Properties

Label 539.2.q.d.520.1
Level $539$
Weight $2$
Character 539.520
Analytic conductor $4.304$
Analytic rank $0$
Dimension $16$
CM discriminant -7
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [539,2,Mod(214,539)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("539.214"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(539, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([20, 12])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 539 = 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 539.q (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.30393666895\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: 16.0.9234096523681640625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{15} + 2 x^{14} - 5 x^{13} + 5 x^{12} + x^{11} + 6 x^{10} + 5 x^{9} - 21 x^{8} + 10 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{15}]$

Embedding invariants

Embedding label 520.1
Root \(-0.648523 + 1.25675i\) of defining polynomial
Character \(\chi\) \(=\) 539.520
Dual form 539.2.q.d.312.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.295322 - 2.80980i) q^{2} +(-5.85146 + 1.24377i) q^{4} +(3.47668 + 10.7001i) q^{8} +(0.313585 + 2.98357i) q^{9} +(2.42220 + 2.26560i) q^{11} +(18.1084 - 8.06240i) q^{16} +(8.29061 - 1.76222i) q^{18} +(5.65055 - 7.47498i) q^{22} +(-3.75233 + 6.49922i) q^{23} +(-3.34565 + 3.71572i) q^{25} +(1.42225 - 4.37724i) q^{29} +(-16.7508 - 29.0132i) q^{32} +(-5.54579 - 17.0682i) q^{36} +(5.49419 + 6.10191i) q^{37} +6.59794 q^{43} +(-16.9913 - 10.2444i) q^{44} +(19.3696 + 8.62392i) q^{46} +(11.4285 + 8.30328i) q^{50} +(1.70800 + 0.760449i) q^{53} +(-12.7192 - 2.70355i) q^{58} +(-44.5014 + 32.3322i) q^{64} +(-3.04737 - 5.27819i) q^{67} +(7.95588 + 5.78028i) q^{71} +(-30.8343 + 13.7283i) q^{72} +(15.5226 - 17.2396i) q^{74} +(1.65186 + 15.7164i) q^{79} +(-8.80333 + 1.87121i) q^{81} +(-1.94851 - 18.5389i) q^{86} +(-15.8210 + 33.7946i) q^{88} +(13.8731 - 42.6969i) q^{92} +(-6.00000 + 7.93725i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{2} - 2 q^{4} + 32 q^{8} - 6 q^{9} + 4 q^{11} + 28 q^{16} + 9 q^{18} - 8 q^{22} + 16 q^{23} - 10 q^{25} - 8 q^{29} - 100 q^{32} - 12 q^{36} + 18 q^{37} + 48 q^{43} - 9 q^{44} + 31 q^{46} + 20 q^{50}+ \cdots - 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/539\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(442\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.295322 2.80980i −0.208824 1.98683i −0.151344 0.988481i \(-0.548360\pi\)
−0.0574802 0.998347i \(-0.518307\pi\)
\(3\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(4\) −5.85146 + 1.24377i −2.92573 + 0.621883i
\(5\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 3.47668 + 10.7001i 1.22919 + 3.78306i
\(9\) 0.313585 + 2.98357i 0.104528 + 0.994522i
\(10\) 0 0
\(11\) 2.42220 + 2.26560i 0.730321 + 0.683104i
\(12\) 0 0
\(13\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 18.1084 8.06240i 4.52711 2.01560i
\(17\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(18\) 8.29061 1.76222i 1.95412 0.415360i
\(19\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 5.65055 7.47498i 1.20470 1.59367i
\(23\) −3.75233 + 6.49922i −0.782414 + 1.35518i 0.148117 + 0.988970i \(0.452679\pi\)
−0.930532 + 0.366211i \(0.880655\pi\)
\(24\) 0 0
\(25\) −3.34565 + 3.71572i −0.669131 + 0.743145i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.42225 4.37724i 0.264105 0.812833i −0.727793 0.685797i \(-0.759454\pi\)
0.991898 0.127036i \(-0.0405463\pi\)
\(30\) 0 0
\(31\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(32\) −16.7508 29.0132i −2.96115 5.12886i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −5.54579 17.0682i −0.924298 2.84470i
\(37\) 5.49419 + 6.10191i 0.903239 + 1.00315i 0.999969 + 0.00783774i \(0.00249486\pi\)
