Properties

Label 54.18.a.b.1.1
Level $54$
Weight $18$
Character 54.1
Self dual yes
Analytic conductor $98.940$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [54,18,Mod(1,54)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(54, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 18, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("54.1"); S:= CuspForms(chi, 18); N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 54.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,512,0,131072,-304980] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(98.9399271661\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\mathbb{Q}[x]/(x^{2} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 6619360 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2\cdot 3^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2573.31\) of defining polynomial
Character \(\chi\) \(=\) 54.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+256.000 q^{2} +65536.0 q^{4} -847149. q^{5} +8.01937e6 q^{7} +1.67772e7 q^{8} -2.16870e8 q^{10} -2.43679e8 q^{11} +1.61256e9 q^{13} +2.05296e9 q^{14} +4.29497e9 q^{16} +2.05294e9 q^{17} -1.00427e11 q^{19} -5.55188e10 q^{20} -6.23819e10 q^{22} +6.28911e11 q^{23} -4.52777e10 q^{25} +4.12816e11 q^{26} +5.25557e11 q^{28} +1.38080e12 q^{29} -1.33771e12 q^{31} +1.09951e12 q^{32} +5.25553e11 q^{34} -6.79360e12 q^{35} -2.37602e13 q^{37} -2.57093e13 q^{38} -1.42128e13 q^{40} +4.86041e12 q^{41} +1.82714e13 q^{43} -1.59698e13 q^{44} +1.61001e14 q^{46} -2.06760e14 q^{47} -1.68320e14 q^{49} -1.15911e13 q^{50} +1.05681e14 q^{52} +1.47985e14 q^{53} +2.06433e14 q^{55} +1.34543e14 q^{56} +3.53484e14 q^{58} -9.72521e14 q^{59} -5.30555e14 q^{61} -3.42454e14 q^{62} +2.81475e14 q^{64} -1.36608e15 q^{65} -4.08015e15 q^{67} +1.34542e14 q^{68} -1.73916e15 q^{70} -7.34515e15 q^{71} +5.69074e15 q^{73} -6.08260e15 q^{74} -6.58158e15 q^{76} -1.95416e15 q^{77} -6.13324e15 q^{79} -3.63848e15 q^{80} +1.24427e15 q^{82} +6.99885e15 q^{83} -1.73915e15 q^{85} +4.67748e15 q^{86} -4.08826e15 q^{88} +4.23661e15 q^{89} +1.29317e16 q^{91} +4.12163e16 q^{92} -5.29305e16 q^{94} +8.50767e16 q^{95} -7.36170e16 q^{97} -4.30900e16 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 512 q^{2} + 131072 q^{4} - 304980 q^{5} - 9246860 q^{7} + 33554432 q^{8} - 78074880 q^{10} - 155034030 q^{11} + 1702429720 q^{13} - 2367196160 q^{14} + 8589934592 q^{16} - 8486897472 q^{17} - 5707598648 q^{19}+ \cdots - 26\!\cdots\!76 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 256.000 0.707107
\(3\) 0 0
\(4\) 65536.0 0.500000
\(5\) −847149. −0.969873 −0.484936 0.874549i \(-0.661157\pi\)
−0.484936 + 0.874549i \(0.661157\pi\)
\(6\) 0 0
\(7\) 8.01937e6 0.525783 0.262892 0.964825i \(-0.415324\pi\)
0.262892 + 0.964825i \(0.415324\pi\)
\(8\) 1.67772e7 0.353553
\(9\) 0 0
\(10\) −2.16870e8 −0.685804
\(11\) −2.43679e8 −0.342753 −0.171376 0.985206i \(-0.554821\pi\)
−0.171376 + 0.985206i \(0.554821\pi\)
\(12\) 0 0
\(13\) 1.61256e9 0.548274 0.274137 0.961691i \(-0.411608\pi\)
0.274137 + 0.961691i \(0.411608\pi\)
\(14\) 2.05296e9 0.371785
\(15\) 0 0
\(16\) 4.29497e9 0.250000
\(17\) 2.05294e9 0.0713774 0.0356887 0.999363i \(-0.488638\pi\)
0.0356887 + 0.999363i \(0.488638\pi\)
\(18\) 0 0
\(19\) −1.00427e11 −1.35658 −0.678289 0.734795i \(-0.737278\pi\)
−0.678289 + 0.734795i \(0.737278\pi\)
\(20\) −5.55188e10 −0.484936
\(21\) 0 0
\(22\) −6.23819e10 −0.242363
\(23\) 6.28911e11 1.67457 0.837284 0.546768i \(-0.184142\pi\)
0.837284 + 0.546768i \(0.184142\pi\)
\(24\) 0 0
\(25\) −4.52777e10 −0.0593464
\(26\) 4.12816e11 0.387688
\(27\) 0 0
\(28\) 5.25557e11 0.262892
\(29\) 1.38080e12 0.512563 0.256282 0.966602i \(-0.417503\pi\)
0.256282 + 0.966602i \(0.417503\pi\)
\(30\) 0 0
\(31\) −1.33771e12 −0.281700 −0.140850 0.990031i \(-0.544984\pi\)
−0.140850 + 0.990031i \(0.544984\pi\)
\(32\) 1.09951e12 0.176777
\(33\) 0 0
\(34\) 5.25553e11 0.0504715
\(35\) −6.79360e12 −0.509943
\(36\) 0 0
\(37\) −2.37602e13 −1.11208 −0.556038 0.831157i \(-0.687679\pi\)
−0.556038 + 0.831157i \(0.687679\pi\)
\(38\) −2.57093e13 −0.959246
\(39\) 0 0
\(40\) −1.42128e13 −0.342902
\(41\) 4.86041e12 0.0950628 0.0475314 0.998870i \(-0.484865\pi\)
0.0475314 + 0.998870i \(0.484865\pi\)
\(42\) 0 0
\(43\) 1.82714e13 0.238391 0.119196 0.992871i \(-0.461968\pi\)
0.119196 + 0.992871i \(0.461968\pi\)
\(44\) −1.59698e13 −0.171376
\(45\) 0 0
\(46\) 1.61001e14 1.18410
\(47\) −2.06760e14 −1.26659 −0.633293 0.773912i \(-0.718297\pi\)
−0.633293 + 0.773912i \(0.718297\pi\)
\(48\) 0 0
\(49\) −1.68320e14 −0.723552
\(50\) −1.15911e13 −0.0419643
\(51\) 0 0
\(52\) 1.05681e14 0.274137
\(53\) 1.47985e14 0.326493 0.163247 0.986585i \(-0.447803\pi\)
0.163247 + 0.986585i \(0.447803\pi\)
\(54\) 0 0
\(55\) 2.06433e14 0.332427
\(56\) 1.34543e14 0.185892
\(57\) 0 0
\(58\) 3.53484e14 0.362437
