q^{40} -1.78659e16i q^{41} -1.01711e16 q^{43} +2.68181e15i q^{44} +2.86955e16 q^{46} +2.93759e16i q^{47} +1.87813e16 q^{49} +9.56897e15i q^{50} +4.39803e16 q^{52} -6.24962e15i q^{53} -5.33015e16 q^{55} +1.19189e17i q^{56} +1.63221e17 q^{58} -7.16002e17i q^{59} -1.56905e17 q^{61} +5.48328e17i q^{62} -1.44115e17 q^{64} +8.74115e17i q^{65} -7.08866e17 q^{67} +2.06071e17i q^{68} -2.36890e18 q^{70} -2.46105e18i q^{71} -7.33674e18 q^{73} +5.74509e18i q^{74} -1.23556e18 q^{76} -1.60598e18i q^{77} +5.21937e18 q^{79} -2.86431e18i q^{80} -1.29363e19 q^{82} +9.97723e18i q^{83} -4.09569e18 q^{85} +7.36463e18i q^{86} +1.94184e18 q^{88} -2.83384e19i q^{89} -2.63371e19 q^{91} -2.07777e19i q^{92} +2.12704e19 q^{94} -2.45569e19i q^{95} -6.43135e18 q^{97} -1.35991e19i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3145728 q^{4} - 218826006 q^{7} - 2440839168 q^{10} + 110239981338 q^{13} + 1649267441664 q^{16} + 6190167313578 q^{19} + 10915007348736 q^{22} + 100487054737446 q^{25} + 114727849033728 q^{28} - 16\!\cdots\!56 q^{31}+ \cdots - 95\!\cdots\!62 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 724.077i − 0.707107i
\(3\) 0 0
\(4\) −524288. −0.500000
\(5\) − 1.04203e7i − 1.06704i −0.845788 0.533520i \(-0.820869\pi\)
0.845788 0.533520i \(-0.179131\pi\)
\(6\) 0 0
\(7\) 3.13964e8 1.11148 0.555738 0.831358i \(-0.312436\pi\)
0.555738 + 0.831358i \(0.312436\pi\)
\(8\) 3.79625e8i 0.353553i
\(9\) 0 0
\(10\) −7.54511e9 −0.754511
\(11\) − 5.11515e9i − 0.197211i −0.995127 0.0986056i \(-0.968562\pi\)
0.995127 0.0986056i \(-0.0314382\pi\)
\(12\) 0 0
\(13\) −8.38857e10 −0.608491 −0.304246 0.952594i \(-0.598404\pi\)
−0.304246 + 0.952594i \(0.598404\pi\)
\(14\) − 2.27334e11i − 0.785932i
\(15\) 0 0
\(16\) 2.74878e11 0.250000
\(17\) − 3.93049e11i − 0.194965i −0.995237 0.0974826i \(-0.968921\pi\)
0.995237 0.0974826i \(-0.0310790\pi\)
\(18\) 0 0
\(19\) 2.35664e12 0.384377 0.192188 0.981358i \(-0.438442\pi\)
0.192188 + 0.981358i \(0.438442\pi\)
\(20\) 5.46324e12i 0.533520i
\(21\) 0 0
\(22\) −3.70377e12 −0.139449
\(23\) 3.96304e13i 0.956643i 0.878185 + 0.478321i \(0.158755\pi\)
−0.878185 + 0.478321i \(0.841245\pi\)
\(24\) 0 0
\(25\) −1.32154e13 −0.138574
\(26\) 6.07397e13i 0.430268i
\(27\) 0 0
\(28\) −1.64608e14 −0.555738
\(29\) 2.25420e14i 0.535812i 0.963445 + 0.267906i \(0.0863316\pi\)
−0.963445 + 0.267906i \(0.913668\pi\)
\(30\) 0 0
\(31\) −7.57278e14 −0.923928 −0.461964 0.886899i \(-0.652855\pi\)
−0.461964 + 0.886899i \(0.652855\pi\)
\(32\) − 1.99033e14i − 0.176777i
\(33\) 0 0
\(34\) −2.84598e14 −0.137861
\(35\) − 3.27161e15i − 1.18599i
\(36\) 0 0
\(37\) −7.93436e15 −1.65004 −0.825020 0.565103i \(-0.808836\pi\)
−0.825020 + 0.565103i \(0.808836\pi\)
\(38\) − 1.70639e15i − 0.271796i
\(39\) 0 0
\(40\) 3.95581e15 0.377255
\(41\) − 1.78659e16i − 1.33102i −0.746387 0.665512i \(-0.768213\pi\)
0.746387 0.665512i \(-0.231787\pi\)
\(42\) 0 0
\(43\) −1.01711e16 −0.470632 −0.235316 0.971919i \(-0.575613\pi\)
−0.235316 + 0.971919i \(0.575613\pi\)
\(44\) 2.68181e15i 0.0986056i
\(45\) 0 0
\(46\) 2.86955e16 0.676449
\(47\) 2.93759e16i 0.558485i 0.960221 + 0.279243i \(0.0900834\pi\)
−0.960221 + 0.279243i \(0.909917\pi\)
\(48\) 0 0
\(49\) 1.87813e16 0.235378
\(50\) 9.56897e15i 0.0979863i
\(51\) 0 0
\(52\) 4.39803e16 0.304246
\(53\) − 6.24962e15i − 0.0357351i −0.999840 0.0178676i \(-0.994312\pi\)
0.999840 0.0178676i \(-0.00568772\pi\)
\(54\) 0 0
\(55\) −5.33015e16 −0.210432
\(56\) 1.19189e17i 0.392966i
\(57\) 0 0
\(58\) 1.63221e17 0.378876
\(59\) − 7.16002e17i − 1.40086i −0.713722 0.700429i \(-0.752992\pi\)
0.713722 0.700429i \(-0.247008\pi\)
\(60\) 0 0
\(61\) −1.56905e17 −0.219957 −0.109978 0.993934i \(-0.535078\pi\)
−0.109978 + 0.993934i \(0.535078\pi\)
\(62\) 5.48328e17i 0.653316i
\(63\) 0 0
\(64\) −1.44115e17 −0.125000
\(65\) 8.74115e17i 0.649284i
\(66\) 0 0
\(67\) −7.08866e17 −0.388880 −0.194440 0.980914i \(-0.562289\pi\)
−0.194440 + 0.980914i \(0.562289\pi\)
\(68\) 2.06071e17i 0.0974826i
\(69\) 0 0
\(70\) −2.36890e18 −0.838620
\(71\) − 2.46105e18i − 0.756027i −0.925800 0.378013i \(-0.876607\pi\)
0.925800 0.378013i \(-0.123393\pi\)
\(72\) 0 0
\(73\) −7.33674e18 −1.70716 −0.853581 0.520961i \(-0.825574\pi\)
−0.853581 + 0.520961i \(0.825574\pi\)
\(74\) 5.74509e18i 1.16675i
\(75\) 0 0
\(76\) −1.23556e18 −0.192188
\(77\) − 1.60598e18i − 0.219195i
\(78\) 0 0
\(79\) 5.21937e18 0.551248 0.275624 0.961266i \(-0.411116\pi\)
0.275624 + 0.961266i \(0.411116\pi\)
\(80\) − 2.86431e18i − 0.266760i
\(81\) 0 0
\(82\) −1.29363e19 −0.941177
\(83\) 9.97723e18i 0.643027i 0.946905 + 0.321513i \(0.104192\pi\)
−0.946905 + 0.321513i \(0.895808\pi\)
\(84\) 0 0
\(85\) −4.09569e18 −0.208036
\(86\) 7.36463e18i 0.332787i
\(87\) 0 0
\(88\) 1.94184e18 0.0697247
\(89\) − 2.83384e19i − 0.908815i −0.890794 0.454408i \(-0.849851\pi\)
