Properties

Label 539.2.f.c.246.1
Level $539$
Weight $2$
Character 539.246
Analytic conductor $4.304$
Analytic rank $0$
Dimension $8$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [539,2,Mod(148,539)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("539.148"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(539, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 539 = 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 539.f (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.30393666895\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.37515625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - x^{6} + 3x^{5} - x^{4} + 6x^{3} - 4x^{2} - 8x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{5}]$

Embedding invariants

Embedding label 246.1
Root \(1.18208 - 0.776336i\) of defining polynomial
Character \(\chi\) \(=\) 539.246
Dual form 539.2.f.c.344.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.28570 - 1.66066i) q^{2} +(1.84860 + 5.68940i) q^{4} +(3.47668 - 10.7001i) q^{8} +(2.42705 + 1.76336i) q^{9} +(-3.17317 - 0.964887i) q^{11} +(-16.0365 + 11.6512i) q^{16} +(-2.61917 - 8.06099i) q^{18} +(5.65055 + 7.47498i) q^{22} +7.50465 q^{23} +(-1.54508 + 4.75528i) q^{25} +(1.42225 + 4.37724i) q^{29} +33.5015 q^{32} +(-5.54579 + 17.0682i) q^{36} +(2.53732 + 7.80906i) q^{37} +6.59794 q^{43} +(-0.376282 - 19.8371i) q^{44} +(-17.1534 - 12.4626i) q^{46} +(11.4285 - 8.30328i) q^{50} +(-1.51257 - 1.09894i) q^{53} +(4.01825 - 12.3669i) q^{58} +(-44.5014 - 32.3322i) q^{64} +6.09473 q^{67} +(7.95588 - 5.78028i) q^{71} +(27.3062 - 19.8391i) q^{72} +(7.16862 - 22.0628i) q^{74} +(12.7848 + 9.28873i) q^{79} +(2.78115 + 8.55951i) q^{81} +(-15.0809 - 10.9569i) q^{86} +(-21.3565 + 30.5987i) q^{88} +(13.8731 + 42.6969i) q^{92} +(-6.00000 - 7.93725i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 2 q^{4} + 16 q^{8} + 6 q^{9} - 4 q^{11} - 28 q^{16} - 9 q^{18} - 4 q^{22} - 16 q^{23} + 10 q^{25} - 4 q^{29} + 100 q^{32} - 6 q^{36} - 18 q^{37} + 24 q^{43} + 9 q^{44} - 31 q^{46} + 10 q^{50}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/539\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.28570 1.66066i −1.61623 1.17426i −0.835853 0.548953i \(-0.815027\pi\)
−0.780378 0.625308i \(-0.784973\pi\)
\(3\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(4\) 1.84860 + 5.68940i 0.924298 + 2.84470i
\(5\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 3.47668 10.7001i 1.22919 3.78306i
\(9\) 2.42705 + 1.76336i 0.809017 + 0.587785i
\(10\) 0 0
\(11\) −3.17317 0.964887i −0.956746 0.290924i
\(12\) 0 0
\(13\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −16.0365 + 11.6512i −4.00912 + 2.91279i
\(17\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(18\) −2.61917 8.06099i −0.617345 1.89999i
\(19\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 5.65055 + 7.47498i 1.20470 + 1.59367i
\(23\) 7.50465 1.56483 0.782414 0.622758i \(-0.213988\pi\)
0.782414 + 0.622758i \(0.213988\pi\)
\(24\) 0 0
\(25\) −1.54508 + 4.75528i −0.309017 + 0.951057i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.42225 + 4.37724i 0.264105 + 0.812833i 0.991898 + 0.127036i \(0.0405463\pi\)
−0.727793 + 0.685797i \(0.759454\pi\)
\(30\) 0 0
\(31\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(32\) 33.5015 5.92229
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −5.54579 + 17.0682i −0.924298 + 2.84470i
\(37\) 2.53732 + 7.80906i 0.417133 + 1.28380i 0.910330 + 0.413884i \(0.135828\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(42\) 0 0
\(43\) 6.59794 1.00618 0.503088 0.864235i \(-0.332197\pi\)