\(59\) −9.72521e14 −0.862297 −0.431149 0.902281i \(-0.641891\pi\)
−0.431149 + 0.902281i \(0.641891\pi\)
\(60\) 0 0
\(61\) −5.30555e14 −0.354346 −0.177173 0.984180i \(-0.556695\pi\)
−0.177173 + 0.984180i \(0.556695\pi\)
\(62\) −3.42454e14 −0.199192
\(63\) 0 0
\(64\) 2.81475e14 0.125000
\(65\) −1.36608e15 −0.531756
\(66\) 0 0
\(67\) −4.08015e15 −1.22755 −0.613777 0.789480i \(-0.710350\pi\)
−0.613777 + 0.789480i \(0.710350\pi\)
\(68\) 1.34542e14 0.0356887
\(69\) 0 0
\(70\) −1.73916e15 −0.360584
\(71\) −7.34515e15 −1.34991 −0.674955 0.737859i \(-0.735837\pi\)
−0.674955 + 0.737859i \(0.735837\pi\)
\(72\) 0 0
\(73\) 5.69074e15 0.825895 0.412947 0.910755i \(-0.364499\pi\)
0.412947 + 0.910755i \(0.364499\pi\)
\(74\) −6.08260e15 −0.786357
\(75\) 0 0
\(76\) −6.58158e15 −0.678289
\(77\) −1.95416e15 −0.180214
\(78\) 0 0
\(79\) −6.13324e15 −0.454841 −0.227421 0.973797i \(-0.573029\pi\)
−0.227421 + 0.973797i \(0.573029\pi\)
\(80\) −3.63848e15 −0.242468
\(81\) 0 0
\(82\) 1.24427e15 0.0672195
\(83\) 6.99885e15 0.341085 0.170543 0.985350i \(-0.445448\pi\)
0.170543 + 0.985350i \(0.445448\pi\)
\(84\) 0 0
\(85\) −1.73915e15 −0.0692270
\(86\) 4.67748e15 0.168568
\(87\) 0 0
\(88\) −4.08826e15 −0.121181
\(89\) 4.23661e15 0.114078 0.0570392 0.998372i \(-0.481834\pi\)
0.0570392 + 0.998372i \(0.481834\pi\)
\(90\) 0 0
\(91\) 1.29317e16 0.288273
\(92\) 4.12163e16 0.837284
\(93\) 0 0
\(94\) −5.29305e16 −0.895611
\(95\) 8.50767e16 1.31571
\(96\) 0 0
\(97\) −7.36170e16 −0.953715 −0.476857 0.878981i \(-0.658224\pi\)
−0.476857 + 0.878981i \(0.658224\pi\)
\(98\) −4.30900e16 −0.511629
\(99\) 0 0
\(100\) −2.96732e15 −0.0296732
\(101\) 1.77435e16 0.163045 0.0815224 0.996672i \(-0.474022\pi\)
0.0815224 + 0.996672i \(0.474022\pi\)
\(102\) 0 0
\(103\) −8.96458e16 −0.697291 −0.348645 0.937255i \(-0.613358\pi\)
−0.348645 + 0.937255i \(0.613358\pi\)
\(104\) 2.70543e16 0.193844
\(105\) 0 0
\(106\) 3.78843e16 0.230865
\(107\) −6.31261e16 −0.355179 −0.177589 0.984105i \(-0.556830\pi\)
−0.177589 + 0.984105i \(0.556830\pi\)
\(108\) 0 0
\(109\) −2.71956e17 −1.30730 −0.653648 0.756799i \(-0.726762\pi\)
−0.653648 + 0.756799i \(0.726762\pi\)
\(110\) 5.28468e16 0.235061
\(111\) 0 0
\(112\) 3.44429e16 0.131446
\(113\) −2.70809e16 −0.0958290 −0.0479145 0.998851i \(-0.515257\pi\)
−0.0479145 + 0.998851i \(0.515257\pi\)
\(114\) 0 0
\(115\) −5.32782e17 −1.62412
\(116\) 9.04920e16 0.256282
\(117\) 0 0
\(118\) −2.48965e17 −0.609736
\(119\) 1.64633e16 0.0375291
\(120\) 0 0
\(121\) −4.46067e17 −0.882520
\(122\) −1.35822e17 −0.250560
\(123\) 0 0
\(124\) −8.76681e16 −0.140850
\(125\) 6.84681e17 1.02743
\(126\) 0 0
\(127\) −1.20002e18 −1.57347 −0.786734 0.617292i \(-0.788230\pi\)
−0.786734 + 0.617292i \(0.788230\pi\)
\(128\) 7.20576e16 0.0883883
\(129\) 0 0
\(130\) −3.49716e17 −0.376008
\(131\) 7.98700e17 0.804595 0.402298 0.915509i \(-0.368212\pi\)
0.402298 + 0.915509i \(0.368212\pi\)
\(132\) 0 0
\(133\) −8.05361e17 −0.713266
\(134\) −1.04452e18 −0.868011
\(135\) 0 0
\(136\) 3.44427e16 0.0252357
\(137\) −2.33204e18 −1.60550 −0.802751 0.596314i \(-0.796631\pi\)
−0.802751 + 0.596314i \(0.796631\pi\)
\(138\) 0 0
\(139\) 1.66874e18 1.01569 0.507847 0.861447i \(-0.330441\pi\)
0.507847 + 0.861447i \(0.330441\pi\)
\(140\) −4.45225e17 −0.254971
\(141\) 0 0
\(142\) −1.88036e18 −0.954531
\(143\) −3.92948e17 −0.187923
\(144\) 0 0
\(145\) −1.16974e18 −0.497121
\(146\) 1.45683e18 0.583996
\(147\) 0 0
\(148\) −1.55715e18 −0.556038
\(149\) −4.14235e18 −1.39689 −0.698447 0.715662i \(-0.746125\pi\)
−0.698447 + 0.715662i \(0.746125\pi\)
\(150\) 0 0
\(151\) −4.53805e18 −1.36636 −0.683180 0.730250i \(-0.739403\pi\)
−0.683180 + 0.730250i \(0.739403\pi\)
\(152\) −1.68489e18 −0.479623
\(153\) 0 0
\(154\) −5.00264e17 −0.127430
\(155\) 1.13324e18 0.273214
\(156\) 0 0
\(157\) −8.91729e18 −1.92791 −0.963953 0.266071i \(-0.914274\pi\)
−0.963953 + 0.266071i \(0.914274\pi\)
\(158\) −1.57011e18 −0.321621
\(159\) 0 0
\(160\) −9.31450e17 −0.171451
\(161\) 5.04347e18 0.880460
\(162\) 0 0
\(163\) 1.02359e19 1.60891 0.804455 0.594014i \(-0.202458\pi\)
0.804455 + 0.594014i \(0.202458\pi\)
\(164\) 3.18532e17 0.0475314
\(165\) 0 0
\(166\) 1.79171e18 0.241184
\(167\) 2.13116e18 0.272600 0.136300 0.990668i \(-0.456479\pi\)
0.136300 + 0.990668i \(0.456479\pi\)
\(168\) 0 0
\(169\) −6.05006e18 −0.699395
\(170\) −4.45222e17 −0.0489509
\(171\) 0 0
\(172\) 1.19744e18 0.119196
\(173\) 5.29524e18 0.501758 0.250879 0.968019i \(-0.419280\pi\)
0.250879 + 0.968019i \(0.419280\pi\)
\(174\) 0 0
\(175\) −3.63099e17 −0.0312034
\(176\) −1.04660e18 −0.0856882
\(177\) 0 0
\(178\) 1.08457e18 0.0806657
\(179\) 1.83007e19 1.29783 0.648913 0.760863i \(-0.275224\pi\)
0.648913 + 0.760863i \(0.275224\pi\)
\(180\) 0 0
\(181\) 1.36998e19 0.883991 0.441995 0.897017i \(-0.354271\pi\)
0.441995 + 0.897017i \(0.354271\pi\)