−0.0967305 + 0.995311i \(0.530838\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(42\) 0 0
\(43\) 6.59794 1.00618 0.503088 0.864235i \(-0.332197\pi\)
0.503088 + 0.864235i \(0.332197\pi\)
\(44\) −16.9913 10.2444i −2.56153 1.54440i
\(45\) 0 0
\(46\) 19.3696 + 8.62392i 2.85590 + 1.27153i
\(47\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 11.4285 + 8.30328i 1.61623 + 1.17426i
\(51\) 0 0
\(52\) 0 0
\(53\) 1.70800 + 0.760449i 0.234611 + 0.104456i 0.520675 0.853755i \(-0.325680\pi\)
−0.286064 + 0.958211i \(0.592347\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −12.7192 2.70355i −1.67011 0.354993i
\(59\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(60\) 0 0
\(61\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −44.5014 + 32.3322i −5.56268 + 4.04152i
\(65\) 0 0
\(66\) 0 0
\(67\) −3.04737 5.27819i −0.372295 0.644834i 0.617623 0.786474i \(-0.288096\pi\)
−0.989918 + 0.141640i \(0.954762\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.95588 + 5.78028i 0.944189 + 0.685993i 0.949425 0.313993i \(-0.101667\pi\)
−0.00523645 + 0.999986i \(0.501667\pi\)
\(72\) −30.8343 + 13.7283i −3.63385 + 1.61790i
\(73\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(74\) 15.5226 17.2396i 1.80447 2.00406i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1.65186 + 15.7164i 0.185848 + 1.76823i 0.548352 + 0.836247i \(0.315255\pi\)
−0.362504 + 0.931982i \(0.618078\pi\)
\(80\) 0 0
\(81\) −8.80333 + 1.87121i −0.978148 + 0.207912i
\(82\) 0 0
\(83\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1.94851 18.5389i −0.210114 1.99910i
\(87\) 0 0
\(88\) −15.8210 + 33.7946i −1.68652 + 3.60252i
\(89\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 13.8731 42.6969i 1.44637 4.45146i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(98\) 0 0
\(99\) −6.00000 + 7.93725i −0.603023 + 0.797724i
\(100\) 14.9555 25.9036i 1.49555 2.59036i
\(101\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(102\) 0 0
\(103\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 1.63230 5.02371i 0.158543 0.487945i
\(107\) 1.12274 + 0.238646i 0.108539 + 0.0230707i 0.261861 0.965106i \(-0.415664\pi\)
−0.153322 + 0.988176i \(0.548997\pi\)
\(108\) 0 0
\(109\) 2.25137 + 3.89948i 0.215642 + 0.373502i 0.953471 0.301485i \(-0.0974824\pi\)
−0.737829 + 0.674987i \(0.764149\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −4.34450 13.3710i −0.408696 1.25784i −0.917769 0.397114i \(-0.870012\pi\)
0.509073 0.860724i \(-0.329988\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −2.87798 + 27.3822i −0.267214 + 2.54237i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.734112 + 10.9755i 0.0667375 + 0.997771i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 8.21418 + 5.96795i 0.728890 + 0.529570i 0.889212 0.457495i \(-0.151253\pi\)
−0.160322 + 0.987065i \(0.551253\pi\)
\(128\) 59.1553 + 65.6986i 5.22864 + 5.80699i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −13.9307 + 10.1213i −1.20343 + 0.874343i
\(135\) 0 0
\(136\) 0 0
\(137\) 2.42718 23.0930i 0.207368 1.97297i −0.0224894 0.999747i \(-0.507159\pi\)
0.229857 0.973224i \(-0.426174\pi\)
\(138\) 0 0
\(139\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 13.8919 24.0615i 1.16578 2.01919i
\(143\) 0 0
\(144\) 29.7332 + 51.4995i 2.47777 + 4.29162i
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −39.7384 28.8716i −3.26647 2.37323i
\(149\) 20.0980 8.94821i 1.64649 0.733066i 0.646927 0.762552i \(-0.276054\pi\)
0.999565 + 0.0294862i \(0.00938711\pi\)
\(150\) 0 0
\(151\) −8.32996 + 9.25135i −0.677882 + 0.752865i −0.979693 0.200503i \(-0.935742\pi\)
0.301811 + 0.953368i \(0.402409\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(158\) 43.6720 9.28277i 3.47436 0.738498i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 7.85752 + 24.1830i 0.617345 + 1.89999i