0.503088 + 0.864235i \(0.332197\pi\)
\(44\) −0.376282 19.8371i −0.0567266 2.99055i
\(45\) 0 0
\(46\) −17.1534 12.4626i −2.52912 1.83752i
\(47\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 11.4285 8.30328i 1.61623 1.17426i
\(51\) 0 0
\(52\) 0 0
\(53\) −1.51257 1.09894i −0.207767 0.150952i 0.479036 0.877795i \(-0.340986\pi\)
−0.686803 + 0.726844i \(0.740986\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 4.01825 12.3669i 0.527622 1.62385i
\(59\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(60\) 0 0
\(61\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −44.5014 32.3322i −5.56268 4.04152i
\(65\) 0 0
\(66\) 0 0
\(67\) 6.09473 0.744590 0.372295 0.928114i \(-0.378571\pi\)
0.372295 + 0.928114i \(0.378571\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.95588 5.78028i 0.944189 0.685993i −0.00523645 0.999986i \(-0.501667\pi\)
0.949425 + 0.313993i \(0.101667\pi\)
\(72\) 27.3062 19.8391i 3.21807 2.33806i
\(73\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(74\) 7.16862 22.0628i 0.833336 2.56474i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 12.7848 + 9.28873i 1.43841 + 1.04506i 0.988372 + 0.152053i \(0.0485886\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 2.78115 + 8.55951i 0.309017 + 0.951057i
\(82\) 0 0
\(83\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −15.0809 10.9569i −1.62621 1.18151i
\(87\) 0 0
\(88\) −21.3565 + 30.5987i −2.27661 + 3.26183i
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 13.8731 + 42.6969i 1.44637 + 4.45146i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(98\) 0 0
\(99\) −6.00000 7.93725i −0.603023 0.797724i
\(100\) −29.9109 −2.99109
\(101\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(102\) 0 0
\(103\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 1.63230 + 5.02371i 0.158543 + 0.487945i
\(107\) −0.354696 + 1.09164i −0.0342898 + 0.105533i −0.966736 0.255774i \(-0.917670\pi\)
0.932447 + 0.361308i \(0.117670\pi\)
\(108\) 0 0
\(109\) −4.50273 −0.431283 −0.215642 0.976473i \(-0.569184\pi\)
−0.215642 + 0.976473i \(0.569184\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −4.34450 + 13.3710i −0.408696 + 1.25784i 0.509073 + 0.860724i \(0.329988\pi\)
−0.917769 + 0.397114i \(0.870012\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −22.2747 + 16.1835i −2.06815 + 1.50260i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 9.13799 + 6.12350i 0.830726 + 0.556682i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 8.21418 5.96795i 0.728890 0.529570i −0.160322 0.987065i \(-0.551253\pi\)
0.889212 + 0.457495i \(0.151253\pi\)
\(128\) 27.3190 + 84.0793i 2.41468 + 7.43163i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −13.9307 10.1213i −1.20343 0.874343i
\(135\) 0 0
\(136\) 0 0
\(137\) 18.7856 13.6485i 1.60496 1.16607i 0.727909 0.685674i \(-0.240493\pi\)
0.877051 0.480397i \(-0.159507\pi\)
\(138\) 0 0
\(139\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −27.7838 −2.33156
\(143\) 0 0
\(144\) −59.4665 −4.95554
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −39.7384 + 28.8716i −3.26647 + 2.37323i
\(149\) −17.7984 + 12.9313i −1.45810 + 1.05937i −0.474247 + 0.880392i \(0.657280\pi\)
−0.983853 + 0.178979i \(0.942720\pi\)
\(150\) 0 0
\(151\) −3.84693 + 11.8396i −0.313059 + 0.963496i 0.663487 + 0.748187i \(0.269076\pi\)
−0.976546 + 0.215308i \(0.930924\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(158\) −13.7969 42.4624i −1.09762 3.37813i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 7.85752 24.1830i 0.617345 1.89999i
\(163\) −7.21418 5.24141i −0.565058 0.410539i 0.268249 0.963350i \(-0.413555\pi\)