0.890794 0.454408i \(-0.150149\pi\)
\(90\) 0 0
\(91\) −2.63371e19 −0.676323
\(92\) − 2.07777e19i − 0.478321i
\(93\) 0 0
\(94\) 2.12704e19 0.394909
\(95\) − 2.45569e19i − 0.410145i
\(96\) 0 0
\(97\) −6.43135e18 −0.0872137 −0.0436069 0.999049i \(-0.513885\pi\)
−0.0436069 + 0.999049i \(0.513885\pi\)
\(98\) − 1.35991e19i − 0.166437i
\(99\) 0 0
\(100\) 6.92868e18 0.0692868
\(101\) 5.23936e19i 0.474313i 0.971471 + 0.237156i \(0.0762154\pi\)
−0.971471 + 0.237156i \(0.923785\pi\)
\(102\) 0 0
\(103\) −1.30791e20 −0.973205 −0.486602 0.873624i \(-0.661764\pi\)
−0.486602 + 0.873624i \(0.661764\pi\)
\(104\) − 3.18451e19i − 0.215134i
\(105\) 0 0
\(106\) −4.52521e18 −0.0252685
\(107\) 3.10158e20i 1.57669i 0.615235 + 0.788344i \(0.289061\pi\)
−0.615235 + 0.788344i \(0.710939\pi\)
\(108\) 0 0
\(109\) −4.47984e20 −1.89233 −0.946165 0.323683i \(-0.895079\pi\)
−0.946165 + 0.323683i \(0.895079\pi\)
\(110\) 3.85944e19i 0.148798i
\(111\) 0 0
\(112\) 8.63019e19 0.277869
\(113\) 5.49315e20i 1.61822i 0.587659 + 0.809109i \(0.300050\pi\)
−0.587659 + 0.809109i \(0.699950\pi\)
\(114\) 0 0
\(115\) 4.12961e20 1.02078
\(116\) − 1.18185e20i − 0.267906i
\(117\) 0 0
\(118\) −5.18441e20 −0.990556
\(119\) − 1.23403e20i − 0.216699i
\(120\) 0 0
\(121\) 6.46585e20 0.961108
\(122\) 1.13611e20i 0.155533i
\(123\) 0 0
\(124\) 3.97032e20 0.461964
\(125\) − 8.56050e20i − 0.919176i
\(126\) 0 0
\(127\) 1.61262e21 1.47739 0.738695 0.674040i \(-0.235442\pi\)
0.738695 + 0.674040i \(0.235442\pi\)
\(128\) 1.04351e20i 0.0883883i
\(129\) 0 0
\(130\) 6.32927e20 0.459113
\(131\) 1.08517e21i 0.729099i 0.931184 + 0.364549i \(0.118777\pi\)
−0.931184 + 0.364549i \(0.881223\pi\)
\(132\) 0 0
\(133\) 7.39901e20 0.427226
\(134\) 5.13273e20i 0.274980i
\(135\) 0 0
\(136\) 1.49211e20 0.0689306
\(137\) 2.36341e21i 1.01469i 0.861743 + 0.507345i \(0.169373\pi\)
−0.861743 + 0.507345i \(0.830627\pi\)
\(138\) 0 0
\(139\) −1.70853e20 −0.0634561 −0.0317281 0.999497i \(-0.510101\pi\)
−0.0317281 + 0.999497i \(0.510101\pi\)
\(140\) 1.71526e21i 0.592994i
\(141\) 0 0
\(142\) −1.78199e21 −0.534592
\(143\) 4.29088e20i 0.120001i
\(144\) 0 0
\(145\) 2.34894e21 0.571732
\(146\) 5.31237e21i 1.20715i
\(147\) 0 0
\(148\) 4.15989e21 0.825020
\(149\) 1.74220e21i 0.323025i 0.986871 + 0.161512i \(0.0516372\pi\)
−0.986871 + 0.161512i \(0.948363\pi\)
\(150\) 0 0
\(151\) −3.42663e21 −0.556030 −0.278015 0.960577i \(-0.589676\pi\)
−0.278015 + 0.960577i \(0.589676\pi\)
\(152\) 8.94640e20i 0.135898i
\(153\) 0 0
\(154\) −1.16285e21 −0.154995
\(155\) 7.89107e21i 0.985868i
\(156\) 0 0
\(157\) −1.45330e22 −1.59720 −0.798600 0.601862i \(-0.794426\pi\)
−0.798600 + 0.601862i \(0.794426\pi\)
\(158\) − 3.77922e21i − 0.389791i
\(159\) 0 0
\(160\) −2.07398e21 −0.188628
\(161\) 1.24425e22i 1.06329i
\(162\) 0 0
\(163\) 1.36234e22 1.02899 0.514495 0.857494i \(-0.327980\pi\)
0.514495 + 0.857494i \(0.327980\pi\)
\(164\) 9.36687e21i 0.665512i
\(165\) 0 0
\(166\) 7.22429e21 0.454689
\(167\) 2.08879e22i 1.23803i 0.785379 + 0.619015i \(0.212468\pi\)
−0.785379 + 0.619015i \(0.787532\pi\)
\(168\) 0 0
\(169\) −1.19682e22 −0.629738
\(170\) 2.96559e21i 0.147103i
\(171\) 0 0
\(172\) 5.33256e21 0.235316
\(173\) 2.57673e22i 1.07302i 0.843894 + 0.536509i \(0.180257\pi\)
−0.843894 + 0.536509i \(0.819743\pi\)
\(174\) 0 0
\(175\) −4.14917e21 −0.154021
\(176\) − 1.40604e21i − 0.0493028i
\(177\) 0 0
\(178\) −2.05192e22 −0.642630
\(179\) 5.49391e22i 1.62686i 0.581660 + 0.813432i \(0.302403\pi\)
−0.581660 + 0.813432i \(0.697597\pi\)
\(180\) 0 0
\(181\) 1.07809e21 0.0285672 0.0142836 0.999898i \(-0.495453\pi\)
0.0142836 + 0.999898i \(0.495453\pi\)
\(182\) 1.90701e22i 0.478233i
\(183\) 0 0
\(184\) −1.50447e22 −0.338224
\(185\) 8.26785e22i 1.76066i
\(186\) 0 0
\(187\) −2.01050e21 −0.0384493
\(188\) − 1.54014e22i − 0.279243i
\(189\) 0 0
\(190\) −1.77811e22 −0.290017
\(191\) − 8.79814e22i − 1.36162i −0.732458 0.680812i \(-0.761627\pi\)
0.732458 0.680812i \(-0.238373\pi\)
\(192\) 0 0
\(193\) −5.87758e21 −0.0819644 −0.0409822 0.999160i \(-0.513049\pi\)
−0.0409822 + 0.999160i \(0.513049\pi\)
\(194\) 4.65679e21i 0.0616694i
\(195\) 0 0
\(196\) −9.84683e21 −0.117689
\(197\) 9.56068e22i 1.08599i 0.839735 + 0.542996i \(0.182710\pi\)
−0.839735 + 0.542996i \(0.817290\pi\)
\(198\) 0 0
\(199\) −4.15798e22 −0.426925 −0.213463 0.976951i \(-0.568474\pi\)
−0.213463 + 0.976951i \(0.568474\pi\)
\(200\) − 5.01690e21i − 0.0489931i
\(201\) 0 0
\(202\) 3.79370e22 0.335390
\(203\) 7.07738e22i 0.595541i
\(204\) 0 0
\(205\) −1.86168e23 −1.42026
\(206\) 9.47025e22i 0.688160i
\(207\) 0 0
\(208\) −2.30583e22 −0.152123
\(209\) − 1.20546e22i − 0.0758035i
\(210\) 0 0
\(211\) 2.91736e23 1.66788 0.833940 0.551855i \(-0.186080\pi\)
0.833940 + 0.551855i \(0.186080\pi\)