\(163\) −0.932103 8.86836i −0.0730079 0.694624i −0.968410 0.249365i \(-0.919778\pi\)
0.895402 0.445259i \(-0.146888\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(168\) 0 0
\(169\) −4.01722 + 12.3637i −0.309017 + 0.951057i
\(170\) 0 0
\(171\) 0 0
\(172\) −38.6076 + 8.20629i −2.94380 + 0.625724i
\(173\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 62.1285 + 21.4977i 4.68311 + 1.62045i
\(177\) 0 0
\(178\) 0 0
\(179\) −16.0100 + 17.7809i −1.19664 + 1.32900i −0.265603 + 0.964082i \(0.585571\pi\)
−0.931038 + 0.364922i \(0.881096\pi\)
\(180\) 0 0
\(181\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −82.5881 17.5546i −6.08847 1.29415i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −14.7366 16.3666i −1.06630 1.18425i −0.982209 0.187790i \(-0.939868\pi\)
−0.0840922 0.996458i \(-0.526799\pi\)
\(192\) 0 0
\(193\) 2.82262 26.8554i 0.203177 1.93310i −0.132628 0.991166i \(-0.542342\pi\)
0.335805 0.941932i \(-0.390992\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −18.0995 −1.28953 −0.644767 0.764379i \(-0.723046\pi\)
−0.644767 + 0.764379i \(0.723046\pi\)
\(198\) 24.0740 + 14.5147i 1.71087 + 1.03152i
\(199\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(200\) −51.3905 22.8805i −3.63385 1.61790i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −20.5675 9.15725i −1.42954 0.636473i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −17.3570 + 12.6106i −1.19490 + 0.868148i −0.993774 0.111417i \(-0.964461\pi\)
−0.201129 + 0.979565i \(0.564461\pi\)
\(212\) −10.9401 2.32539i −0.751369 0.159708i
\(213\) 0 0
\(214\) 0.338977 3.22515i 0.0231720 0.220467i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 10.2919 7.47748i 0.697054 0.506439i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(224\) 0 0
\(225\) −12.1353 8.81678i −0.809017 0.587785i
\(226\) −36.2868 + 16.1559i −2.41376 + 1.07468i
\(227\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(228\) 0 0
\(229\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 51.7817 3.39963
\(233\) −2.29963 21.8795i −0.150654 1.43337i −0.764844 0.644215i \(-0.777184\pi\)
0.614191 0.789157i \(-0.289482\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0.805627 + 2.47947i 0.0521117 + 0.160383i 0.973726 0.227725i \(-0.0731287\pi\)
−0.921614 + 0.388108i \(0.873129\pi\)
\(240\) 0 0
\(241\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(242\) 30.6221 5.30400i 1.96846 0.340954i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(252\) 0 0
\(253\) −23.8135 + 7.24115i −1.49714 + 0.455247i
\(254\) 14.3429 24.8427i 0.899954 1.55877i
\(255\) 0 0
\(256\) 93.5167 103.861i 5.84479 6.49130i
\(257\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 13.5058 + 2.87074i 0.835986 + 0.177694i
\(262\) 0 0
\(263\) 14.4994 + 25.1137i 0.894072 + 1.54858i 0.834949 + 0.550327i \(0.185497\pi\)
0.0591223 + 0.998251i \(0.481170\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 24.3964 + 27.0949i 1.49025 + 1.65509i
\(269\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(270\) 0 0
\(271\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −65.6036 −3.96326
\(275\) −16.5222 + 1.42032i −0.996325 + 0.0856484i
\(276\) 0 0
\(277\) 24.7616 + 11.0246i 1.48778 + 0.662402i 0.979984 0.199075i \(-0.0637938\pi\)
0.507796 + 0.861478i \(0.330460\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6.95218 5.05106i −0.414733 0.301321i 0.360782 0.932650i \(-0.382510\pi\)
−0.775515 + 0.631329i \(0.782510\pi\)
\(282\) 0 0
\(283\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(284\) −53.7428 23.9278i −3.18905 1.41986i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 81.3099 59.0751i 4.79123 3.48104i