−0.833307 + 0.552811i \(0.813555\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(168\) 0 0
\(169\) −4.01722 12.3637i −0.309017 0.951057i
\(170\) 0 0
\(171\) 0 0
\(172\) 12.1969 + 37.5383i 0.930007 + 2.86227i
\(173\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 62.1285 21.4977i 4.68311 1.62045i
\(177\) 0 0
\(178\) 0 0
\(179\) −7.39370 + 22.7555i −0.552631 + 1.70082i 0.149487 + 0.988764i \(0.452238\pi\)
−0.702118 + 0.712060i \(0.747762\pi\)
\(180\) 0 0
\(181\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 26.0913 80.3007i 1.92347 5.91985i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −6.80563 20.9456i −0.492438 1.51557i −0.820912 0.571055i \(-0.806534\pi\)
0.328474 0.944513i \(-0.393466\pi\)
\(192\) 0 0
\(193\) 21.8462 15.8722i 1.57252 1.14250i 0.647834 0.761781i \(-0.275675\pi\)
0.924689 0.380724i \(-0.124325\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −18.0995 −1.28953 −0.644767 0.764379i \(-0.723046\pi\)
−0.644767 + 0.764379i \(0.723046\pi\)
\(198\) 0.533133 + 28.1061i 0.0378881 + 1.99741i
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 45.5103 + 33.0652i 3.21807 + 2.33806i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 18.2142 + 13.2334i 1.26597 + 0.919783i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −17.3570 12.6106i −1.19490 0.868148i −0.201129 0.979565i \(-0.564461\pi\)
−0.993774 + 0.111417i \(0.964461\pi\)
\(212\) 3.45620 10.6371i 0.237373 0.730559i
\(213\) 0 0
\(214\) 2.62357 1.90614i 0.179344 0.130301i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 10.2919 + 7.47748i 0.697054 + 0.506439i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(224\) 0 0
\(225\) −12.1353 + 8.81678i −0.809017 + 0.587785i
\(226\) 32.1348 23.3473i 2.13758 1.55304i
\(227\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(228\) 0 0
\(229\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 51.7817 3.39963
\(233\) −17.7984 12.9313i −1.16601 0.847156i −0.175484 0.984482i \(-0.556149\pi\)
−0.990526 + 0.137326i \(0.956149\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0.805627 2.47947i 0.0521117 0.160383i −0.921614 0.388108i \(-0.873129\pi\)
0.973726 + 0.227725i \(0.0731287\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) −10.7176 29.1715i −0.688956 1.87522i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(252\) 0 0
\(253\) −23.8135 7.24115i −1.49714 0.455247i
\(254\) −28.6858 −1.79991
\(255\) 0 0
\(256\) 43.1877 132.918i 2.69923 8.30739i
\(257\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −4.26675 + 13.1317i −0.264105 + 0.812833i
\(262\) 0 0
\(263\) −28.9988 −1.78814 −0.894072 0.447924i \(-0.852164\pi\)
−0.894072 + 0.447924i \(0.852164\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 11.2667 + 34.6754i 0.688224 + 2.11813i
\(269\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(270\) 0 0
\(271\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −65.6036 −3.96326
\(275\) 9.49113 13.5985i 0.572336 0.820019i
\(276\) 0 0
\(277\) −21.9284 15.9319i −1.31755 0.957254i −0.999959 0.00902525i \(-0.997127\pi\)
−0.317588 0.948229i \(-0.602873\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6.95218 + 5.05106i −0.414733 + 0.301321i −0.775515 0.631329i \(-0.782510\pi\)
0.360782 + 0.932650i \(0.382510\pi\)
\(282\) 0 0
\(283\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(284\) 47.5935 + 34.5787i 2.82416 + 2.05187i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 81.3099 + 59.0751i 4.79123 + 3.48104i
\(289\) −5.25329 + 16.1680i −0.309017 + 0.951057i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 92.3793 5.36944
\(297\) 0 0
\(298\) 62.1561 3.60060