\(182\) 3.31052e18 0.203840
\(183\) 0 0
\(184\) 1.05514e19 0.592049
\(185\) 2.01284e19 1.07857
\(186\) 0 0
\(187\) −5.00260e17 −0.0244648
\(188\) −1.35502e19 −0.633293
\(189\) 0 0
\(190\) 2.17796e19 0.930347
\(191\) −1.30408e19 −0.532748 −0.266374 0.963870i \(-0.585826\pi\)
−0.266374 + 0.963870i \(0.585826\pi\)
\(192\) 0 0
\(193\) 1.61726e19 0.604702 0.302351 0.953197i \(-0.402228\pi\)
0.302351 + 0.953197i \(0.402228\pi\)
\(194\) −1.88460e19 −0.674378
\(195\) 0 0
\(196\) −1.10310e19 −0.361776
\(197\) 8.86779e17 0.0278518 0.0139259 0.999903i \(-0.495567\pi\)
0.0139259 + 0.999903i \(0.495567\pi\)
\(198\) 0 0
\(199\) 4.62179e19 1.33217 0.666084 0.745876i \(-0.267969\pi\)
0.666084 + 0.745876i \(0.267969\pi\)
\(200\) −7.59634e17 −0.0209821
\(201\) 0 0
\(202\) 4.54233e18 0.115290
\(203\) 1.10731e19 0.269497
\(204\) 0 0
\(205\) −4.11750e18 −0.0921988
\(206\) −2.29493e19 −0.493059
\(207\) 0 0
\(208\) 6.92590e18 0.137069
\(209\) 2.44720e19 0.464971
\(210\) 0 0
\(211\) 1.06983e20 1.87462 0.937312 0.348492i \(-0.113306\pi\)
0.937312 + 0.348492i \(0.113306\pi\)
\(212\) 9.69837e18 0.163247
\(213\) 0 0
\(214\) −1.61603e19 −0.251149
\(215\) −1.54786e19 −0.231209
\(216\) 0 0
\(217\) −1.07276e19 −0.148113
\(218\) −6.96208e19 −0.924398
\(219\) 0 0
\(220\) 1.35288e19 0.166213
\(221\) 3.31049e18 0.0391344
\(222\) 0 0
\(223\) 4.85282e19 0.531378 0.265689 0.964059i \(-0.414401\pi\)
0.265689 + 0.964059i \(0.414401\pi\)
\(224\) 8.81739e18 0.0929462
\(225\) 0 0
\(226\) −6.93272e18 −0.0677613
\(227\) 1.76860e20 1.66498 0.832491 0.554039i \(-0.186914\pi\)
0.832491 + 0.554039i \(0.186914\pi\)
\(228\) 0 0
\(229\) 7.15770e19 0.625420 0.312710 0.949849i \(-0.398763\pi\)
0.312710 + 0.949849i \(0.398763\pi\)
\(230\) −1.36392e20 −1.14843
\(231\) 0 0
\(232\) 2.31660e19 0.181218
\(233\) −5.26580e19 −0.397136 −0.198568 0.980087i \(-0.563629\pi\)
−0.198568 + 0.980087i \(0.563629\pi\)
\(234\) 0 0
\(235\) 1.75156e20 1.22843
\(236\) −6.37351e19 −0.431149
\(237\) 0 0
\(238\) 4.21460e18 0.0265370
\(239\) −1.26421e20 −0.768136 −0.384068 0.923305i \(-0.625477\pi\)
−0.384068 + 0.923305i \(0.625477\pi\)
\(240\) 0 0
\(241\) −1.04575e20 −0.591948 −0.295974 0.955196i \(-0.595644\pi\)
−0.295974 + 0.955196i \(0.595644\pi\)
\(242\) −1.14193e20 −0.624036
\(243\) 0 0
\(244\) −3.47705e19 −0.177173
\(245\) 1.42592e20 0.701754
\(246\) 0 0
\(247\) −1.61945e20 −0.743777
\(248\) −2.24430e19 −0.0995961
\(249\) 0 0
\(250\) 1.75278e20 0.726504
\(251\) 1.11461e20 0.446577 0.223288 0.974752i \(-0.428321\pi\)
0.223288 + 0.974752i \(0.428321\pi\)
\(252\) 0 0
\(253\) −1.53253e20 −0.573963
\(254\) −3.07206e20 −1.11261
\(255\) 0 0
\(256\) 1.84467e19 0.0625000
\(257\) 2.62335e20 0.859855 0.429928 0.902863i \(-0.358539\pi\)
0.429928 + 0.902863i \(0.358539\pi\)
\(258\) 0 0
\(259\) −1.90541e20 −0.584711
\(260\) −8.95274e19 −0.265878
\(261\) 0 0
\(262\) 2.04467e20 0.568935
\(263\) 3.27028e20 0.880970 0.440485 0.897760i \(-0.354806\pi\)
0.440485 + 0.897760i \(0.354806\pi\)
\(264\) 0 0
\(265\) −1.25366e20 −0.316657
\(266\) −2.06172e20 −0.504355
\(267\) 0 0
\(268\) −2.67397e20 −0.613777
\(269\) 8.30681e20 1.84731 0.923655 0.383224i \(-0.125186\pi\)
0.923655 + 0.383224i \(0.125186\pi\)
\(270\) 0 0
\(271\) −1.31233e20 −0.274035 −0.137017 0.990569i \(-0.543752\pi\)
−0.137017 + 0.990569i \(0.543752\pi\)
\(272\) 8.81732e18 0.0178444
\(273\) 0 0
\(274\) −5.97002e20 −1.13526
\(275\) 1.10333e19 0.0203412
\(276\) 0 0
\(277\) −4.79360e20 −0.830967 −0.415483 0.909601i \(-0.636388\pi\)
−0.415483 + 0.909601i \(0.636388\pi\)
\(278\) 4.27198e20 0.718205
\(279\) 0 0
\(280\) −1.13978e20 −0.180292
\(281\) 9.88338e20 1.51671 0.758353 0.651844i \(-0.226004\pi\)
0.758353 + 0.651844i \(0.226004\pi\)
\(282\) 0 0
\(283\) −1.00371e21 −1.45018 −0.725092 0.688652i \(-0.758203\pi\)
−0.725092 + 0.688652i \(0.758203\pi\)
\(284\) −4.81372e20 −0.674955
\(285\) 0 0
\(286\) −1.00595e20 −0.132881
\(287\) 3.89774e19 0.0499824
\(288\) 0 0
\(289\) −8.23026e20 −0.994905
\(290\) −2.99454e20 −0.351518
\(291\) 0 0
\(292\) 3.72949e20 0.412947
\(293\) −1.57822e21 −1.69743 −0.848716 0.528850i \(-0.822624\pi\)
−0.848716 + 0.528850i \(0.822624\pi\)
\(294\) 0 0
\(295\) 8.23870e20 0.836319
\(296\) −3.98629e20 −0.393179
\(297\) 0 0
\(298\) −1.06044e21 −0.987753
\(299\) 1.01416e21 0.918123
\(300\) 0 0
\(301\) 1.46525e20 0.125342
\(302\) −1.16174e21 −0.966162
\(303\) 0 0
\(304\) −4.31331e20 −0.339145
\(305\) 4.49459e20 0.343670
\(306\) 0 0
\(307\) −1.21206e21 −0.876696 −0.438348 0.898805i \(-0.644436\pi\)
−0.438348 + 0.898805i \(0.644436\pi\)
\(308\) −1.28068e20 −0.0901069
\(309\) 0 0
\(310\) 2.90109e20 0.193191
\(311\) 4.53796e20 0.294034 0.147017 0.989134i \(-0.453033\pi\)
0.147017 + 0.989134i \(0.453033\pi\)
\(312\) 0 0
\(313\) 2.29387e21 1.40748 0.703739 0.710459i \(-0.251512\pi\)
0.703739 + 0.710459i \(0.251512\pi\)