\(289\) 16.6285 + 3.53450i 0.978148 + 0.207912i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −46.1897 + 80.0029i −2.68472 + 4.65007i
\(297\) 0 0
\(298\) −31.0780 53.8287i −1.80030 3.11822i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 28.4545 + 20.6734i 1.63737 + 1.18962i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(312\) 0 0
\(313\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −29.2133 89.9092i −1.64337 5.05779i
\(317\) −3.52544 33.5424i −0.198009 1.88393i −0.418033 0.908432i \(-0.637280\pi\)
0.220024 0.975494i \(-0.429386\pi\)
\(318\) 0 0
\(319\) 13.3620 7.38030i 0.748131 0.413217i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 49.1850 21.8986i 2.73250 1.21659i
\(325\) 0 0
\(326\) −24.6431 + 5.23804i −1.36485 + 0.290108i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −3.04605 + 5.27591i −0.167426 + 0.289990i −0.937514 0.347947i \(-0.886879\pi\)
0.770088 + 0.637937i \(0.220212\pi\)
\(332\) 0 0
\(333\) −16.4826 + 18.3057i −0.903239 + 1.00315i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 9.08528 27.9616i 0.494907 1.52317i −0.322195 0.946673i \(-0.604421\pi\)
0.817102 0.576493i \(-0.195579\pi\)
\(338\) 35.9260 + 7.63630i 1.95412 + 0.415360i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 22.9389 + 70.5987i 1.23678 + 3.80643i
\(345\) 0 0
\(346\) 0 0
\(347\) 2.61404 24.8709i 0.140329 1.33514i −0.667008 0.745051i \(-0.732425\pi\)
0.807337 0.590091i \(-0.200908\pi\)
\(348\) 0 0
\(349\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 25.1585 108.226i 1.34096 5.76848i
\(353\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 54.6888 + 39.7337i 2.89039 + 2.09999i
\(359\) −21.9177 24.3421i −1.15677 1.28473i −0.952063 0.305903i \(-0.901042\pi\)
−0.204709 0.978823i \(-0.565625\pi\)
\(360\) 0 0
\(361\) −17.3574 7.72800i −0.913545 0.406737i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(368\) −15.5495 + 147.944i −0.810573 + 7.71209i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −11.0000 + 19.0526i −0.569558 + 0.986504i 0.427051 + 0.904227i \(0.359552\pi\)
−0.996610 + 0.0822766i \(0.973781\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 31.4997 + 22.8859i 1.61803 + 1.17557i 0.809522 + 0.587090i \(0.199726\pi\)
0.808511 + 0.588481i \(0.200274\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −41.6349 + 46.2402i −2.13023 + 2.36586i
\(383\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −76.2920 −3.88316
\(387\) 2.06902 + 19.6854i 0.105174 + 1.00066i
\(388\) 0 0
\(389\) 21.3311 4.53407i 1.08153 0.229887i 0.367516 0.930017i \(-0.380208\pi\)
0.714015 + 0.700130i \(0.246875\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 5.34517 + 50.8559i 0.269286 + 2.56208i
\(395\) 0 0
\(396\) 25.2367 53.9071i 1.26819 2.70893i
\(397\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −30.6269 + 94.2600i −1.53135 + 4.71300i
\(401\) 8.79150 3.91423i 0.439027 0.195467i −0.175307 0.984514i \(-0.556092\pi\)
0.614333 + 0.789047i \(0.289425\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −0.516471 + 27.2277i −0.0256005 + 1.34963i
\(408\) 0 0
\(409\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) −19.6560 + 60.4950i −0.966040 + 2.97316i
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −11.8136 36.3585i −0.575759 1.77200i −0.633581 0.773676i \(-0.718416\pi\)
0.0578225 0.998327i \(-0.481584\pi\)
\(422\) 40.5591 + 45.0454i 1.97438 + 2.19278i
\(423\) 0 0
\(424\) −2.19874 + 20.9196i −0.106780 + 1.01595i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −6.86648 −0.331904
\(429\) 0 0
\(430\) 0 0
\(431\) 32.0208 + 14.2566i 1.54239 + 0.686715i 0.989231 0.146362i \(-0.0467564\pi\)
0.553157 + 0.833077i \(0.313423\pi\)
\(432\) 0 0
\(433\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −18.0238 20.0175i −0.863184 0.958663i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −37.1229 7.89071i −1.76376 0.374899i −0.791936 0.610604i \(-0.790927\pi\)