\(212\) 3.27660e21i 0.0178676i
\(213\) 0 0
\(214\) 2.24579e23 1.11489
\(215\) 1.05986e23i 0.502183i
\(216\) 0 0
\(217\) −2.37758e23 −1.02692
\(218\) 3.24375e23i 1.33808i
\(219\) 0 0
\(220\) 2.79453e22 0.105216
\(221\) 3.29711e22i 0.118635i
\(222\) 0 0
\(223\) 2.37184e23 0.779898 0.389949 0.920837i \(-0.372493\pi\)
0.389949 + 0.920837i \(0.372493\pi\)
\(224\) − 6.24892e22i − 0.196483i
\(225\) 0 0
\(226\) 3.97746e23 1.14425
\(227\) − 1.26966e23i − 0.349485i −0.984614 0.174743i \(-0.944091\pi\)
0.984614 0.174743i \(-0.0559093\pi\)
\(228\) 0 0
\(229\) 4.25323e23 1.07242 0.536209 0.844085i \(-0.319856\pi\)
0.536209 + 0.844085i \(0.319856\pi\)
\(230\) − 2.99016e23i − 0.721798i
\(231\) 0 0
\(232\) −8.55750e22 −0.189438
\(233\) − 5.92521e22i − 0.125645i −0.998025 0.0628224i \(-0.979990\pi\)
0.998025 0.0628224i \(-0.0200102\pi\)
\(234\) 0 0
\(235\) 3.06105e23 0.595926
\(236\) 3.75391e23i 0.700429i
\(237\) 0 0
\(238\) −8.93535e22 −0.153229
\(239\) − 6.97869e23i − 1.14761i −0.818991 0.573806i \(-0.805466\pi\)
0.818991 0.573806i \(-0.194534\pi\)
\(240\) 0 0
\(241\) −7.75276e23 −1.17297 −0.586484 0.809961i \(-0.699488\pi\)
−0.586484 + 0.809961i \(0.699488\pi\)
\(242\) − 4.68178e23i − 0.679606i
\(243\) 0 0
\(244\) 8.22633e22 0.109978
\(245\) − 1.95707e23i − 0.251158i
\(246\) 0 0
\(247\) −1.97688e23 −0.233890
\(248\) − 2.87482e23i − 0.326658i
\(249\) 0 0
\(250\) −6.19846e23 −0.649956
\(251\) − 1.64731e24i − 1.65973i −0.557961 0.829867i \(-0.688416\pi\)
0.557961 0.829867i \(-0.311584\pi\)
\(252\) 0 0
\(253\) 2.02715e23 0.188661
\(254\) − 1.16766e24i − 1.04467i
\(255\) 0 0
\(256\) 7.55579e22 0.0625000
\(257\) 8.27802e23i 0.658560i 0.944232 + 0.329280i \(0.106806\pi\)
−0.944232 + 0.329280i \(0.893194\pi\)
\(258\) 0 0
\(259\) −2.49111e24 −1.83398
\(260\) − 4.58288e23i − 0.324642i
\(261\) 0 0
\(262\) 7.85750e23 0.515551
\(263\) − 1.55864e24i − 0.984437i −0.870472 0.492219i \(-0.836186\pi\)
0.870472 0.492219i \(-0.163814\pi\)
\(264\) 0 0
\(265\) −6.51230e22 −0.0381308
\(266\) − 5.35746e23i − 0.302094i
\(267\) 0 0
\(268\) 3.71650e23 0.194440
\(269\) 2.45941e23i 0.123967i 0.998077 + 0.0619837i \(0.0197427\pi\)
−0.998077 + 0.0619837i \(0.980257\pi\)
\(270\) 0 0
\(271\) −5.81935e23 −0.272384 −0.136192 0.990682i \(-0.543486\pi\)
−0.136192 + 0.990682i \(0.543486\pi\)
\(272\) − 1.08040e23i − 0.0487413i
\(273\) 0 0
\(274\) 1.71129e24 0.717494
\(275\) 6.75988e22i 0.0273283i
\(276\) 0 0
\(277\) −3.03441e24 −1.14098 −0.570489 0.821305i \(-0.693246\pi\)
−0.570489 + 0.821305i \(0.693246\pi\)
\(278\) 1.23711e23i 0.0448703i
\(279\) 0 0
\(280\) 1.24198e24 0.419310
\(281\) − 1.02520e24i − 0.333999i −0.985957 0.167000i \(-0.946592\pi\)
0.985957 0.167000i \(-0.0534079\pi\)
\(282\) 0 0
\(283\) −1.03754e24 −0.314876 −0.157438 0.987529i \(-0.550323\pi\)
−0.157438 + 0.987529i \(0.550323\pi\)
\(284\) 1.29030e24i 0.378013i
\(285\) 0 0
\(286\) 3.10693e23 0.0848537
\(287\) − 5.60925e24i − 1.47940i
\(288\) 0 0
\(289\) 3.90974e24 0.961989
\(290\) − 1.70082e24i − 0.404276i
\(291\) 0 0
\(292\) 3.84656e24 0.853581
\(293\) − 4.53179e24i − 0.971837i −0.874004 0.485919i \(-0.838485\pi\)
0.874004 0.485919i \(-0.161515\pi\)
\(294\) 0 0
\(295\) −7.46096e24 −1.49477
\(296\) − 3.01208e24i − 0.583377i
\(297\) 0 0
\(298\) 1.26149e24 0.228413
\(299\) − 3.32442e24i − 0.582109i
\(300\) 0 0
\(301\) −3.19335e24 −0.523096
\(302\) 2.48115e24i 0.393173i
\(303\) 0 0
\(304\) 6.47788e23 0.0960942
\(305\) 1.63500e24i 0.234703i
\(306\) 0 0
\(307\) −8.33658e24 −1.12100 −0.560498 0.828156i \(-0.689390\pi\)
−0.560498 + 0.828156i \(0.689390\pi\)
\(308\) 8.41994e23i 0.109598i
\(309\) 0 0
\(310\) 5.71374e24 0.697114
\(311\) − 5.51748e24i − 0.651834i −0.945398 0.325917i \(-0.894327\pi\)
0.945398 0.325917i \(-0.105673\pi\)
\(312\) 0 0
\(313\) 1.97116e24 0.218413 0.109207 0.994019i \(-0.465169\pi\)
0.109207 + 0.994019i \(0.465169\pi\)
\(314\) 1.05230e25i 1.12939i
\(315\) 0 0
\(316\) −2.73645e24 −0.275624
\(317\) 1.43586e25i 1.40127i 0.713522 + 0.700633i \(0.247099\pi\)
−0.713522 + 0.700633i \(0.752901\pi\)
\(318\) 0 0
\(319\) 1.15306e24 0.105668
\(320\) 1.50172e24i 0.133380i
\(321\) 0 0
\(322\) 9.00935e24 0.751856
\(323\) − 9.26274e23i − 0.0749401i
\(324\) 0 0
\(325\) 1.10858e24 0.0843208
\(326\) − 9.86443e24i − 0.727605i
\(327\) 0 0
\(328\) 6.78234e24 0.470588
\(329\) 9.22297e24i 0.620743i
\(330\) 0 0
\(331\) 1.69933e25 1.07646 0.538231 0.842797i \(-0.319093\pi\)
0.538231 + 0.842797i \(0.319093\pi\)
\(332\) − 5.23094e24i − 0.321513i
\(333\) 0 0
\(334\) 1.51245e25 0.875419
\(335\) 7.38660e24i 0.414951i
\(336\) 0 0
\(337\) −6.28038e23 −0.0332420 −0.0166210 0.999862i \(-0.505291\pi\)
−0.0166210 + 0.999862i \(0.505291\pi\)
\(338\) 8.66587e24i 0.445292i
\(339\) 0 0
\(340\) 2.14732e24 0.104018
\(341\) 3.87359e24i 0.182209i