\(314\) −2.28283e21 −1.36324
\(315\) 0 0
\(316\) −4.01948e20 −0.227421
\(317\) −8.22006e20 −0.452763 −0.226382 0.974039i \(-0.572690\pi\)
−0.226382 + 0.974039i \(0.572690\pi\)
\(318\) 0 0
\(319\) −3.36472e20 −0.175682
\(320\) −2.38451e20 −0.121234
\(321\) 0 0
\(322\) 1.29113e21 0.622579
\(323\) −2.06171e20 −0.0968291
\(324\) 0 0
\(325\) −7.30131e19 −0.0325381
\(326\) 2.62039e21 1.13767
\(327\) 0 0
\(328\) 8.15442e19 0.0336098
\(329\) −1.65808e21 −0.665949
\(330\) 0 0
\(331\) −1.90795e21 −0.727828 −0.363914 0.931433i \(-0.618560\pi\)
−0.363914 + 0.931433i \(0.618560\pi\)
\(332\) 4.58677e20 0.170543
\(333\) 0 0
\(334\) 5.45576e20 0.192757
\(335\) 3.45650e21 1.19057
\(336\) 0 0
\(337\) 1.78453e20 0.0584346 0.0292173 0.999573i \(-0.490699\pi\)
0.0292173 + 0.999573i \(0.490699\pi\)
\(338\) −1.54882e21 −0.494547
\(339\) 0 0
\(340\) −1.13977e20 −0.0346135
\(341\) 3.25972e20 0.0965536
\(342\) 0 0
\(343\) −3.21537e21 −0.906215
\(344\) 3.06543e20 0.0842840
\(345\) 0 0
\(346\) 1.35558e21 0.354796
\(347\) −5.68530e21 −1.45195 −0.725977 0.687719i \(-0.758612\pi\)
−0.725977 + 0.687719i \(0.758612\pi\)
\(348\) 0 0
\(349\) 6.37823e21 1.55126 0.775629 0.631189i \(-0.217433\pi\)
0.775629 + 0.631189i \(0.217433\pi\)
\(350\) −9.29533e19 −0.0220641
\(351\) 0 0
\(352\) −2.67928e20 −0.0605907
\(353\) 2.91442e21 0.643379 0.321690 0.946845i \(-0.395749\pi\)
0.321690 + 0.946845i \(0.395749\pi\)
\(354\) 0 0
\(355\) 6.22244e21 1.30924
\(356\) 2.77651e20 0.0570392
\(357\) 0 0
\(358\) 4.68497e21 0.917701
\(359\) 2.51628e21 0.481344 0.240672 0.970606i \(-0.422632\pi\)
0.240672 + 0.970606i \(0.422632\pi\)
\(360\) 0 0
\(361\) 4.60520e21 0.840305
\(362\) 3.50716e21 0.625076
\(363\) 0 0
\(364\) 8.47493e20 0.144137
\(365\) −4.82091e21 −0.801013
\(366\) 0 0
\(367\) −1.53497e21 −0.243466 −0.121733 0.992563i \(-0.538845\pi\)
−0.121733 + 0.992563i \(0.538845\pi\)
\(368\) 2.70115e21 0.418642
\(369\) 0 0
\(370\) 5.15287e21 0.762667
\(371\) 1.18675e21 0.171665
\(372\) 0 0
\(373\) −5.11988e20 −0.0707514 −0.0353757 0.999374i \(-0.511263\pi\)
−0.0353757 + 0.999374i \(0.511263\pi\)
\(374\) −1.28067e20 −0.0172992
\(375\) 0 0
\(376\) −3.46885e21 −0.447806
\(377\) 2.22662e21 0.281025
\(378\) 0 0
\(379\) 1.58862e22 1.91684 0.958421 0.285358i \(-0.0921124\pi\)
0.958421 + 0.285358i \(0.0921124\pi\)
\(380\) 5.57558e21 0.657854
\(381\) 0 0
\(382\) −3.33846e21 −0.376710
\(383\) −1.31732e22 −1.45379 −0.726893 0.686750i \(-0.759037\pi\)
−0.726893 + 0.686750i \(0.759037\pi\)
\(384\) 0 0
\(385\) 1.65546e21 0.174784
\(386\) 4.14017e21 0.427589
\(387\) 0 0
\(388\) −4.82457e21 −0.476857
\(389\) 1.26152e22 1.21990 0.609948 0.792441i \(-0.291190\pi\)
0.609948 + 0.792441i \(0.291190\pi\)
\(390\) 0 0
\(391\) 1.29112e21 0.119526
\(392\) −2.82395e21 −0.255814
\(393\) 0 0
\(394\) 2.27015e20 0.0196942
\(395\) 5.19577e21 0.441138
\(396\) 0 0
\(397\) 9.34039e21 0.759706 0.379853 0.925047i \(-0.375975\pi\)
0.379853 + 0.925047i \(0.375975\pi\)
\(398\) 1.18318e22 0.941985
\(399\) 0 0
\(400\) −1.94466e20 −0.0148366
\(401\) −1.60000e22 −1.19507 −0.597536 0.801842i \(-0.703853\pi\)
−0.597536 + 0.801842i \(0.703853\pi\)
\(402\) 0 0
\(403\) −2.15714e21 −0.154449
\(404\) 1.16284e21 0.0815224
\(405\) 0 0
\(406\) 2.83472e21 0.190563
\(407\) 5.78987e21 0.381168
\(408\) 0 0
\(409\) −6.83445e21 −0.431574 −0.215787 0.976440i \(-0.569232\pi\)
−0.215787 + 0.976440i \(0.569232\pi\)
\(410\) −1.05408e21 −0.0651944
\(411\) 0 0
\(412\) −5.87503e21 −0.348645
\(413\) −7.79900e21 −0.453381
\(414\) 0 0
\(415\) −5.92907e21 −0.330809
\(416\) 1.77303e21 0.0969221
\(417\) 0 0
\(418\) 6.26483e21 0.328784
\(419\) −2.96662e22 −1.52561 −0.762803 0.646631i \(-0.776178\pi\)
−0.762803 + 0.646631i \(0.776178\pi\)
\(420\) 0 0
\(421\) −2.76916e22 −1.36757 −0.683786 0.729683i \(-0.739668\pi\)
−0.683786 + 0.729683i \(0.739668\pi\)
\(422\) 2.73877e22 1.32556
\(423\) 0 0
\(424\) 2.48278e21 0.115433
\(425\) −9.29526e19 −0.00423600
\(426\) 0 0
\(427\) −4.25472e21 −0.186309
\(428\) −4.13703e21 −0.177589
\(429\) 0 0
\(430\) −3.96253e21 −0.163490
\(431\) −4.17737e22 −1.68984 −0.844921 0.534891i \(-0.820353\pi\)
−0.844921 + 0.534891i \(0.820353\pi\)
\(432\) 0 0
\(433\) −2.51263e22 −0.977194 −0.488597 0.872510i \(-0.662491\pi\)
−0.488597 + 0.872510i \(0.662491\pi\)
\(434\) −2.74626e21 −0.104732
\(435\) 0 0
\(436\) −1.78229e22 −0.653648
\(437\) −6.31597e22 −2.27168
\(438\) 0 0
\(439\) −2.88132e22 −0.996880 −0.498440 0.866924i \(-0.666094\pi\)
−0.498440 + 0.866924i \(0.666094\pi\)
\(440\) 3.46337e21 0.117531
\(441\) 0 0
\(442\) 8.47487e20 0.0276722
\(443\) 2.03106e22 0.650564 0.325282 0.945617i \(-0.394541\pi\)
0.325282 + 0.945617i \(0.394541\pi\)
\(444\) 0 0
\(445\) −3.58904e21 −0.110642
\(446\) 1.24232e22 0.375741
\(447\) 0 0
\(448\) 2.25725e21 0.0657229
\(449\) 8.71590e21 0.249011 0.124505 0.992219i \(-0.460266\pi\)