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 28.4545 20.6734i 1.63737 1.18962i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(312\) 0 0
\(313\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −29.2133 + 89.9092i −1.64337 + 5.05779i
\(317\) −27.2858 19.8243i −1.53252 1.11344i −0.954815 0.297200i \(-0.903947\pi\)
−0.577708 0.816243i \(-0.696053\pi\)
\(318\) 0 0
\(319\) −0.289499 15.2620i −0.0162088 0.854509i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −43.5572 + 31.6462i −2.41984 + 1.75812i
\(325\) 0 0
\(326\) 7.78525 + 23.9605i 0.431185 + 1.32705i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 6.09209 0.334852 0.167426 0.985885i \(-0.446455\pi\)
0.167426 + 0.985885i \(0.446455\pi\)
\(332\) 0 0
\(333\) −7.61195 + 23.4272i −0.417133 + 1.28380i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 9.08528 + 27.9616i 0.494907 + 1.52317i 0.817102 + 0.576493i \(0.195579\pi\)
−0.322195 + 0.946673i \(0.604421\pi\)
\(338\) −11.3498 + 34.9310i −0.617345 + 1.89999i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 22.9389 70.5987i 1.23678 3.80643i
\(345\) 0 0
\(346\) 0 0
\(347\) 20.2318 14.6993i 1.08610 0.789100i 0.107366 0.994220i \(-0.465758\pi\)
0.978737 + 0.205120i \(0.0657585\pi\)
\(348\) 0 0
\(349\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −106.306 32.3252i −5.66613 1.72294i
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 54.6888 39.7337i 2.89039 2.09999i
\(359\) −10.1220 31.1523i −0.534219 1.64416i −0.745331 0.666695i \(-0.767708\pi\)
0.211112 0.977462i \(-0.432292\pi\)
\(360\) 0 0
\(361\) 15.3713 + 11.1679i 0.809017 + 0.587785i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(368\) −120.348 + 87.4380i −6.27358 + 4.55802i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 22.0000 1.13912 0.569558 0.821951i \(-0.307114\pi\)
0.569558 + 0.821951i \(0.307114\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 31.4997 22.8859i 1.61803 1.17557i 0.808511 0.588481i \(-0.200274\pi\)
0.809522 0.587090i \(-0.199726\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −19.2278 + 59.1770i −0.983779 + 3.02776i
\(383\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −76.2920 −3.88316
\(387\) 16.0135 + 11.6345i 0.814013 + 0.591415i
\(388\) 0 0
\(389\) −6.73894 20.7403i −0.341678 1.05158i −0.963338 0.268290i \(-0.913542\pi\)
0.621660 0.783287i \(-0.286458\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 41.3699 + 30.0570i 2.08419 + 1.51425i
\(395\) 0 0
\(396\) 34.0666 48.8092i 1.71191 2.45275i
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −30.6269 94.2600i −1.53135 4.71300i
\(401\) −7.78557 + 5.65655i −0.388793 + 0.282475i −0.764961 0.644077i \(-0.777242\pi\)
0.376168 + 0.926552i \(0.377242\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −0.516471 27.2277i −0.0256005 1.34963i
\(408\) 0 0
\(409\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) −19.6560 60.4950i −0.966040 2.97316i
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −11.8136 + 36.3585i −0.575759 + 1.77200i 0.0578225 + 0.998327i \(0.481584\pi\)
−0.633581 + 0.773676i \(0.718416\pi\)
\(422\) 18.7309 + 57.6479i 0.911807 + 2.80625i
\(423\) 0 0
\(424\) −17.0175 + 12.3640i −0.826445 + 0.600447i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −6.86648 −0.331904
\(429\) 0 0
\(430\) 0 0
\(431\) −28.3570 20.6025i −1.36591 0.992389i −0.998044 0.0625092i \(-0.980090\pi\)
−0.367862 0.929880i \(-0.619910\pi\)
\(432\) 0 0
\(433\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −8.32373 25.6178i −0.398634 1.22687i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 11.7279 36.0947i 0.557208 1.71491i −0.132831 0.991139i \(-0.542407\pi\)