\(342\) 0 0
\(343\) −1.91553e25 −0.849859
\(344\) − 3.86119e24i − 0.166394i
\(345\) 0 0
\(346\) 1.86575e25 0.758739
\(347\) 2.21916e25i 0.876785i 0.898784 + 0.438392i \(0.144452\pi\)
−0.898784 + 0.438392i \(0.855548\pi\)
\(348\) 0 0
\(349\) −1.59168e25 −0.593749 −0.296874 0.954917i \(-0.595944\pi\)
−0.296874 + 0.954917i \(0.595944\pi\)
\(350\) 3.00432e24i 0.108909i
\(351\) 0 0
\(352\) −1.01808e24 −0.0348624
\(353\) 2.70533e25i 0.900478i 0.892908 + 0.450239i \(0.148661\pi\)
−0.892908 + 0.450239i \(0.851339\pi\)
\(354\) 0 0
\(355\) −2.56449e25 −0.806711
\(356\) 1.48575e25i 0.454408i
\(357\) 0 0
\(358\) 3.97801e25 1.15037
\(359\) 4.56320e25i 1.28329i 0.767002 + 0.641645i \(0.221748\pi\)
−0.767002 + 0.641645i \(0.778252\pi\)
\(360\) 0 0
\(361\) −3.20362e25 −0.852254
\(362\) − 7.80618e23i − 0.0202001i
\(363\) 0 0
\(364\) 1.38082e25 0.338162
\(365\) 7.64511e25i 1.82161i
\(366\) 0 0
\(367\) −5.41771e25 −1.22224 −0.611118 0.791539i \(-0.709280\pi\)
−0.611118 + 0.791539i \(0.709280\pi\)
\(368\) 1.08935e25i 0.239161i
\(369\) 0 0
\(370\) 5.98656e25 1.24497
\(371\) − 1.96216e24i − 0.0397187i
\(372\) 0 0
\(373\) −7.75057e25 −1.48678 −0.743388 0.668861i \(-0.766782\pi\)
−0.743388 + 0.668861i \(0.766782\pi\)
\(374\) 1.45576e24i 0.0271878i
\(375\) 0 0
\(376\) −1.11518e25 −0.197454
\(377\) − 1.89095e25i − 0.326037i
\(378\) 0 0
\(379\) −4.48463e25 −0.733388 −0.366694 0.930342i \(-0.619510\pi\)
−0.366694 + 0.930342i \(0.619510\pi\)
\(380\) 1.28749e25i 0.205073i
\(381\) 0 0
\(382\) −6.37054e25 −0.962814
\(383\) 3.82219e25i 0.562762i 0.959596 + 0.281381i \(0.0907924\pi\)
−0.959596 + 0.281381i \(0.909208\pi\)
\(384\) 0 0
\(385\) −1.67348e25 −0.233890
\(386\) 4.25582e24i 0.0579576i
\(387\) 0 0
\(388\) 3.37188e24 0.0436069
\(389\) − 1.22756e26i − 1.54720i −0.633671 0.773602i \(-0.718453\pi\)
0.633671 0.773602i \(-0.281547\pi\)
\(390\) 0 0
\(391\) 1.55767e25 0.186512
\(392\) 7.12986e24i 0.0832186i
\(393\) 0 0
\(394\) 6.92267e25 0.767912
\(395\) − 5.43874e25i − 0.588203i
\(396\) 0 0
\(397\) −2.73686e25 −0.281415 −0.140707 0.990051i \(-0.544938\pi\)
−0.140707 + 0.990051i \(0.544938\pi\)
\(398\) 3.01070e25i 0.301882i
\(399\) 0 0
\(400\) −3.63262e24 −0.0346434
\(401\) − 2.05528e25i − 0.191173i −0.995421 0.0955865i \(-0.969527\pi\)
0.995421 0.0955865i \(-0.0304727\pi\)
\(402\) 0 0
\(403\) 6.35247e25 0.562202
\(404\) − 2.74694e25i − 0.237156i
\(405\) 0 0
\(406\) 5.12457e25 0.421111
\(407\) 4.05855e25i 0.325407i
\(408\) 0 0
\(409\) −3.72462e25 −0.284347 −0.142174 0.989842i \(-0.545409\pi\)
−0.142174 + 0.989842i \(0.545409\pi\)
\(410\) 1.34800e26i 1.00427i
\(411\) 0 0
\(412\) 6.85719e25 0.486602
\(413\) − 2.24799e26i − 1.55702i
\(414\) 0 0
\(415\) 1.03966e26 0.686135
\(416\) 1.66960e25i 0.107567i
\(417\) 0 0
\(418\) −8.72844e24 −0.0536011
\(419\) 2.48194e26i 1.48817i 0.668087 + 0.744083i \(0.267113\pi\)
−0.668087 + 0.744083i \(0.732887\pi\)
\(420\) 0 0
\(421\) 7.10062e25 0.405952 0.202976 0.979184i \(-0.434939\pi\)
0.202976 + 0.979184i \(0.434939\pi\)
\(422\) − 2.11239e26i − 1.17937i
\(423\) 0 0
\(424\) 2.37251e24 0.0126343
\(425\) 5.19430e24i 0.0270170i
\(426\) 0 0
\(427\) −4.92625e25 −0.244477
\(428\) − 1.62612e26i − 0.788344i
\(429\) 0 0
\(430\) 7.67417e25 0.355097
\(431\) − 1.39482e26i − 0.630587i −0.948994 0.315293i \(-0.897897\pi\)
0.948994 0.315293i \(-0.102103\pi\)
\(432\) 0 0
\(433\) −1.83093e26 −0.790302 −0.395151 0.918616i \(-0.629308\pi\)
−0.395151 + 0.918616i \(0.629308\pi\)
\(434\) 1.72155e26i 0.726145i
\(435\) 0 0
\(436\) 2.34872e26 0.946165
\(437\) 9.33946e25i 0.367711i
\(438\) 0 0
\(439\) 6.46947e25 0.243345 0.121673 0.992570i \(-0.461174\pi\)
0.121673 + 0.992570i \(0.461174\pi\)
\(440\) − 2.02346e25i − 0.0743990i
\(441\) 0 0
\(442\) 2.38737e25 0.0838873
\(443\) − 4.40844e26i − 1.51443i −0.653168 0.757213i \(-0.726561\pi\)
0.653168 0.757213i \(-0.273439\pi\)
\(444\) 0 0
\(445\) −2.95295e26 −0.969742
\(446\) − 1.71740e26i − 0.551471i
\(447\) 0 0
\(448\) −4.52470e25 −0.138934
\(449\) − 4.19905e26i − 1.26092i −0.776222 0.630459i \(-0.782866\pi\)
0.776222 0.630459i \(-0.217134\pi\)
\(450\) 0 0
\(451\) −9.13867e25 −0.262493
\(452\) − 2.87999e26i − 0.809109i
\(453\) 0 0
\(454\) −9.19331e25 −0.247123
\(455\) 2.74441e26i 0.721663i
\(456\) 0 0
\(457\) 5.63254e26 1.41756 0.708781 0.705428i \(-0.249245\pi\)
0.708781 + 0.705428i \(0.249245\pi\)
\(458\) − 3.07967e26i − 0.758314i
\(459\) 0 0
\(460\) −2.16510e26 −0.510388
\(461\) − 5.58022e26i − 1.28719i −0.765367 0.643594i \(-0.777443\pi\)
0.765367 0.643594i \(-0.222557\pi\)
\(462\) 0 0
\(463\) 2.53609e26 0.560215 0.280108 0.959969i \(-0.409630\pi\)
0.280108 + 0.959969i \(0.409630\pi\)
\(464\) 6.19629e25i 0.133953i
\(465\) 0 0
\(466\) −4.29031e25 −0.0888443
\(467\) − 1.61173e26i − 0.326680i −0.986570 0.163340i \(-0.947773\pi\)