−0.971825 + 0.235705i \(0.924260\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 32.0711 23.3010i 1.51353 1.09964i 0.548950 0.835855i \(-0.315028\pi\)
0.964580 0.263790i \(-0.0849724\pi\)
\(450\) −21.1896 + 36.7014i −0.998886 + 1.73012i
\(451\) 0 0
\(452\) 42.0521 + 72.8363i 1.97796 + 3.42593i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 35.0857 15.6211i 1.64124 0.730726i 0.641889 0.766798i \(-0.278151\pi\)
0.999349 + 0.0360712i \(0.0114843\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 41.6915 1.93757 0.968784 0.247907i \(-0.0797429\pi\)
0.968784 + 0.247907i \(0.0797429\pi\)
\(464\) −9.53629 90.7317i −0.442711 4.21212i
\(465\) 0 0
\(466\) −60.7978 + 12.9230i −2.81640 + 0.598645i
\(467\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 15.9815 + 14.9483i 0.734831 + 0.687323i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −1.73325 + 5.33439i −0.0793599 + 0.244245i
\(478\) 6.72888 2.99589i 0.307772 0.137029i
\(479\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −17.9466 63.3095i −0.815752 2.87770i
\(485\) 0 0
\(486\) 0 0
\(487\) −1.57611 + 1.75045i −0.0714205 + 0.0793205i −0.777796 0.628517i \(-0.783662\pi\)
0.706376 + 0.707837i \(0.250329\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 13.5967 41.8465i 0.613613 1.88851i 0.193249 0.981150i \(-0.438097\pi\)
0.420363 0.907356i \(-0.361903\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −9.08229 10.0869i −0.406579 0.451552i 0.504728 0.863278i \(-0.331593\pi\)
−0.911308 + 0.411726i \(0.864926\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 27.3788 + 64.7727i 1.21714 + 2.87950i
\(507\) 0 0
\(508\) −55.4877 24.7047i −2.46187 1.09609i
\(509\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −176.401 128.163i −7.79590 5.66405i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(522\) 4.07766 38.7963i 0.178474 1.69807i
\(523\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 66.2825 48.1570i 2.89005 2.09975i
\(527\) 0 0
\(528\) 0 0
\(529\) −16.6599 28.8558i −0.724344 1.25460i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 45.8826 50.9578i 1.98183 2.20104i
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 4.25448 + 40.4787i 0.182915 + 1.74032i 0.573016 + 0.819544i \(0.305773\pi\)
−0.390101 + 0.920772i \(0.627560\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 13.5967 + 41.8465i 0.581355 + 1.78923i 0.613440 + 0.789741i \(0.289785\pi\)
−0.0320849 + 0.999485i \(0.510215\pi\)
\(548\) 14.5198 + 138.147i 0.620256 + 5.90134i
\(549\) 0 0
\(550\) 8.87017 + 46.0046i 0.378225 + 1.96164i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 23.6642 72.8309i 1.00540 3.09429i
\(555\) 0 0
\(556\) 0 0
\(557\) 30.3169 6.44407i 1.28457 0.273044i 0.485476 0.874250i \(-0.338646\pi\)
0.799094 + 0.601206i \(0.205313\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −12.1393 + 21.0259i −0.512067 + 0.886925i
\(563\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) −34.1897 + 105.225i −1.43457 + 4.41514i
\(569\) −21.5192 4.57406i −0.902134 0.191754i −0.266582 0.963812i \(-0.585894\pi\)
−0.635552 + 0.772058i \(0.719228\pi\)
\(570\) 0 0
\(571\) 22.0283 + 38.1541i 0.921856 + 1.59670i 0.796542 + 0.604583i \(0.206660\pi\)
0.125314 + 0.992117i \(0.460006\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −11.5953 35.6868i −0.483559 1.48824i
\(576\) −110.420 122.634i −4.60084 5.10975i
\(577\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(578\) 5.02047 47.7666i 0.208824 1.98683i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 2.41424 + 5.71160i 0.0999875 + 0.236550i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 148.687 + 66.1998i 6.11101 + 2.72080i