0.690039 0.723772i \(-0.257593\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 32.0711 + 23.3010i 1.51353 + 1.09964i 0.964580 + 0.263790i \(0.0849724\pi\)
0.548950 + 0.835855i \(0.315028\pi\)
\(450\) 42.3791 1.99777
\(451\) 0 0
\(452\) −84.1041 −3.95593
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −31.0711 + 22.5745i −1.45345 + 1.05599i −0.468436 + 0.883497i \(0.655182\pi\)
−0.985011 + 0.172493i \(0.944818\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 41.6915 1.93757 0.968784 0.247907i \(-0.0797429\pi\)
0.968784 + 0.247907i \(0.0797429\pi\)
\(464\) −73.8078 53.6245i −3.42644 2.48946i
\(465\) 0 0
\(466\) 19.2073 + 59.1139i 0.889760 + 2.73840i
\(467\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −20.9364 6.36627i −0.962655 0.292721i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −1.73325 5.33439i −0.0793599 0.244245i
\(478\) −5.95896 + 4.32944i −0.272556 + 0.198024i
\(479\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −17.9466 + 63.3095i −0.815752 + 2.87770i
\(485\) 0 0
\(486\) 0 0
\(487\) −0.727878 + 2.24018i −0.0329833 + 0.101512i −0.966193 0.257821i \(-0.916996\pi\)
0.933210 + 0.359333i \(0.116996\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 13.5967 + 41.8465i 0.613613 + 1.88851i 0.420363 + 0.907356i \(0.361903\pi\)
0.193249 + 0.981150i \(0.438097\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −4.19437 12.9090i −0.187766 0.577884i 0.812219 0.583352i \(-0.198259\pi\)
−0.999985 + 0.00546838i \(0.998259\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 42.4054 + 56.0971i 1.88515 + 2.49382i
\(507\) 0 0
\(508\) 49.1387 + 35.7014i 2.18018 + 1.58399i
\(509\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −176.401 + 128.163i −7.79590 + 5.66405i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(522\) 31.5598 22.9295i 1.38133 1.00360i
\(523\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 66.2825 + 48.1570i 2.89005 + 2.09975i
\(527\) 0 0
\(528\) 0 0
\(529\) 33.3198 1.44869
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 21.1894 65.2144i 0.915244 2.81683i
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 32.9284 + 23.9239i 1.41570 + 1.02857i 0.992463 + 0.122548i \(0.0391066\pi\)
0.423238 + 0.906019i \(0.360893\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 13.5967 41.8465i 0.581355 1.78923i −0.0320849 0.999485i \(-0.510215\pi\)
0.613440 0.789741i \(-0.289785\pi\)
\(548\) 112.379 + 81.6479i 4.80058 + 3.48783i
\(549\) 0 0
\(550\) −44.2762 + 15.3205i −1.88794 + 0.653268i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 23.6642 + 72.8309i 1.00540 + 3.09429i
\(555\) 0 0
\(556\) 0 0
\(557\) −9.57775 29.4773i −0.405822 1.24899i −0.920207 0.391433i \(-0.871980\pi\)
0.514384 0.857560i \(-0.328020\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 24.2787 1.02413
\(563\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) −34.1897 105.225i −1.43457 4.41514i
\(569\) 6.79837 20.9232i 0.285003 0.877148i −0.701395 0.712773i \(-0.747439\pi\)
0.986398 0.164375i \(-0.0525608\pi\)
\(570\) 0 0
\(571\) −44.0566 −1.84371 −0.921856 0.387534i \(-0.873327\pi\)
−0.921856 + 0.387534i \(0.873327\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −11.5953 + 35.6868i −0.483559 + 1.48824i
\(576\) −50.9941 156.944i −2.12475 6.53932i
\(577\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(578\) 38.8568 28.2311i 1.61623 1.17426i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 3.73927 + 4.94659i 0.154865 + 0.204867i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −131.674 95.6670i −5.41178 3.93189i