0.124505 + 0.992219i \(0.460266\pi\)
\(450\) 0 0
\(451\) −1.18438e21 −0.0325830
\(452\) −1.77478e21 −0.0479145
\(453\) 0 0
\(454\) 4.52761e22 1.17732
\(455\) −1.09551e22 −0.279589
\(456\) 0 0
\(457\) −2.05034e22 −0.504126 −0.252063 0.967711i \(-0.581109\pi\)
−0.252063 + 0.967711i \(0.581109\pi\)
\(458\) 1.83237e22 0.442239
\(459\) 0 0
\(460\) −3.49164e22 −0.812059
\(461\) 6.35546e22 1.45107 0.725537 0.688183i \(-0.241592\pi\)
0.725537 + 0.688183i \(0.241592\pi\)
\(462\) 0 0
\(463\) −1.39293e22 −0.306542 −0.153271 0.988184i \(-0.548981\pi\)
−0.153271 + 0.988184i \(0.548981\pi\)
\(464\) 5.93048e21 0.128141
\(465\) 0 0
\(466\) −1.34804e22 −0.280817
\(467\) −2.46074e21 −0.0503352 −0.0251676 0.999683i \(-0.508012\pi\)
−0.0251676 + 0.999683i \(0.508012\pi\)
\(468\) 0 0
\(469\) −3.27202e22 −0.645427
\(470\) 4.48400e22 0.868629
\(471\) 0 0
\(472\) −1.63162e22 −0.304868
\(473\) −4.45237e21 −0.0817093
\(474\) 0 0
\(475\) 4.54711e21 0.0805081
\(476\) 1.07894e21 0.0187645
\(477\) 0 0
\(478\) −3.23639e22 −0.543154
\(479\) −5.77281e21 −0.0951777 −0.0475889 0.998867i \(-0.515154\pi\)
−0.0475889 + 0.998867i \(0.515154\pi\)
\(480\) 0 0
\(481\) −3.83147e22 −0.609723
\(482\) −2.67713e22 −0.418571
\(483\) 0 0
\(484\) −2.92335e22 −0.441260
\(485\) 6.23646e22 0.924982
\(486\) 0 0
\(487\) 1.18963e23 1.70378 0.851891 0.523719i \(-0.175456\pi\)
0.851891 + 0.523719i \(0.175456\pi\)
\(488\) −8.90124e21 −0.125280
\(489\) 0 0
\(490\) 3.65036e22 0.496215
\(491\) 9.85583e22 1.31674 0.658371 0.752694i \(-0.271246\pi\)
0.658371 + 0.752694i \(0.271246\pi\)
\(492\) 0 0
\(493\) 2.83470e21 0.0365854
\(494\) −4.14578e22 −0.525930
\(495\) 0 0
\(496\) −5.74542e21 −0.0704251
\(497\) −5.89035e22 −0.709760
\(498\) 0 0
\(499\) −5.61088e22 −0.653396 −0.326698 0.945129i \(-0.605936\pi\)
−0.326698 + 0.945129i \(0.605936\pi\)
\(500\) 4.48712e22 0.513716
\(501\) 0 0
\(502\) 2.85340e22 0.315777
\(503\) −3.69306e22 −0.401845 −0.200923 0.979607i \(-0.564394\pi\)
−0.200923 + 0.979607i \(0.564394\pi\)
\(504\) 0 0
\(505\) −1.50314e22 −0.158133
\(506\) −3.92327e22 −0.405853
\(507\) 0 0
\(508\) −7.86447e22 −0.786734
\(509\) −7.31575e22 −0.719710 −0.359855 0.933008i \(-0.617174\pi\)
−0.359855 + 0.933008i \(0.617174\pi\)
\(510\) 0 0
\(511\) 4.56362e22 0.434242
\(512\) 4.72237e21 0.0441942
\(513\) 0 0
\(514\) 6.71579e22 0.608009
\(515\) 7.59434e22 0.676283
\(516\) 0 0
\(517\) 5.03831e22 0.434126
\(518\) −4.87786e22 −0.413453
\(519\) 0 0
\(520\) −2.29190e22 −0.188004
\(521\) −1.36272e22 −0.109973 −0.0549864 0.998487i \(-0.517512\pi\)
−0.0549864 + 0.998487i \(0.517512\pi\)
\(522\) 0 0
\(523\) −1.74409e22 −0.136240 −0.0681199 0.997677i \(-0.521700\pi\)
−0.0681199 + 0.997677i \(0.521700\pi\)
\(524\) 5.23436e22 0.402298
\(525\) 0 0
\(526\) 8.37192e22 0.622940
\(527\) −2.74624e21 −0.0201070
\(528\) 0 0
\(529\) 2.54480e23 1.80418
\(530\) −3.20936e22 −0.223910
\(531\) 0 0
\(532\) −5.27801e22 −0.356633
\(533\) 7.83772e21 0.0521205
\(534\) 0 0
\(535\) 5.34772e22 0.344478
\(536\) −6.84536e22 −0.434006
\(537\) 0 0
\(538\) 2.12654e23 1.30625
\(539\) 4.10162e22 0.248000
\(540\) 0 0
\(541\) 2.16969e23 1.27122 0.635609 0.772011i \(-0.280749\pi\)
0.635609 + 0.772011i \(0.280749\pi\)
\(542\) −3.35958e22 −0.193772
\(543\) 0 0
\(544\) 2.25723e21 0.0126179
\(545\) 2.30388e23 1.26791
\(546\) 0 0
\(547\) 6.59130e21 0.0351624 0.0175812 0.999845i \(-0.494403\pi\)
0.0175812 + 0.999845i \(0.494403\pi\)
\(548\) −1.52833e23 −0.802751
\(549\) 0 0
\(550\) 2.82451e21 0.0143834
\(551\) −1.38669e23 −0.695332
\(552\) 0 0
\(553\) −4.91847e22 −0.239148
\(554\) −1.22716e23 −0.587582
\(555\) 0 0
\(556\) 1.09363e23 0.507847
\(557\) 2.85395e23 1.30520 0.652601 0.757702i \(-0.273678\pi\)
0.652601 + 0.757702i \(0.273678\pi\)
\(558\) 0 0
\(559\) 2.94638e22 0.130704
\(560\) −2.91783e22 −0.127486
\(561\) 0 0
\(562\) 2.53014e23 1.07247
\(563\) 1.37063e23 0.572267 0.286134 0.958190i \(-0.407630\pi\)
0.286134 + 0.958190i \(0.407630\pi\)
\(564\) 0 0
\(565\) 2.29416e22 0.0929419
\(566\) −2.56950e23 −1.02544
\(567\) 0 0
\(568\) −1.23231e23 −0.477265
\(569\) −3.43584e23 −1.31093 −0.655464 0.755226i \(-0.727527\pi\)
−0.655464 + 0.755226i \(0.727527\pi\)
\(570\) 0 0
\(571\) 1.15788e23 0.428803 0.214402 0.976746i \(-0.431220\pi\)
0.214402 + 0.976746i \(0.431220\pi\)
\(572\) −2.57522e22 −0.0939613
\(573\) 0 0
\(574\) 9.97823e21 0.0353429
\(575\) −2.84757e22 −0.0993797
\(576\) 0 0
\(577\) −2.91327e23 −0.987156 −0.493578 0.869701i \(-0.664311\pi\)
−0.493578 + 0.869701i \(0.664311\pi\)
\(578\) −2.10695e23 −0.703504
\(579\) 0 0
\(580\) −7.66602e22 −0.248561
\(581\) 5.61264e22 0.179337
\(582\) 0 0
\(583\) −3.60610e22 −0.111906
\(584\) 9.54748e22 0.291998
\(585\) 0 0
\(586\) −4.04024e23 −1.20027
\(587\) −2.28147e23 −0.668023 −0.334012 0.942569i \(-0.608402\pi\)
−0.334012 + 0.942569i \(0.608402\pi\)
\(588\) 0 0