0.986570 0.163340i \(-0.0522267\pi\)
\(468\) 0 0
\(469\) −2.22558e26 −0.432231
\(470\) − 2.21644e26i − 0.421383i
\(471\) 0 0
\(472\) 2.71812e26 0.495278
\(473\) 5.20265e25i 0.0928139i
\(474\) 0 0
\(475\) −3.11440e25 −0.0532645
\(476\) 6.46988e25i 0.108350i
\(477\) 0 0
\(478\) −5.05311e26 −0.811484
\(479\) − 5.81055e26i − 0.913823i −0.889512 0.456911i \(-0.848956\pi\)
0.889512 0.456911i \(-0.151044\pi\)
\(480\) 0 0
\(481\) 6.65579e26 1.00404
\(482\) 5.61360e26i 0.829413i
\(483\) 0 0
\(484\) −3.38997e26 −0.480554
\(485\) 6.70166e25i 0.0930605i
\(486\) 0 0
\(487\) 7.17255e26 0.955837 0.477919 0.878404i \(-0.341391\pi\)
0.477919 + 0.878404i \(0.341391\pi\)
\(488\) − 5.95650e25i − 0.0777665i
\(489\) 0 0
\(490\) −1.41707e26 −0.177595
\(491\) 1.25920e27i 1.54624i 0.634257 + 0.773122i \(0.281306\pi\)
−0.634257 + 0.773122i \(0.718694\pi\)
\(492\) 0 0
\(493\) 8.86009e25 0.104465
\(494\) 1.43142e26i 0.165385i
\(495\) 0 0
\(496\) −2.08159e26 −0.230982
\(497\) − 7.72682e26i − 0.840305i
\(498\) 0 0
\(499\) −7.92090e26 −0.827502 −0.413751 0.910390i \(-0.635782\pi\)
−0.413751 + 0.910390i \(0.635782\pi\)
\(500\) 4.48816e26i 0.459588i
\(501\) 0 0
\(502\) −1.19278e27 −1.17361
\(503\) − 1.29072e27i − 1.24496i −0.782638 0.622478i \(-0.786126\pi\)
0.782638 0.622478i \(-0.213874\pi\)
\(504\) 0 0
\(505\) 5.45958e26 0.506110
\(506\) − 1.46782e26i − 0.133403i
\(507\) 0 0
\(508\) −8.45478e26 −0.738695
\(509\) 1.99021e27i 1.70498i 0.522741 + 0.852492i \(0.324909\pi\)
−0.522741 + 0.852492i \(0.675091\pi\)
\(510\) 0 0
\(511\) −2.30347e27 −1.89747
\(512\) − 5.47097e25i − 0.0441942i
\(513\) 0 0
\(514\) 5.99393e26 0.465672
\(515\) 1.36288e27i 1.03845i
\(516\) 0 0
\(517\) 1.50262e26 0.110140
\(518\) 1.80375e27i 1.29682i
\(519\) 0 0
\(520\) −3.31836e26 −0.229557
\(521\) − 1.13142e27i − 0.767799i −0.923375 0.383900i \(-0.874581\pi\)
0.923375 0.383900i \(-0.125419\pi\)
\(522\) 0 0
\(523\) 8.32412e26 0.543652 0.271826 0.962346i \(-0.412372\pi\)
0.271826 + 0.962346i \(0.412372\pi\)
\(524\) − 5.68944e26i − 0.364549i
\(525\) 0 0
\(526\) −1.12858e27 −0.696102
\(527\) 2.97647e26i 0.180134i
\(528\) 0 0
\(529\) 1.45589e26 0.0848342
\(530\) 4.71541e25i 0.0269625i
\(531\) 0 0
\(532\) −3.87921e26 −0.213613
\(533\) 1.49869e27i 0.809917i
\(534\) 0 0
\(535\) 3.23195e27 1.68239
\(536\) − 2.69103e26i − 0.137490i
\(537\) 0 0
\(538\) 1.78080e26 0.0876582
\(539\) − 9.60694e25i − 0.0464192i
\(540\) 0 0
\(541\) 2.48567e27 1.15736 0.578682 0.815553i \(-0.303567\pi\)
0.578682 + 0.815553i \(0.303567\pi\)
\(542\) 4.21366e26i 0.192605i
\(543\) 0 0
\(544\) −7.82296e25 −0.0344653
\(545\) 4.66813e27i 2.01919i
\(546\) 0 0
\(547\) −1.63365e27 −0.681218 −0.340609 0.940205i \(-0.610633\pi\)
−0.340609 + 0.940205i \(0.610633\pi\)
\(548\) − 1.23911e27i − 0.507345i
\(549\) 0 0
\(550\) 4.89468e25 0.0193240
\(551\) 5.31233e26i 0.205954i
\(552\) 0 0
\(553\) 1.63869e27 0.612698
\(554\) 2.19715e27i 0.806793i
\(555\) 0 0
\(556\) 8.95760e25 0.0317281
\(557\) − 5.67978e26i − 0.197597i −0.995107 0.0987983i \(-0.968500\pi\)
0.995107 0.0987983i \(-0.0314999\pi\)
\(558\) 0 0
\(559\) 8.53206e26 0.286375
\(560\) − 8.99292e26i − 0.296497i
\(561\) 0 0
\(562\) −7.42325e26 −0.236173
\(563\) 1.68438e27i 0.526449i 0.964735 + 0.263224i \(0.0847860\pi\)
−0.964735 + 0.263224i \(0.915214\pi\)
\(564\) 0 0
\(565\) 5.72403e27 1.72670
\(566\) 7.51258e26i 0.222651i
\(567\) 0 0
\(568\) 9.34277e26 0.267296
\(569\) 6.61314e27i 1.85902i 0.368792 + 0.929512i \(0.379771\pi\)
−0.368792 + 0.929512i \(0.620229\pi\)
\(570\) 0 0
\(571\) 6.15037e27 1.66932 0.834661 0.550764i \(-0.185664\pi\)
0.834661 + 0.550764i \(0.185664\pi\)
\(572\) − 2.24966e26i − 0.0600007i
\(573\) 0 0
\(574\) −4.06153e27 −1.04609
\(575\) − 5.23731e26i − 0.132565i
\(576\) 0 0
\(577\) −2.71752e27 −0.664376 −0.332188 0.943213i \(-0.607787\pi\)
−0.332188 + 0.943213i \(0.607787\pi\)
\(578\) − 2.83096e27i − 0.680229i
\(579\) 0 0
\(580\) −1.23152e27 −0.285866
\(581\) 3.13249e27i 0.714709i
\(582\) 0 0
\(583\) −3.19678e25 −0.00704736
\(584\) − 2.78521e27i − 0.603573i
\(585\) 0 0
\(586\) −3.28137e27 −0.687193
\(587\) − 8.01056e27i − 1.64923i −0.565693 0.824616i \(-0.691391\pi\)
0.565693 0.824616i \(-0.308609\pi\)
\(588\) 0 0
\(589\) −1.78463e27 −0.355137
\(590\) 5.40231e27i 1.05696i
\(591\) 0 0
\(592\) −2.18098e27 −0.412510
\(593\) − 8.77137e27i − 1.63125i −0.578581 0.815625i \(-0.696393\pi\)
0.578581 0.815625i \(-0.303607\pi\)
\(594\) 0 0
\(595\) −1.28590e27 −0.231226
\(596\) − 9.13415e26i − 0.161512i
\(597\) 0 0
\(598\) −2.40714e27 −0.411613
\(599\) 9.92299e27i 1.66868i 0.551247 + 0.834342i \(0.314152\pi\)
−0.551247 + 0.834342i \(0.685848\pi\)
\(600\) 0 0
\(601\) 1.88593e27 0.306747 0.153373 0.988168i \(-0.450986\pi\)
0.153373 + 0.988168i \(0.450986\pi\)
\(602\) 2.31223e27i 0.369885i