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −106.473 77.3573i −4.36131 3.16868i
\(597\) 0 0
\(598\) 0 0
\(599\) 20.4997 14.8939i 0.837597 0.608550i −0.0841014 0.996457i \(-0.526802\pi\)
0.921698 + 0.387907i \(0.126802\pi\)
\(600\) 0 0
\(601\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(602\) 0 0
\(603\) 14.7922 + 10.7472i 0.602386 + 0.437659i
\(604\) −74.4718 −3.03021
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 15.2668 46.9862i 0.616618 1.89776i 0.243974 0.969782i \(-0.421549\pi\)
0.372644 0.927974i \(-0.378451\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 45.9166 1.84853 0.924266 0.381749i \(-0.124678\pi\)
0.924266 + 0.381749i \(0.124678\pi\)
\(618\) 0 0
\(619\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −20.2254 14.6946i −0.809017 0.587785i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −12.4683 38.3736i −0.496357 1.52763i −0.814832 0.579698i \(-0.803171\pi\)
0.318475 0.947931i \(-0.396829\pi\)
\(632\) 143.839 104.505i 5.72162 4.15700i
\(633\) 0 0
\(634\) 29.4457 + 90.6247i 1.16944 + 3.59916i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) −24.6833 + 35.3651i −0.977219 + 1.40012i
\(639\) 29.5020 1.16708
\(640\) 0 0
\(641\) −15.3445 + 47.2255i −0.606071 + 1.86530i −0.116820 + 0.993153i \(0.537270\pi\)
−0.489251 + 0.872143i \(0.662730\pi\)
\(642\) 0 0
\(643\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(648\) 101.257 3.97775
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 16.4843 50.7336i 0.645576 1.98688i
\(653\) 1.66431 + 5.12221i 0.0651294 + 0.200448i 0.978326 0.207072i \(-0.0663936\pi\)
−0.913196 + 0.407520i \(0.866394\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 44.0000 1.71400 0.856998 0.515319i \(-0.172327\pi\)
0.856998 + 0.515319i \(0.172327\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) −13.9247 10.1169i −0.541198 0.393203i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 56.3031 40.9066i 2.18170 1.58510i
\(667\) 10.6735 + 32.8497i 0.413280 + 1.27194i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −0.494817 0.359506i −0.0190738 0.0138579i 0.578208 0.815890i \(-0.303752\pi\)
−0.597281 + 0.802032i \(0.703752\pi\)
\(674\) 25.6684 78.9993i 0.988711 3.04294i
\(675\) 0 0
\(676\) 62.9160 45.7111i 2.41984 1.75812i
\(677\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −21.1014 −0.807423 −0.403711 0.914886i \(-0.632280\pi\)
−0.403711 + 0.914886i \(0.632280\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −105.808 + 76.8737i −4.03388 + 2.93078i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −70.6543 −2.68200
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −15.3604 + 47.2743i −0.580153 + 1.78553i 0.0377695 + 0.999286i \(0.487975\pi\)
−0.617922 + 0.786239i \(0.712025\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 110.014 + 145.534i 4.14629 + 5.48503i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 21.2355 15.4285i 0.797517 0.579430i −0.112667 0.993633i \(-0.535939\pi\)
0.910185 + 0.414202i \(0.135939\pi\)
\(710\) 0 0
\(711\) 14.6501 + 45.0885i 0.549423 + 1.69095i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −143.133 −5.34913
\(717\) 0 0
\(718\) −28.5975 + 88.0139i −1.06725 + 3.28465i
\(719\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −16.5881 51.0529i −0.617345 1.89999i
\(723\) 0 0
\(724\) 0 0
\(725\) −23.0125 −0.854663
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −8.34346 + 25.6785i −0.309017 + 0.951057i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 251.417 9.26737
\(737\) −19.3396 5.88073i −0.712384 0.216620i
\(738\) 0 0
\(739\) −41.5832 30.2120i −1.52966 1.11137i −0.956425 0.291977i \(-0.905687\pi\)