\(593\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −106.473 + 77.3573i −4.36131 + 3.16868i
\(597\) 0 0
\(598\) 0 0
\(599\) 2.64866 25.2003i 0.108221 1.02966i −0.796787 0.604261i \(-0.793469\pi\)
0.905008 0.425395i \(-0.139865\pi\)
\(600\) 0 0
\(601\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(602\) 0 0
\(603\) 14.7922 10.7472i 0.602386 0.437659i
\(604\) 37.2359 64.4944i 1.51511 2.62424i
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 33.0579 36.7145i 1.33520 1.48289i 0.617327 0.786706i \(-0.288215\pi\)
0.717868 0.696179i \(-0.245118\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 45.9166 1.84853 0.924266 0.381749i \(-0.124678\pi\)
0.924266 + 0.381749i \(0.124678\pi\)
\(618\) 0 0
\(619\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −2.61321 24.8630i −0.104528 0.994522i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −12.4683 + 38.3736i −0.496357 + 1.52763i 0.318475 + 0.947931i \(0.396829\pi\)
−0.814832 + 0.579698i \(0.803171\pi\)
\(632\) −162.424 + 72.3158i −6.46088 + 2.87657i
\(633\) 0 0
\(634\) −93.2061 + 19.8116i −3.70169 + 0.786818i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) −24.6833 35.3651i −0.977219 1.40012i
\(639\) −14.7510 + 25.5495i −0.583541 + 1.01072i
\(640\) 0 0
\(641\) −33.2262 + 36.9015i −1.31236 + 1.45752i −0.510672 + 0.859776i \(0.670603\pi\)
−0.801686 + 0.597746i \(0.796063\pi\)
\(642\) 0 0
\(643\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(648\) −50.6285 87.6911i −1.98887 3.44483i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 16.4843 + 50.7336i 0.645576 + 1.98688i
\(653\) 3.60381 + 4.00244i 0.141028 + 0.156628i 0.809521 0.587091i \(-0.199727\pi\)
−0.668493 + 0.743719i \(0.733060\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 44.0000 1.71400 0.856998 0.515319i \(-0.172327\pi\)
0.856998 + 0.515319i \(0.172327\pi\)
\(660\) 0 0
\(661\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(662\) 15.7238 + 7.00069i 0.611123 + 0.272089i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 56.3031 + 40.9066i 2.18170 + 1.58510i
\(667\) 23.1119 + 25.6684i 0.894896 + 0.993883i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −0.494817 + 0.359506i −0.0190738 + 0.0138579i −0.597281 0.802032i \(-0.703752\pi\)
0.578208 + 0.815890i \(0.303752\pi\)
\(674\) −81.2496 17.2701i −3.12962 0.665221i
\(675\) 0 0
\(676\) 8.12901 77.3424i 0.312654 2.97471i
\(677\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 10.5507 + 18.2743i 0.403711 + 0.699249i 0.994171 0.107819i \(-0.0343867\pi\)
−0.590459 + 0.807067i \(0.701053\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 119.478 53.1952i 4.55507 2.02805i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −70.6543 −2.68200
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −15.3604 47.2743i −0.580153 1.78553i −0.617922 0.786239i \(-0.712025\pi\)
0.0377695 0.999286i \(-0.487975\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −181.043 22.5074i −6.82332 0.848280i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −23.9793 + 10.6763i −0.900560 + 0.400955i −0.804178 0.594389i \(-0.797394\pi\)
−0.0963826 + 0.995344i \(0.530727\pi\)
\(710\) 0 0
\(711\) −46.3728 + 9.85685i −1.73912 + 0.369661i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 71.5664 123.957i 2.67456 4.63248i
\(717\) 0 0
\(718\) −61.9236 + 68.7731i −2.31097 + 2.56659i
\(719\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −16.5881 + 51.0529i −0.617345 + 1.89999i
\(723\) 0 0
\(724\) 0 0
\(725\) 11.5063 + 19.9294i 0.427331 + 0.740160i
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −8.34346 25.6785i −0.309017 0.951057i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 251.417 9.26737
\(737\) 4.57694 19.6890i 0.168594 0.725252i
\(738\) 0 0