\(589\) 1.34342e23 0.382149
\(590\) 2.10911e23 0.591367
\(591\) 0 0
\(592\) −1.02049e23 −0.278019
\(593\) 2.89061e23 0.776292 0.388146 0.921598i \(-0.373116\pi\)
0.388146 + 0.921598i \(0.373116\pi\)
\(594\) 0 0
\(595\) −1.39469e22 −0.0363984
\(596\) −2.71473e23 −0.698447
\(597\) 0 0
\(598\) 2.59625e23 0.649211
\(599\) 6.48122e23 1.59782 0.798911 0.601449i \(-0.205410\pi\)
0.798911 + 0.601449i \(0.205410\pi\)
\(600\) 0 0
\(601\) 1.73835e23 0.416586 0.208293 0.978066i \(-0.433209\pi\)
0.208293 + 0.978066i \(0.433209\pi\)
\(602\) 3.75104e22 0.0886303
\(603\) 0 0
\(604\) −2.97405e23 −0.683180
\(605\) 3.77886e23 0.855933
\(606\) 0 0
\(607\) −4.65967e23 −1.02625 −0.513123 0.858315i \(-0.671512\pi\)
−0.513123 + 0.858315i \(0.671512\pi\)
\(608\) −1.10421e23 −0.239811
\(609\) 0 0
\(610\) 1.15062e23 0.243012
\(611\) −3.33413e23 −0.694436
\(612\) 0 0
\(613\) 6.52857e23 1.32252 0.661262 0.750155i \(-0.270021\pi\)
0.661262 + 0.750155i \(0.270021\pi\)
\(614\) −3.10288e23 −0.619917
\(615\) 0 0
\(616\) −3.27853e22 −0.0637152
\(617\) 7.54556e23 1.44633 0.723166 0.690675i \(-0.242686\pi\)
0.723166 + 0.690675i \(0.242686\pi\)
\(618\) 0 0
\(619\) −3.63269e23 −0.677420 −0.338710 0.940891i \(-0.609991\pi\)
−0.338710 + 0.940891i \(0.609991\pi\)
\(620\) 7.42680e22 0.136607
\(621\) 0 0
\(622\) 1.16172e23 0.207913
\(623\) 3.39750e22 0.0599806
\(624\) 0 0
\(625\) −5.45482e23 −0.937132
\(626\) 5.87230e23 0.995237
\(627\) 0 0
\(628\) −5.84404e23 −0.963953
\(629\) −4.87782e22 −0.0793772
\(630\) 0 0
\(631\) −3.30279e23 −0.523156 −0.261578 0.965182i \(-0.584243\pi\)
−0.261578 + 0.965182i \(0.584243\pi\)
\(632\) −1.02899e23 −0.160811
\(633\) 0 0
\(634\) −2.10433e23 −0.320152
\(635\) 1.01660e24 1.52606
\(636\) 0 0
\(637\) −2.71427e23 −0.396705
\(638\) −8.61369e22 −0.124226
\(639\) 0 0
\(640\) −6.10435e22 −0.0857255
\(641\) −3.94560e23 −0.546789 −0.273395 0.961902i \(-0.588146\pi\)
−0.273395 + 0.961902i \(0.588146\pi\)
\(642\) 0 0
\(643\) −6.95104e23 −0.938116 −0.469058 0.883167i \(-0.655407\pi\)
−0.469058 + 0.883167i \(0.655407\pi\)
\(644\) 3.30529e23 0.440230
\(645\) 0 0
\(646\) −5.27797e22 −0.0684685
\(647\) −1.22088e24 −1.56310 −0.781551 0.623841i \(-0.785571\pi\)
−0.781551 + 0.623841i \(0.785571\pi\)
\(648\) 0 0
\(649\) 2.36983e23 0.295555
\(650\) −1.86914e22 −0.0230079
\(651\) 0 0
\(652\) 6.70820e23 0.804455
\(653\) −4.60026e23 −0.544528 −0.272264 0.962223i \(-0.587772\pi\)
−0.272264 + 0.962223i \(0.587772\pi\)
\(654\) 0 0
\(655\) −6.76618e23 −0.780355
\(656\) 2.08753e22 0.0237657
\(657\) 0 0
\(658\) −4.24469e23 −0.470897
\(659\) −3.70941e23 −0.406236 −0.203118 0.979154i \(-0.565108\pi\)
−0.203118 + 0.979154i \(0.565108\pi\)
\(660\) 0 0
\(661\) −1.26164e24 −1.34655 −0.673274 0.739393i \(-0.735113\pi\)
−0.673274 + 0.739393i \(0.735113\pi\)
\(662\) −4.88435e23 −0.514652
\(663\) 0 0
\(664\) 1.17421e23 0.120592
\(665\) 6.82261e23 0.691778
\(666\) 0 0
\(667\) 8.68400e23 0.858322
\(668\) 1.39667e23 0.136300
\(669\) 0 0
\(670\) 8.84863e23 0.841860
\(671\) 1.29285e23 0.121453
\(672\) 0 0
\(673\) −2.14270e24 −1.96260 −0.981301 0.192478i \(-0.938348\pi\)
−0.981301 + 0.192478i \(0.938348\pi\)
\(674\) 4.56840e22 0.0413195
\(675\) 0 0
\(676\) −3.96497e23 −0.349698
\(677\) −9.73581e23 −0.847946 −0.423973 0.905675i \(-0.639365\pi\)
−0.423973 + 0.905675i \(0.639365\pi\)
\(678\) 0 0
\(679\) −5.90362e23 −0.501447
\(680\) −2.91781e22 −0.0244755
\(681\) 0 0
\(682\) 8.34489e22 0.0682737
\(683\) −2.21286e24 −1.78804 −0.894020 0.448027i \(-0.852127\pi\)
−0.894020 + 0.448027i \(0.852127\pi\)
\(684\) 0 0
\(685\) 1.97559e24 1.55713
\(686\) −8.23135e23 −0.640791
\(687\) 0 0
\(688\) 7.84751e22 0.0595978
\(689\) 2.38635e23 0.179008
\(690\) 0 0
\(691\) 7.53736e23 0.551640 0.275820 0.961209i \(-0.411051\pi\)
0.275820 + 0.961209i \(0.411051\pi\)
\(692\) 3.47029e23 0.250879
\(693\) 0 0
\(694\) −1.45544e24 −1.02669
\(695\) −1.41367e24 −0.985095
\(696\) 0 0
\(697\) 9.97815e21 0.00678534
\(698\) 1.63283e24 1.09691
\(699\) 0 0
\(700\) −2.37960e22 −0.0156017
\(701\) 1.12387e24 0.727967 0.363983 0.931405i \(-0.381417\pi\)
0.363983 + 0.931405i \(0.381417\pi\)
\(702\) 0 0
\(703\) 2.38616e24 1.50862
\(704\) −6.85897e22 −0.0428441
\(705\) 0 0
\(706\) 7.46091e23 0.454938
\(707\) 1.42291e23 0.0857263
\(708\) 0 0
\(709\) −2.37394e24 −1.39629 −0.698145 0.715956i \(-0.745991\pi\)
−0.698145 + 0.715956i \(0.745991\pi\)
\(710\) 1.59294e24 0.925773
\(711\) 0 0
\(712\) 7.10786e22 0.0403328
\(713\) −8.41301e23 −0.471727
\(714\) 0 0
\(715\) 3.32886e23 0.182261
\(716\) 1.19935e24 0.648913
\(717\) 0 0
\(718\) 6.44167e23 0.340362
\(719\) −1.19702e24 −0.625037 −0.312519 0.949912i \(-0.601173\pi\)
−0.312519 + 0.949912i \(0.601173\pi\)
\(720\) 0 0
\(721\) −7.18903e23 −0.366624
\(722\) 1.17893e24 0.594186
\(723\) 0 0
\(724\) 8.97833e23 0.441995
\(725\) −6.25194e22 −0.0304188
