Properties

Label 54.18.a.b
Level $54$
Weight $18$
Character orbit 54.a
Self dual yes
Analytic conductor $98.940$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [54,18,Mod(1,54)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(54, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 18, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("54.1"); S:= CuspForms(chi, 18); N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 54.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,512,0,131072,-304980] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(98.9399271661\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\mathbb{Q}[x]/(x^{2} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 6619360 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2\cdot 3^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 27\sqrt{26477441}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 256 q^{2} + 65536 q^{4} + ( - 5 \beta - 152490) q^{5} + (91 \beta - 4623430) q^{7} + 16777216 q^{8} + ( - 1280 \beta - 39037440) q^{10} + ( - 1196 \beta - 77517015) q^{11} + (5480 \beta + 851214860) q^{13}+ \cdots + ( - 215414850560 \beta - 13\!\cdots\!88) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 512 q^{2} + 131072 q^{4} - 304980 q^{5} - 9246860 q^{7} + 33554432 q^{8} - 78074880 q^{10} - 155034030 q^{11} + 1702429720 q^{13} - 2367196160 q^{14} + 8589934592 q^{16} - 8486897472 q^{17} - 5707598648 q^{19}+ \cdots - 26\!\cdots\!76 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2573.31
−2572.31
256.000 0 65536.0 −847149. 0 8.01937e6 1.67772e7 0 −2.16870e8
1.2 256.000 0 65536.0 542169. 0 −1.72662e7 1.67772e7 0 1.38795e8
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 54.18.a.b yes 2
3.b odd 2 1 54.18.a.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
54.18.a.a 2 3.b odd 2 1
54.18.a.b yes 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 304980T_{5} - 459298162125 \) acting on \(S_{18}^{\mathrm{new}}(\Gamma_0(54))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 256)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + \cdots - 459298162125 \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 138464208258509 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 21\!\cdots\!99 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 14\!\cdots\!00 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 21\!\cdots\!04 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 95\!\cdots\!24 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 22\!\cdots\!96 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 17\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 74\!\cdots\!39 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 23\!\cdots\!16 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 17\!\cdots\!36 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 72\!\cdots\!84 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 28\!\cdots\!16 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 11\!\cdots\!61 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 30\!\cdots\!04 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 35\!\cdots\!44 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 35\!\cdots\!76 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 29\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 60\!\cdots\!59 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 43\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 14\!\cdots\!75 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 10\!\cdots\!64 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 16\!\cdots\!59 \) Copy content Toggle raw display
show more
show less