\(603\) 0 0
\(604\) 1.79654e27 0.278015
\(605\) − 6.73762e27i − 1.02554i
\(606\) 0 0
\(607\) 1.98264e27 0.291982 0.145991 0.989286i \(-0.453363\pi\)
0.145991 + 0.989286i \(0.453363\pi\)
\(608\) − 4.69049e26i − 0.0679489i
\(609\) 0 0
\(610\) 1.18386e27 0.165960
\(611\) − 2.46421e27i − 0.339833i
\(612\) 0 0
\(613\) −9.03545e27 −1.20599 −0.602997 0.797744i \(-0.706027\pi\)
−0.602997 + 0.797744i \(0.706027\pi\)
\(614\) 6.03633e27i 0.792664i
\(615\) 0 0
\(616\) 6.09668e26 0.0774973
\(617\) 9.50426e27i 1.18869i 0.804212 + 0.594343i \(0.202588\pi\)
−0.804212 + 0.594343i \(0.797412\pi\)
\(618\) 0 0
\(619\) −1.11287e27 −0.134753 −0.0673766 0.997728i \(-0.521463\pi\)
−0.0673766 + 0.997728i \(0.521463\pi\)
\(620\) − 4.13719e27i − 0.492934i
\(621\) 0 0
\(622\) −3.99508e27 −0.460916
\(623\) − 8.89726e27i − 1.01013i
\(624\) 0 0
\(625\) −1.01806e28 −1.11937
\(626\) − 1.42727e27i − 0.154442i
\(627\) 0 0
\(628\) 7.61949e27 0.798600
\(629\) 3.11859e27i 0.321700i
\(630\) 0 0
\(631\) 6.99269e27 0.698797 0.349398 0.936974i \(-0.386386\pi\)
0.349398 + 0.936974i \(0.386386\pi\)
\(632\) 1.98140e27i 0.194896i
\(633\) 0 0
\(634\) 1.03968e28 0.990845
\(635\) − 1.68040e28i − 1.57643i
\(636\) 0 0
\(637\) −1.57548e27 −0.143225
\(638\) − 8.34902e26i − 0.0747186i
\(639\) 0 0
\(640\) 1.08736e27 0.0943139
\(641\) − 1.81506e28i − 1.54992i −0.632008 0.774962i \(-0.717769\pi\)
0.632008 0.774962i \(-0.282231\pi\)
\(642\) 0 0
\(643\) −1.02830e28 −0.851157 −0.425578 0.904922i \(-0.639929\pi\)
−0.425578 + 0.904922i \(0.639929\pi\)
\(644\) − 6.52347e27i − 0.531643i
\(645\) 0 0
\(646\) −6.70694e26 −0.0529907
\(647\) − 1.41512e28i − 1.10090i −0.834867 0.550452i \(-0.814455\pi\)
0.834867 0.550452i \(-0.185545\pi\)
\(648\) 0 0
\(649\) −3.66246e27 −0.276265
\(650\) − 8.02700e26i − 0.0596238i
\(651\) 0 0
\(652\) −7.14261e27 −0.514495
\(653\) − 1.42628e28i − 1.01175i −0.862606 0.505876i \(-0.831169\pi\)
0.862606 0.505876i \(-0.168831\pi\)
\(654\) 0 0
\(655\) 1.13078e28 0.777977
\(656\) − 4.91094e27i − 0.332756i
\(657\) 0 0
\(658\) 6.67814e27 0.438932
\(659\) 1.05281e27i 0.0681549i 0.999419 + 0.0340775i \(0.0108493\pi\)
−0.999419 + 0.0340775i \(0.989151\pi\)
\(660\) 0 0
\(661\) −1.58692e28 −0.996644 −0.498322 0.866992i \(-0.666050\pi\)
−0.498322 + 0.866992i \(0.666050\pi\)
\(662\) − 1.23045e28i − 0.761173i
\(663\) 0 0
\(664\) −3.78761e27 −0.227344
\(665\) − 7.71000e27i − 0.455867i
\(666\) 0 0
\(667\) −8.93347e27 −0.512580
\(668\) − 1.09513e28i − 0.619015i
\(669\) 0 0
\(670\) 5.34847e27 0.293414
\(671\) 8.02592e26i 0.0433780i
\(672\) 0 0
\(673\) 1.26992e28 0.666235 0.333117 0.942885i \(-0.391899\pi\)
0.333117 + 0.942885i \(0.391899\pi\)
\(674\) 4.54748e26i 0.0235056i
\(675\) 0 0
\(676\) 6.27476e27 0.314869
\(677\) 2.09069e28i 1.03372i 0.856070 + 0.516859i \(0.172899\pi\)
−0.856070 + 0.516859i \(0.827101\pi\)
\(678\) 0 0
\(679\) −2.01921e27 −0.0969359
\(680\) − 1.55483e27i − 0.0735517i
\(681\) 0 0
\(682\) 2.80478e27 0.128841
\(683\) 3.83890e28i 1.73780i 0.494988 + 0.868900i \(0.335173\pi\)
−0.494988 + 0.868900i \(0.664827\pi\)
\(684\) 0 0
\(685\) 2.46275e28 1.08271
\(686\) 1.38699e28i 0.600941i
\(687\) 0 0
\(688\) −2.79580e27 −0.117658
\(689\) 5.24254e26i 0.0217445i
\(690\) 0 0
\(691\) −3.33633e28 −1.34428 −0.672138 0.740426i \(-0.734624\pi\)
−0.672138 + 0.740426i \(0.734624\pi\)
\(692\) − 1.35095e28i − 0.536509i
\(693\) 0 0
\(694\) 1.60684e28 0.619980
\(695\) 1.78034e27i 0.0677102i
\(696\) 0 0
\(697\) −7.02216e27 −0.259503
\(698\) 1.15250e28i 0.419844i
\(699\) 0 0
\(700\) 2.17536e27 0.0770106
\(701\) − 2.79732e28i − 0.976251i −0.872773 0.488126i \(-0.837681\pi\)
0.872773 0.488126i \(-0.162319\pi\)
\(702\) 0 0
\(703\) −1.86984e28 −0.634237
\(704\) 7.37171e26i 0.0246514i
\(705\) 0 0
\(706\) 1.95887e28 0.636734
\(707\) 1.64497e28i 0.527187i
\(708\) 0 0
\(709\) 2.16291e28 0.673870 0.336935 0.941528i \(-0.390610\pi\)
0.336935 + 0.941528i \(0.390610\pi\)
\(710\) 1.85689e28i 0.570431i
\(711\) 0 0
\(712\) 1.07580e28 0.321315
\(713\) − 3.00112e28i − 0.883869i
\(714\) 0 0
\(715\) 4.47123e27 0.128046
\(716\) − 2.88039e28i − 0.813432i
\(717\) 0 0
\(718\) 3.30411e28 0.907423
\(719\) 4.82957e28i 1.30804i 0.756479 + 0.654018i \(0.226918\pi\)
−0.756479 + 0.654018i \(0.773082\pi\)
\(720\) 0 0
\(721\) −4.10636e28 −1.08169
\(722\) 2.31967e28i 0.602635i
\(723\) 0 0
\(724\) −5.65228e26 −0.0142836
\(725\) − 2.97901e27i − 0.0742493i
\(726\) 0 0
\(727\) 4.81585e28 1.16769 0.583846 0.811864i \(-0.301547\pi\)
0.583846 + 0.811864i \(0.301547\pi\)
\(728\) − 9.99823e27i − 0.239116i
\(729\) 0 0
\(730\) 5.53565e28 1.28807
\(731\) 3.99772e27i 0.0917569i
\(732\) 0 0
\(733\) 2.78638e28 0.622302 0.311151 0.950360i \(-0.399285\pi\)
0.311151 + 0.950360i \(0.399285\pi\)
\(734\) 3.92284e28i 0.864252i
\(735\) 0 0