\(726\) 0 0
\(727\) 3.83121e24 1.82093 0.910466 0.413583i \(-0.135723\pi\)
0.910466 + 0.413583i \(0.135723\pi\)
\(728\) 2.16958e23 0.101920
\(729\) 0 0
\(730\) −1.23415e24 −0.566402
\(731\) 3.75102e22 0.0170158
\(732\) 0 0
\(733\) 3.77963e24 1.67519 0.837597 0.546289i \(-0.183960\pi\)
0.837597 + 0.546289i \(0.183960\pi\)
\(734\) −3.92952e23 −0.172156
\(735\) 0 0
\(736\) 6.91495e23 0.296025
\(737\) 9.94249e23 0.420747
\(738\) 0 0
\(739\) 3.29096e23 0.136096 0.0680479 0.997682i \(-0.478323\pi\)
0.0680479 + 0.997682i \(0.478323\pi\)
\(740\) 1.31914e24 0.539287
\(741\) 0 0
\(742\) 3.03808e23 0.121385
\(743\) −1.88066e24 −0.742857 −0.371428 0.928462i \(-0.621132\pi\)
−0.371428 + 0.928462i \(0.621132\pi\)
\(744\) 0 0
\(745\) 3.50919e24 1.35481
\(746\) −1.31069e23 −0.0500288
\(747\) 0 0
\(748\) −3.27850e22 −0.0122324
\(749\) −5.06232e23 −0.186747
\(750\) 0 0
\(751\) 1.24542e24 0.449134 0.224567 0.974459i \(-0.427903\pi\)
0.224567 + 0.974459i \(0.427903\pi\)
\(752\) −8.88027e23 −0.316646
\(753\) 0 0
\(754\) 5.70015e23 0.198715
\(755\) 3.84440e24 1.32519
\(756\) 0 0
\(757\) 4.13981e24 1.39529 0.697647 0.716442i \(-0.254230\pi\)
0.697647 + 0.716442i \(0.254230\pi\)
\(758\) 4.06686e24 1.35541
\(759\) 0 0
\(760\) 1.42735e24 0.465173
\(761\) −4.57805e24 −1.47540 −0.737701 0.675127i \(-0.764089\pi\)
−0.737701 + 0.675127i \(0.764089\pi\)
\(762\) 0 0
\(763\) −2.18092e24 −0.687354
\(764\) −8.54645e23 −0.266374
\(765\) 0 0
\(766\) −3.37233e24 −1.02798
\(767\) −1.56825e24 −0.472775
\(768\) 0 0
\(769\) −6.64989e24 −1.96083 −0.980417 0.196934i \(-0.936902\pi\)
−0.980417 + 0.196934i \(0.936902\pi\)
\(770\) 4.23798e23 0.123591
\(771\) 0 0
\(772\) 1.05988e24 0.302351
\(773\) −1.75170e24 −0.494235 −0.247117 0.968986i \(-0.579483\pi\)
−0.247117 + 0.968986i \(0.579483\pi\)
\(774\) 0 0
\(775\) 6.05685e22 0.0167179
\(776\) −1.23509e24 −0.337189
\(777\) 0 0
\(778\) 3.22949e24 0.862597
\(779\) −4.88117e23 −0.128960
\(780\) 0 0
\(781\) 1.78986e24 0.462686
\(782\) 3.30526e23 0.0845179
\(783\) 0 0
\(784\) −7.22930e23 −0.180888
\(785\) 7.55428e24 1.86982
\(786\) 0 0
\(787\) −3.65074e22 −0.00884293 −0.00442146 0.999990i \(-0.501407\pi\)
−0.00442146 + 0.999990i \(0.501407\pi\)
\(788\) 5.81160e22 0.0139259
\(789\) 0 0
\(790\) 1.33012e24 0.311932
\(791\) −2.17172e23 −0.0503853
\(792\) 0 0
\(793\) −8.55553e23 −0.194279
\(794\) 2.39114e24 0.537193
\(795\) 0 0
\(796\) 3.02894e24 0.666084
\(797\) 5.05348e24 1.09950 0.549750 0.835329i \(-0.314723\pi\)
0.549750 + 0.835329i \(0.314723\pi\)
\(798\) 0 0
\(799\) −4.24466e23 −0.0904056
\(800\) −4.97834e22 −0.0104911
\(801\) 0 0
\(802\) −4.09601e24 −0.845043
\(803\) −1.38672e24 −0.283078
\(804\) 0 0
\(805\) −4.27257e24 −0.853934
\(806\) −5.52227e23 −0.109212
\(807\) 0 0
\(808\) 2.97686e23 0.0576451
\(809\) 6.17340e23 0.118294 0.0591469 0.998249i \(-0.481162\pi\)
0.0591469 + 0.998249i \(0.481162\pi\)
\(810\) 0 0
\(811\) 4.34432e24 0.815163 0.407582 0.913169i \(-0.366372\pi\)
0.407582 + 0.913169i \(0.366372\pi\)
\(812\) 7.25689e23 0.134749
\(813\) 0 0
\(814\) 1.48221e24 0.269526
\(815\) −8.67134e24 −1.56044
\(816\) 0 0
\(817\) −1.83494e24 −0.323396
\(818\) −1.74962e24 −0.305169
\(819\) 0 0
\(820\) −2.69844e23 −0.0460994
\(821\) 2.16713e24 0.366411 0.183205 0.983075i \(-0.441353\pi\)
0.183205 + 0.983075i \(0.441353\pi\)
\(822\) 0 0
\(823\) −9.91114e24 −1.64144 −0.820720 0.571331i \(-0.806427\pi\)
−0.820720 + 0.571331i \(0.806427\pi\)
\(824\) −1.50401e24 −0.246529
\(825\) 0 0
\(826\) −1.99654e24 −0.320589
\(827\) −8.36444e24 −1.32935 −0.664676 0.747132i \(-0.731430\pi\)
−0.664676 + 0.747132i \(0.731430\pi\)
\(828\) 0 0
\(829\) 5.00772e24 0.779698 0.389849 0.920879i \(-0.372527\pi\)
0.389849 + 0.920879i \(0.372527\pi\)
\(830\) −1.51784e24 −0.233918
\(831\) 0 0
\(832\) 4.53896e23 0.0685343
\(833\) −3.45552e23 −0.0516453
\(834\) 0 0
\(835\) −1.80541e24 −0.264387
\(836\) 1.60380e24 0.232486
\(837\) 0 0
\(838\) −7.59454e24 −1.07877
\(839\) 4.36049e23 0.0613139 0.0306569 0.999530i \(-0.490240\pi\)
0.0306569 + 0.999530i \(0.490240\pi\)
\(840\) 0 0
\(841\) −5.35054e24 −0.737279
\(842\) −7.08905e24 −0.967019
\(843\) 0 0
\(844\) 7.01124e24 0.937312
\(845\) 5.12530e24 0.678325
\(846\) 0 0
\(847\) −3.57718e24 −0.464014
\(848\) 6.35592e23 0.0816233
\(849\) 0 0
\(850\) −2.37959e22 −0.00299530
\(851\) −1.49430e25 −1.86225
\(852\) 0 0
\(853\) 7.44576e24 0.909583 0.454792 0.890598i \(-0.349714\pi\)
0.454792 + 0.890598i \(0.349714\pi\)
\(854\) −1.08921e24 −0.131740
\(855\) 0 0
\(856\) −1.05908e24 −0.125575
\(857\) 9.17712e24 1.07738 0.538690 0.842504i \(-0.318919\pi\)
0.538690 + 0.842504i \(0.318919\pi\)
\(858\) 0 0
\(859\) −5.83348e24 −0.671407 −0.335703 0.941968i \(-0.608974\pi\)
−0.335703 + 0.941968i \(0.608974\pi\)
\(860\) −1.01441e24 −0.115605
\(861\) 0 0
\(862\) −1.06941e25 −1.19490