−0.573238 0.819389i \(-0.694313\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −8.56653 + 6.22395i −0.314275 + 0.228334i −0.733729 0.679442i \(-0.762222\pi\)
0.419453 + 0.907777i \(0.362222\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −50.2853 36.5344i −1.84108 1.33762i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 3.19208 9.82420i 0.116481 0.358490i −0.875772 0.482724i \(-0.839647\pi\)
0.992253 + 0.124234i \(0.0396474\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −30.3109 22.0222i −1.10167 0.800410i −0.120338 0.992733i \(-0.538398\pi\)
−0.981332 + 0.192323i \(0.938398\pi\)
\(758\) −110.004 −3.99554
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 106.587 77.4398i 3.85617 2.80167i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 130.688 + 94.9503i 4.70356 + 3.41734i
\(773\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(774\) −17.2812 53.1859i −0.621158 1.91173i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −19.0394 + 58.5972i −0.682595 + 2.10081i
\(779\) 0 0
\(780\) 0 0
\(781\) −30.8227 + 10.6653i −1.10292 + 0.381634i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(788\) −33.4586 102.975i −1.19191 3.66834i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −105.790 + 36.6054i −3.75907 + 1.30072i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −51.7627 + 159.309i −1.83009 + 5.63243i
\(801\) 0 0
\(802\) 27.1890 0.960078
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 42.0711 30.5665i 1.47914 1.07466i 0.501311 0.865267i \(-0.332851\pi\)
0.977832 0.209393i \(-0.0671487\pi\)
\(810\) 0 0
\(811\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −44.0353 + 63.0919i −1.54344 + 2.21137i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 6.79837 + 20.9232i 0.237265 + 0.730226i 0.996813 + 0.0797750i \(0.0254202\pi\)
−0.759548 + 0.650451i \(0.774580\pi\)
\(822\) 0 0
\(823\) 43.5906 + 31.6704i 1.51947 + 1.10396i 0.961748 + 0.273936i \(0.0883256\pi\)
0.557725 + 0.830026i \(0.311674\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −35.5967 25.8626i −1.23782 0.899329i −0.240369 0.970682i \(-0.577268\pi\)
−0.997451 + 0.0713526i \(0.977268\pi\)
\(828\) −41.6192 + 128.091i −1.44637 + 4.45146i
\(829\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(840\) 0 0
\(841\) 6.32408 4.59471i 0.218072 0.158438i
\(842\) 87.3811 63.4861i 3.01135 2.18788i
\(843\) 0 0
\(844\) 39.6605 122.062i 1.36517 4.20156i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 37.0602 1.27265
\(849\) 0 0
\(850\) 0 0
\(851\) 19.0417 + 58.6043i 0.652741 + 2.00893i
\(852\) 0 0
\(853\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 10.4475 + 7.59059i 0.357090 + 0.259441i
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 30.6017 + 94.1823i 1.04230 + 3.20786i
\(863\) −6.47214 + 4.70228i −0.220314 + 0.160068i −0.692468 0.721449i \(-0.743477\pi\)
0.472154 + 0.881516i \(0.343477\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −31.6059 41.8106i −1.07216 1.41833i
\(870\) 0 0
\(871\) 0 0
\(872\) −15.6545 + 48.1797i −0.530130 + 1.63157i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −6.73325 + 20.7228i −0.227366 + 0.699759i 0.770677 + 0.637226i \(0.219918\pi\)
−0.998043 + 0.0625337i \(0.980082\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −3.70820 + 11.4127i −0.124791 + 0.384067i −0.993863 0.110619i \(-0.964717\pi\)
0.869072 + 0.494686i \(0.164717\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −86.7472 + 63.0255i −2.91433 + 2.11738i
\(887\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −0.566103 29.8443i −0.0189652 0.999820i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −34.6099 106.518i −1.15495 3.55456i