\(736\) 7.88775e27 0.169112
\(737\) 3.62595e27i 0.0766916i
\(738\) 0 0
\(739\) −8.06832e28 −1.66088 −0.830441 0.557107i \(-0.811911\pi\)
−0.830441 + 0.557107i \(0.811911\pi\)
\(740\) − 4.33473e28i − 0.880329i
\(741\) 0 0
\(742\) −1.42075e27 −0.0280854
\(743\) − 4.29709e28i − 0.838081i −0.907968 0.419040i \(-0.862367\pi\)
0.907968 0.419040i \(-0.137633\pi\)
\(744\) 0 0
\(745\) 1.81543e28 0.344680
\(746\) 5.61201e28i 1.05131i
\(747\) 0 0
\(748\) 1.05408e27 0.0192247
\(749\) 9.73787e28i 1.75245i
\(750\) 0 0
\(751\) −1.78478e28 −0.312741 −0.156371 0.987698i \(-0.549979\pi\)
−0.156371 + 0.987698i \(0.549979\pi\)
\(752\) 8.07477e27i 0.139621i
\(753\) 0 0
\(754\) −1.36919e28 −0.230543
\(755\) 3.57066e28i 0.593306i
\(756\) 0 0
\(757\) −7.40875e28 −1.19891 −0.599455 0.800409i \(-0.704616\pi\)
−0.599455 + 0.800409i \(0.704616\pi\)
\(758\) 3.24722e28i 0.518584i
\(759\) 0 0
\(760\) 9.32242e27 0.145008
\(761\) − 3.60560e28i − 0.553517i −0.960940 0.276759i \(-0.910740\pi\)
0.960940 0.276759i \(-0.0892602\pi\)
\(762\) 0 0
\(763\) −1.40651e29 −2.10328
\(764\) 4.61276e28i 0.680812i
\(765\) 0 0
\(766\) 2.76756e28 0.397933
\(767\) 6.00623e28i 0.852410i
\(768\) 0 0
\(769\) −2.66682e28 −0.368748 −0.184374 0.982856i \(-0.559026\pi\)
−0.184374 + 0.982856i \(0.559026\pi\)
\(770\) 1.21173e28i 0.165385i
\(771\) 0 0
\(772\) 3.08154e27 0.0409822
\(773\) 1.94813e28i 0.255754i 0.991790 + 0.127877i \(0.0408162\pi\)
−0.991790 + 0.127877i \(0.959184\pi\)
\(774\) 0 0
\(775\) 1.00077e28 0.128032
\(776\) − 2.44150e27i − 0.0308347i
\(777\) 0 0
\(778\) −8.88851e28 −1.09404
\(779\) − 4.21035e28i − 0.511615i
\(780\) 0 0
\(781\) −1.25887e28 −0.149097
\(782\) − 1.12787e28i − 0.131884i
\(783\) 0 0
\(784\) 5.16257e27 0.0588445
\(785\) 1.51439e29i 1.70428i
\(786\) 0 0
\(787\) 2.18659e28 0.239894 0.119947 0.992780i \(-0.461727\pi\)
0.119947 + 0.992780i \(0.461727\pi\)
\(788\) − 5.01255e28i − 0.542996i
\(789\) 0 0
\(790\) −3.93807e28 −0.415923
\(791\) 1.72465e29i 1.79861i
\(792\) 0 0
\(793\) 1.31621e28 0.133842
\(794\) 1.98170e28i 0.198990i
\(795\) 0 0
\(796\) 2.17998e28 0.213463
\(797\) − 1.43577e29i − 1.38836i −0.719800 0.694181i \(-0.755767\pi\)
0.719800 0.694181i \(-0.244233\pi\)
\(798\) 0 0
\(799\) 1.15461e28 0.108885
\(800\) 2.63030e27i 0.0244966i
\(801\) 0 0
\(802\) −1.48818e28 −0.135180
\(803\) 3.75285e28i 0.336671i
\(804\) 0 0
\(805\) 1.29655e29 1.13457
\(806\) − 4.59968e28i − 0.397537i
\(807\) 0 0
\(808\) −1.98899e28 −0.167695
\(809\) − 5.61152e28i − 0.467300i −0.972321 0.233650i \(-0.924933\pi\)
0.972321 0.233650i \(-0.0750669\pi\)
\(810\) 0 0
\(811\) 2.07322e28 0.168437 0.0842184 0.996447i \(-0.473161\pi\)
0.0842184 + 0.996447i \(0.473161\pi\)
\(812\) − 3.71058e28i − 0.297771i
\(813\) 0 0
\(814\) 2.93870e28 0.230097
\(815\) − 1.41961e29i − 1.09797i
\(816\) 0 0
\(817\) −2.39695e28 −0.180900
\(818\) 2.69691e28i 0.201064i
\(819\) 0 0
\(820\) 9.76057e28 0.710128
\(821\) 1.59535e29i 1.14663i 0.819334 + 0.573316i \(0.194343\pi\)
−0.819334 + 0.573316i \(0.805657\pi\)
\(822\) 0 0
\(823\) 1.02439e29 0.718564 0.359282 0.933229i \(-0.383022\pi\)
0.359282 + 0.933229i \(0.383022\pi\)
\(824\) − 4.96514e28i − 0.344080i
\(825\) 0 0
\(826\) −1.62772e29 −1.10098
\(827\) 5.36629e28i 0.358607i 0.983794 + 0.179304i \(0.0573845\pi\)
−0.983794 + 0.179304i \(0.942616\pi\)
\(828\) 0 0
\(829\) −3.08740e28 −0.201394 −0.100697 0.994917i \(-0.532107\pi\)
−0.100697 + 0.994917i \(0.532107\pi\)
\(830\) − 7.52793e28i − 0.485171i
\(831\) 0 0
\(832\) 1.20892e28 0.0760614
\(833\) − 7.38198e27i − 0.0458905i
\(834\) 0 0
\(835\) 2.17659e29 1.32103
\(836\) 6.32007e27i 0.0379017i
\(837\) 0 0
\(838\) 1.79712e29 1.05229
\(839\) − 3.03733e29i − 1.75740i −0.477370 0.878702i \(-0.658410\pi\)
0.477370 0.878702i \(-0.341590\pi\)
\(840\) 0 0
\(841\) 1.26180e29 0.712906
\(842\) − 5.14139e28i − 0.287052i
\(843\) 0 0
\(844\) −1.52953e29 −0.833940
\(845\) 1.24712e29i 0.671956i
\(846\) 0 0
\(847\) 2.03005e29 1.06825
\(848\) − 1.71788e27i − 0.00893378i
\(849\) 0 0
\(850\) 3.76107e27 0.0191039
\(851\) − 3.14442e29i − 1.57850i
\(852\) 0 0
\(853\) −2.38478e29 −1.16939 −0.584694 0.811254i \(-0.698785\pi\)
−0.584694 + 0.811254i \(0.698785\pi\)
\(854\) 3.56699e28i 0.172871i
\(855\) 0 0
\(856\) −1.17744e29 −0.557443
\(857\) − 2.51470e29i − 1.17674i −0.808594 0.588368i \(-0.799771\pi\)
0.808594 0.588368i \(-0.200229\pi\)
\(858\) 0 0
\(859\) −3.49300e29 −1.59686 −0.798430 0.602088i \(-0.794336\pi\)
−0.798430 + 0.602088i \(0.794336\pi\)
\(860\) − 5.55670e28i − 0.251092i
\(861\) 0 0
\(862\) −1.00996e29 −0.445892
\(863\) 2.27258e29i 0.991772i 0.868388 + 0.495886i \(0.165157\pi\)
−0.868388 + 0.495886i \(0.834843\pi\)
\(864\) 0 0
\(865\) 2.68503e29 1.14495
\(866\) 1.32574e29i 0.558828i
\(867\) 0 0
\(868\) 1.24654e29 0.513462