\(863\) 1.13165e24 0.125205 0.0626025 0.998039i \(-0.480060\pi\)
0.0626025 + 0.998039i \(0.480060\pi\)
\(864\) 0 0
\(865\) −4.48586e24 −0.486641
\(866\) −6.43232e24 −0.690981
\(867\) 0 0
\(868\) −7.03043e23 −0.0740567
\(869\) 1.49454e24 0.155898
\(870\) 0 0
\(871\) −6.57949e24 −0.673036
\(872\) −4.56267e24 −0.462199
\(873\) 0 0
\(874\) −1.61689e25 −1.60632
\(875\) 5.49070e24 0.540206
\(876\) 0 0
\(877\) 6.91600e24 0.667358 0.333679 0.942687i \(-0.391710\pi\)
0.333679 + 0.942687i \(0.391710\pi\)
\(878\) −7.37617e24 −0.704900
\(879\) 0 0
\(880\) 8.86622e23 0.0831067
\(881\) 1.70872e25 1.58626 0.793131 0.609051i \(-0.208449\pi\)
0.793131 + 0.609051i \(0.208449\pi\)
\(882\) 0 0
\(883\) −9.18892e23 −0.0836755 −0.0418377 0.999124i \(-0.513321\pi\)
−0.0418377 + 0.999124i \(0.513321\pi\)
\(884\) 2.16957e23 0.0195672
\(885\) 0 0
\(886\) 5.19950e24 0.460018
\(887\) 6.41621e24 0.562248 0.281124 0.959671i \(-0.409293\pi\)
0.281124 + 0.959671i \(0.409293\pi\)
\(888\) 0 0
\(889\) −9.62343e24 −0.827303
\(890\) −9.18795e23 −0.0782355
\(891\) 0 0
\(892\) 3.18035e24 0.265689
\(893\) 2.07643e25 1.71822
\(894\) 0 0
\(895\) −1.55034e25 −1.25873
\(896\) 5.77856e23 0.0464731
\(897\) 0 0
\(898\) 2.23127e24 0.176077
\(899\) −1.84711e24 −0.144389
\(900\) 0 0
\(901\) 3.03805e23 0.0233042
\(902\) −3.03202e23 −0.0230397
\(903\) 0 0
\(904\) −4.54343e23 −0.0338807
\(905\) −1.16058e25 −0.857359
\(906\) 0 0
\(907\) −3.18557e24 −0.230954 −0.115477 0.993310i \(-0.536840\pi\)
−0.115477 + 0.993310i \(0.536840\pi\)
\(908\) 1.15907e25 0.832491
\(909\) 0 0
\(910\) −2.80450e24 −0.197699
\(911\) 2.04691e25 1.42953 0.714763 0.699367i \(-0.246535\pi\)
0.714763 + 0.699367i \(0.246535\pi\)
\(912\) 0 0
\(913\) −1.70548e24 −0.116908
\(914\) −5.24888e24 −0.356471
\(915\) 0 0
\(916\) 4.69087e24 0.312710
\(917\) 6.40507e24 0.423043
\(918\) 0 0
\(919\) 1.40089e25 0.908287 0.454144 0.890928i \(-0.349945\pi\)
0.454144 + 0.890928i \(0.349945\pi\)
\(920\) −8.93860e24 −0.574213
\(921\) 0 0
\(922\) 1.62700e25 1.02606
\(923\) −1.18445e25 −0.740121
\(924\) 0 0
\(925\) 1.07581e24 0.0659978
\(926\) −3.56589e24 −0.216758
\(927\) 0 0
\(928\) 1.51820e24 0.0906092
\(929\) 2.19459e25 1.29784 0.648919 0.760857i \(-0.275221\pi\)
0.648919 + 0.760857i \(0.275221\pi\)
\(930\) 0 0
\(931\) 1.69039e25 0.981555
\(932\) −3.45099e24 −0.198568
\(933\) 0 0
\(934\) −6.29948e23 −0.0355923
\(935\) 4.23795e23 0.0237278
\(936\) 0 0
\(937\) 1.45560e25 0.800305 0.400152 0.916449i \(-0.368957\pi\)
0.400152 + 0.916449i \(0.368957\pi\)
\(938\) −8.37638e24 −0.456386
\(939\) 0 0
\(940\) 1.14791e25 0.614213
\(941\) 2.49769e25 1.32442 0.662212 0.749316i \(-0.269618\pi\)
0.662212 + 0.749316i \(0.269618\pi\)
\(942\) 0 0
\(943\) 3.05677e24 0.159189
\(944\) −4.17695e24 −0.215574
\(945\) 0 0
\(946\) −1.13981e24 −0.0577772
\(947\) −2.46572e25 −1.23871 −0.619355 0.785111i \(-0.712606\pi\)
−0.619355 + 0.785111i \(0.712606\pi\)
\(948\) 0 0
\(949\) 9.17667e24 0.452817
\(950\) 1.16406e24 0.0569278
\(951\) 0 0
\(952\) 2.76208e23 0.0132685
\(953\) −1.40846e25 −0.670587 −0.335294 0.942114i \(-0.608836\pi\)
−0.335294 + 0.942114i \(0.608836\pi\)
\(954\) 0 0
\(955\) 1.10475e25 0.516698
\(956\) −8.28515e24 −0.384068
\(957\) 0 0
\(958\) −1.47784e24 −0.0673008
\(959\) −1.87015e25 −0.844147
\(960\) 0 0
\(961\) −2.07606e25 −0.920645
\(962\) −9.80857e24 −0.431139
\(963\) 0 0
\(964\) −6.85344e24 −0.295974
\(965\) −1.37006e25 −0.586484
\(966\) 0 0
\(967\) 1.16961e25 0.491945 0.245972 0.969277i \(-0.420893\pi\)
0.245972 + 0.969277i \(0.420893\pi\)
\(968\) −7.48377e24 −0.312018
\(969\) 0 0
\(970\) 1.59653e25 0.654061
\(971\) 1.45914e25 0.592563 0.296281 0.955101i \(-0.404253\pi\)
0.296281 + 0.955101i \(0.404253\pi\)
\(972\) 0 0
\(973\) 1.33822e25 0.534035
\(974\) 3.04544e25 1.20476
\(975\) 0 0
\(976\) −2.27872e24 −0.0885864
\(977\) 2.16074e25 0.832721 0.416360 0.909200i \(-0.363305\pi\)
0.416360 + 0.909200i \(0.363305\pi\)
\(978\) 0 0
\(979\) −1.03238e24 −0.0391007
\(980\) 9.34493e24 0.350877
\(981\) 0 0
\(982\) 2.52309e25 0.931077
\(983\) −2.26102e25 −0.827180 −0.413590 0.910463i \(-0.635725\pi\)
−0.413590 + 0.910463i \(0.635725\pi\)
\(984\) 0 0
\(985\) −7.51234e23 −0.0270127
\(986\) 7.25683e23 0.0258698
\(987\) 0 0
\(988\) −1.06132e25 −0.371888
\(989\) 1.14911e25 0.399202
\(990\) 0 0
\(991\) 4.37346e25 1.49348 0.746739 0.665117i \(-0.231618\pi\)
0.746739 + 0.665117i \(0.231618\pi\)
\(992\) −1.47083e24 −0.0497981
\(993\) 0 0
\(994\) −1.50793e25 −0.501876
\(995\) −3.91535e25 −1.29203
\(996\) 0 0
\(997\) 3.46382e25 1.12369 0.561845 0.827243i \(-0.310092\pi\)
0.561845 + 0.827243i \(0.310092\pi\)
\(998\) −1.43639e25 −0.462021
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 54.18.a.b.1.1 yes 2
3.2 odd 2 54.18.a.a.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.18.a.a.1.2 2 3.2 odd 2
54.18.a.b.1.1 yes 2 1.1 even 1 trivial