\(899\) 0 0
\(900\) −72.5953 52.7436i −2.41984 1.75812i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 127.967 + 92.9734i 4.25611 + 3.09225i
\(905\) 0 0
\(906\) 0 0
\(907\) 36.7543 26.7035i 1.22040 0.886676i 0.224271 0.974527i \(-0.428000\pi\)
0.996134 + 0.0878507i \(0.0279999\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −12.9443 9.40456i −0.428863 0.311587i 0.352331 0.935875i \(-0.385389\pi\)
−0.781194 + 0.624288i \(0.785389\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 108.508 3.58911
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −49.0302 + 35.6225i −1.61736 + 1.17508i −0.791687 + 0.610927i \(0.790797\pi\)
−0.825671 + 0.564152i \(0.809203\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −41.0547 −1.34987
\(926\) −95.2941 69.2352i −3.13156 2.27521i
\(927\) 0 0
\(928\) 47.6476 + 146.644i 1.56411 + 4.81383i
\(929\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 40.6691 125.167i 1.33216 4.09997i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 37.2820 + 49.3194i 1.21214 + 1.60351i
\(947\) −20.0000 −0.649913 −0.324956 0.945729i \(-0.605350\pi\)
−0.324956 + 0.945729i \(0.605350\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −0.682027 2.09906i −0.0220930 0.0679954i 0.939402 0.342817i \(-0.111381\pi\)
−0.961495 + 0.274822i \(0.911381\pi\)
\(954\) −4.89690 + 15.0711i −0.158543 + 0.487945i
\(955\) 0 0
\(956\) 15.5959 0.504409
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −9.57953 29.4828i −0.309017 0.951057i
\(962\) 0 0
\(963\) −2.78582 + 2.02402i −0.0897719 + 0.0652231i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −57.6533 −1.85401 −0.927003 0.375053i \(-0.877624\pi\)
−0.927003 + 0.375053i \(0.877624\pi\)
\(968\) 97.2920 76.4881i 3.12708 2.45842i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 5.38387 3.91161i 0.172510 0.125336i
\(975\) 0 0
\(976\) 0 0
\(977\) 21.0711 + 15.3091i 0.674126 + 0.489781i 0.871404 0.490567i \(-0.163210\pi\)
−0.197278 + 0.980348i \(0.563210\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −10.9284 7.93992i −0.348916 0.253502i
\(982\) 38.4146 118.228i 1.22586 3.77280i
\(983\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 49.5152 1.57449
\(990\) 0 0
\(991\) −24.0000 −0.762385 −0.381193 0.924496i \(-0.624487\pi\)
−0.381193 + 0.924496i \(0.624487\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(998\) −11.8503 + 36.4714i −0.375113 + 1.15448i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 539.2.f.c.246.1 8
7.2 even 3 539.2.q.d.312.1 16
7.3 odd 6 539.2.q.d.422.2 16
7.4 even 3 539.2.q.d.422.2 16
7.5 odd 6 539.2.q.d.312.1 16
7.6 odd 2 CM 539.2.f.c.246.1 8
11.3 even 5 inner 539.2.f.c.344.1 yes 8
11.5 even 5 5929.2.a.bc.1.4 4
11.6 odd 10 5929.2.a.bg.1.1 4
77.3 odd 30 539.2.q.d.520.1 16
77.6 even 10 5929.2.a.bg.1.1 4
77.25 even 15 539.2.q.d.520.1 16
77.27 odd 10 5929.2.a.bc.1.4 4
77.47 odd 30 539.2.q.d.410.2 16
77.58 even 15 539.2.q.d.410.2 16
77.69 odd 10 inner 539.2.f.c.344.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
539.2.f.c.246.1 8 1.1 even 1 trivial
539.2.f.c.246.1 8 7.6 odd 2 CM
539.2.f.c.344.1 yes 8 11.3 even 5 inner
539.2.f.c.344.1 yes 8 77.69 odd 10 inner
539.2.q.d.312.1 16 7.2 even 3
539.2.q.d.312.1 16 7.5 odd 6
539.2.q.d.410.2 16 77.47 odd 30
539.2.q.d.410.2 16 77.58 even 15
539.2.q.d.422.2 16 7.3 odd 6
539.2.q.d.422.2 16 7.4 even 3
539.2.q.d.520.1 16 77.3 odd 30
539.2.q.d.520.1 16 77.25 even 15
5929.2.a.bc.1.4 4 11.5 even 5
5929.2.a.bc.1.4 4 77.27 odd 10
5929.2.a.bg.1.1 4 11.6 odd 10
5929.2.a.bg.1.1 4 77.6 even 10