\(869\) − 2.66979e28i − 0.108712i
\(870\) 0 0
\(871\) 5.94637e28 0.236630
\(872\) − 1.70066e29i − 0.669040i
\(873\) 0 0
\(874\) 6.76249e28 0.260011
\(875\) − 2.68769e29i − 1.02164i
\(876\) 0 0
\(877\) 6.12502e28 0.227568 0.113784 0.993506i \(-0.463703\pi\)
0.113784 + 0.993506i \(0.463703\pi\)
\(878\) − 4.68439e28i − 0.172071i
\(879\) 0 0
\(880\) −1.46514e28 −0.0526081
\(881\) − 3.69257e29i − 1.31090i −0.755238 0.655451i \(-0.772479\pi\)
0.755238 0.655451i \(-0.227521\pi\)
\(882\) 0 0
\(883\) −3.95985e29 −1.37427 −0.687135 0.726530i \(-0.741132\pi\)
−0.687135 + 0.726530i \(0.741132\pi\)
\(884\) − 1.72864e28i − 0.0593173i
\(885\) 0 0
\(886\) −3.19205e29 −1.07086
\(887\) − 4.46924e29i − 1.48251i −0.671223 0.741255i \(-0.734231\pi\)
0.671223 0.741255i \(-0.265769\pi\)
\(888\) 0 0
\(889\) 5.06306e29 1.64208
\(890\) 2.13817e29i 0.685711i
\(891\) 0 0
\(892\) −1.24353e29 −0.389949
\(893\) 6.92283e28i 0.214669i
\(894\) 0 0
\(895\) 5.72482e29 1.73593
\(896\) 3.27623e28i 0.0982415i
\(897\) 0 0
\(898\) −3.04043e29 −0.891604
\(899\) − 1.70705e29i − 0.495051i
\(900\) 0 0
\(901\) −2.45640e27 −0.00696710
\(902\) 6.61711e28i 0.185611i
\(903\) 0 0
\(904\) −2.08534e29 −0.572126
\(905\) − 1.12340e28i − 0.0304823i
\(906\) 0 0
\(907\) 4.79047e29 1.27147 0.635734 0.771908i \(-0.280697\pi\)
0.635734 + 0.771908i \(0.280697\pi\)
\(908\) 6.65667e28i 0.174743i
\(909\) 0 0
\(910\) 1.98716e29 0.510293
\(911\) − 6.43302e27i − 0.0163392i −0.999967 0.00816960i \(-0.997400\pi\)
0.999967 0.00816960i \(-0.00260049\pi\)
\(912\) 0 0
\(913\) 5.10351e28 0.126812
\(914\) − 4.07839e29i − 1.00237i
\(915\) 0 0
\(916\) −2.22992e29 −0.536209
\(917\) 3.40706e29i 0.810375i
\(918\) 0 0
\(919\) −2.76775e29 −0.644127 −0.322064 0.946718i \(-0.604377\pi\)
−0.322064 + 0.946718i \(0.604377\pi\)
\(920\) 1.56770e29i 0.360899i
\(921\) 0 0
\(922\) −4.04051e29 −0.910179
\(923\) 2.06447e29i 0.460036i
\(924\) 0 0
\(925\) 1.04856e29 0.228652
\(926\) − 1.83633e29i − 0.396132i
\(927\) 0 0
\(928\) 4.48660e28 0.0947190
\(929\) 3.21118e29i 0.670668i 0.942099 + 0.335334i \(0.108849\pi\)
−0.942099 + 0.335334i \(0.891151\pi\)
\(930\) 0 0
\(931\) 4.42608e28 0.0904738
\(932\) 3.10652e28i 0.0628224i
\(933\) 0 0
\(934\) −1.16701e29 −0.230998
\(935\) 2.09501e28i 0.0410270i
\(936\) 0 0
\(937\) −9.41950e29 −1.80564 −0.902822 0.430015i \(-0.858508\pi\)
−0.902822 + 0.430015i \(0.858508\pi\)
\(938\) 1.61150e29i 0.305633i
\(939\) 0 0
\(940\) −1.60487e29 −0.297963
\(941\) 5.42308e29i 0.996208i 0.867117 + 0.498104i \(0.165970\pi\)
−0.867117 + 0.498104i \(0.834030\pi\)
\(942\) 0 0
\(943\) 7.08032e29 1.27332
\(944\) − 1.96813e29i − 0.350214i
\(945\) 0 0
\(946\) 3.76712e28 0.0656294
\(947\) 3.44395e28i 0.0593687i 0.999559 + 0.0296843i \(0.00945021\pi\)
−0.999559 + 0.0296843i \(0.990550\pi\)
\(948\) 0 0
\(949\) 6.15447e29 1.03879
\(950\) 2.25506e28i 0.0376637i
\(951\) 0 0
\(952\) 4.68470e28 0.0766147
\(953\) − 6.19623e29i − 1.00276i −0.865226 0.501381i \(-0.832825\pi\)
0.865226 0.501381i \(-0.167175\pi\)
\(954\) 0 0
\(955\) −9.16794e29 −1.45291
\(956\) 3.65884e29i 0.573806i
\(957\) 0 0
\(958\) −4.20729e29 −0.646170
\(959\) 7.42027e29i 1.12780i
\(960\) 0 0
\(961\) −9.83212e28 −0.146357
\(962\) − 4.81931e29i − 0.709960i
\(963\) 0 0
\(964\) 4.06468e29 0.586484
\(965\) 6.12462e28i 0.0874593i
\(966\) 0 0
\(967\) −1.15176e30 −1.61101 −0.805503 0.592592i \(-0.798105\pi\)
−0.805503 + 0.592592i \(0.798105\pi\)
\(968\) 2.45460e29i 0.339803i
\(969\) 0 0
\(970\) 4.85252e28 0.0658037
\(971\) 6.56350e29i 0.880933i 0.897769 + 0.440467i \(0.145187\pi\)
−0.897769 + 0.440467i \(0.854813\pi\)
\(972\) 0 0
\(973\) −5.36416e28 −0.0705299
\(974\) − 5.19348e29i − 0.675879i
\(975\) 0 0
\(976\) −4.31297e28 −0.0549892
\(977\) − 1.88237e29i − 0.237553i −0.992921 0.118776i \(-0.962103\pi\)
0.992921 0.118776i \(-0.0378971\pi\)
\(978\) 0 0
\(979\) −1.44955e29 −0.179229
\(980\) 1.02607e29i 0.125579i
\(981\) 0 0
\(982\) 9.11755e29 1.09336
\(983\) 6.00861e29i 0.713245i 0.934249 + 0.356623i \(0.116072\pi\)
−0.934249 + 0.356623i \(0.883928\pi\)
\(984\) 0 0
\(985\) 9.96252e29 1.15880
\(986\) − 6.41539e28i − 0.0738676i
\(987\) 0 0
\(988\) 1.03646e29 0.116945
\(989\) − 4.03083e29i − 0.450227i
\(990\) 0 0
\(991\) −7.21036e29 −0.789260 −0.394630 0.918840i \(-0.629127\pi\)
−0.394630 + 0.918840i \(0.629127\pi\)
\(992\) 1.50723e29i 0.163329i
\(993\) 0 0
\(994\) −5.59482e29 −0.594186
\(995\) 4.33275e29i 0.455546i
\(996\) 0 0
\(997\) 1.31126e30 1.35125 0.675627 0.737244i \(-0.263873\pi\)
0.675627 + 0.737244i \(0.263873\pi\)
\(998\) 5.73534e29i 0.585132i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 54.21.b.a.53.1 6
3.2 odd 2 inner 54.21.b.a.53.6 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.21.b.a.53.1 6 1.1 even 1 trivial
54.21.b.a.53.6 yes 6 3.2 odd 2 inner