\(739\) 46.9559 + 20.9061i 1.72730 + 0.769045i 0.996231 + 0.0867442i \(0.0276463\pi\)
0.731072 + 0.682300i \(0.239020\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −8.56653 6.22395i −0.314275 0.228334i 0.419453 0.907777i \(-0.362222\pi\)
−0.733729 + 0.679442i \(0.762222\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 56.7824 + 25.2812i 2.07895 + 0.925609i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −10.1040 2.14768i −0.368702 0.0783700i 0.0198348 0.999803i \(-0.493686\pi\)
−0.388537 + 0.921433i \(0.627019\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −30.3109 + 22.0222i −1.10167 + 0.800410i −0.981332 0.192323i \(-0.938398\pi\)
−0.120338 + 0.992733i \(0.538398\pi\)
\(758\) 55.0022 95.2667i 1.99777 3.46024i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 106.587 + 77.4398i 3.85617 + 2.80167i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 16.8854 + 160.654i 0.607720 + 5.78207i
\(773\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(774\) 54.7009 11.6270i 1.96618 0.417925i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −19.0394 58.5972i −0.682595 2.10081i
\(779\) 0 0
\(780\) 0 0
\(781\) 6.17492 + 32.0258i 0.220956 + 1.14597i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(788\) 105.908 22.5115i 3.77283 0.801940i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −105.790 36.6054i −3.75907 1.30072i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 163.847 + 34.8268i 5.79288 + 1.23131i
\(801\) 0 0
\(802\) −13.5945 23.5464i −0.480039 0.831452i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 5.43577 51.7179i 0.191112 1.81831i −0.307576 0.951523i \(-0.599518\pi\)
0.498688 0.866782i \(-0.333815\pi\)
\(810\) 0 0
\(811\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 76.6569 6.58975i 2.68682 0.230971i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 14.7209 + 16.3492i 0.513762 + 0.570591i 0.943081 0.332562i \(-0.107913\pi\)
−0.429319 + 0.903153i \(0.641246\pi\)
\(822\) 0 0
\(823\) −49.2227 21.9154i −1.71580 0.763921i −0.997686 0.0679910i \(-0.978341\pi\)
−0.718109 0.695930i \(-0.754992\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −35.5967 + 25.8626i −1.23782 + 0.899329i −0.997451 0.0713526i \(-0.977268\pi\)
−0.240369 + 0.970682i \(0.577268\pi\)
\(828\) 131.740 + 28.0021i 4.57827 + 0.973140i
\(829\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(840\) 0 0
\(841\) 6.32408 + 4.59471i 0.218072 + 0.158438i
\(842\) −98.6712 + 43.9312i −3.40043 + 1.51397i
\(843\) 0 0
\(844\) 85.8790 95.3783i 2.95608 3.28305i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 37.0602 1.27265
\(849\) 0 0
\(850\) 0 0
\(851\) −60.2737 + 12.8116i −2.06615 + 0.439175i
\(852\) 0 0
\(853\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 1.34987 + 12.8431i 0.0461375 + 0.438969i
\(857\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(858\) 0 0
\(859\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 30.6017 94.1823i 1.04230 3.20786i
\(863\) 7.30836 3.25389i 0.248780 0.110764i −0.278559 0.960419i \(-0.589857\pi\)
0.527338 + 0.849655i \(0.323190\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −31.6059 + 41.8106i −1.07216 + 1.41833i
\(870\) 0 0
\(871\) 0 0
\(872\) −33.8976 + 37.6471i −1.14792 + 1.27489i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 21.3131 + 4.53024i 0.719692 + 0.152975i 0.553177 0.833064i \(-0.313415\pi\)
0.166515 + 0.986039i \(0.446749\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −3.70820 11.4127i −0.124791 0.384067i 0.869072 0.494686i \(-0.164717\pi\)
−0.993863 + 0.110619i \(0.964717\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −11.2081 + 106.638i −0.376544 + 3.58258i
\(887\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −25.5628 15.4124i −0.856387 0.516334i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −74.9426 83.2321i −2.50087 2.77749i
\(899\) 0 0
\(900\) 81.9750 + 36.4976i 2.73250 + 1.21659i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 127.967 92.9734i 4.25611 3.09225i
\(905\) 0 0
\(906\) 0 0
\(907\) 4.74881 45.1819i 0.157682 1.50024i −0.574148 0.818752i \(-0.694667\pi\)
0.731829 0.681488i \(-0.238667\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −12.9443 + 9.40456i −0.428863 + 0.311587i −0.781194 0.624288i \(-0.785389\pi\)
0.352331 + 0.935875i \(0.385389\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −54.2538 93.9704i −1.79456 3.10826i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 55.3651 24.6501i 1.82633 0.813133i 0.901406 0.432976i \(-0.142536\pi\)
0.924922 0.380158i \(-0.124130\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −41.0547 −1.34987
\(926\) −12.3124 117.145i −0.404611 3.84961i
\(927\) 0 0
\(928\) −150.821 + 32.0581i −4.95096 + 1.05236i
\(929\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 40.6691 + 125.167i 1.33216 + 4.09997i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 37.2820 49.3194i 1.21214 1.60351i
\(947\) 10.0000 17.3205i 0.324956 0.562841i −0.656547 0.754285i \(-0.727984\pi\)
0.981504 + 0.191444i \(0.0613171\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −0.682027 + 2.09906i −0.0220930 + 0.0679954i −0.961495 0.274822i \(-0.911381\pi\)
0.939402 + 0.342817i \(0.111381\pi\)
\(954\) 15.5004 + 3.29472i 0.501845 + 0.106670i
\(955\) 0 0
\(956\) −7.79797 13.5065i −0.252204 0.436831i
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −20.7430 23.0375i −0.669131 0.743145i
\(962\) 0 0
\(963\) −0.359940 + 3.42460i −0.0115989 + 0.110356i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −57.6533 −1.85401 −0.927003 0.375053i \(-0.877624\pi\)
−0.927003 + 0.375053i \(0.877624\pi\)
\(968\) −114.887 + 46.0133i −3.69260 + 1.47892i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 5.38387 + 3.91161i 0.172510 + 0.125336i
\(975\) 0 0
\(976\) 0 0
\(977\) −23.7936 10.5936i −0.761225 0.338919i −0.0108586 0.999941i \(-0.503456\pi\)
−0.750367 + 0.661022i \(0.770123\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −10.9284 + 7.93992i −0.348916 + 0.253502i
\(982\) −121.596 25.8459i −3.88027 0.824777i
\(983\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −24.7576 + 42.8814i −0.787246 + 1.36355i
\(990\) 0 0
\(991\) 12.0000 + 20.7846i 0.381193 + 0.660245i 0.991233 0.132125i \(-0.0421802\pi\)
−0.610040 + 0.792370i \(0.708847\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(998\) −25.6600 + 28.4983i −0.812253 + 0.902098i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 539.2.q.d.520.1 16
7.2 even 3 539.2.f.c.344.1 yes 8
7.3 odd 6 inner 539.2.q.d.410.2 16
7.4 even 3 inner 539.2.q.d.410.2 16
7.5 odd 6 539.2.f.c.344.1 yes 8
7.6 odd 2 CM 539.2.q.d.520.1 16
11.4 even 5 inner 539.2.q.d.422.2 16
77.2 odd 30 5929.2.a.bg.1.1 4
77.4 even 15 inner 539.2.q.d.312.1 16
77.9 even 15 5929.2.a.bc.1.4 4
77.26 odd 30 539.2.f.c.246.1 8
77.37 even 15 539.2.f.c.246.1 8
77.48 odd 10 inner 539.2.q.d.422.2 16
77.59 odd 30 inner 539.2.q.d.312.1 16
77.68 even 30 5929.2.a.bg.1.1 4
77.75 odd 30 5929.2.a.bc.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
539.2.f.c.246.1 8 77.26 odd 30
539.2.f.c.246.1 8 77.37 even 15
539.2.f.c.344.1 yes 8 7.2 even 3
539.2.f.c.344.1 yes 8 7.5 odd 6
539.2.q.d.312.1 16 77.4 even 15 inner
539.2.q.d.312.1 16 77.59 odd 30 inner
539.2.q.d.410.2 16 7.3 odd 6 inner
539.2.q.d.410.2 16 7.4 even 3 inner
539.2.q.d.422.2 16 11.4 even 5 inner
539.2.q.d.422.2 16 77.48 odd 10 inner
539.2.q.d.520.1 16 1.1 even 1 trivial
539.2.q.d.520.1 16 7.6 odd 2 CM
5929.2.a.bc.1.4 4 77.9 even 15
5929.2.a.bc.1.4 4 77.75 odd 30
5929.2.a.bg.1.1 4 77.2 odd 30
5929.2.a.bg.1.1 4 77.68 even 30