Properties

Label 539.2.a.g.1.3
Level $539$
Weight $2$
Character 539.1
Self dual yes
Analytic conductor $4.304$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [539,2,Mod(1,539)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("539.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(539, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 539 = 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 539.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.30393666895\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.87939\) of defining polynomial
Character \(\chi\) \(=\) 539.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.87939 q^{2} -0.652704 q^{3} +1.53209 q^{4} -3.53209 q^{5} -1.22668 q^{6} -0.879385 q^{8} -2.57398 q^{9} -6.63816 q^{10} +1.00000 q^{11} -1.00000 q^{12} -4.41147 q^{13} +2.30541 q^{15} -4.71688 q^{16} +5.24897 q^{17} -4.83750 q^{18} -1.81521 q^{19} -5.41147 q^{20} +1.87939 q^{22} -6.33275 q^{23} +0.573978 q^{24} +7.47565 q^{25} -8.29086 q^{26} +3.63816 q^{27} +1.92127 q^{29} +4.33275 q^{30} -1.46791 q^{31} -7.10607 q^{32} -0.652704 q^{33} +9.86484 q^{34} -3.94356 q^{36} +4.45336 q^{37} -3.41147 q^{38} +2.87939 q^{39} +3.10607 q^{40} -0.283119 q^{41} -3.41147 q^{43} +1.53209 q^{44} +9.09152 q^{45} -11.9017 q^{46} +4.55438 q^{47} +3.07873 q^{48} +14.0496 q^{50} -3.42602 q^{51} -6.75877 q^{52} -7.23442 q^{53} +6.83750 q^{54} -3.53209 q^{55} +1.18479 q^{57} +3.61081 q^{58} -9.53983 q^{59} +3.53209 q^{60} +1.14796 q^{61} -2.75877 q^{62} -3.92127 q^{64} +15.5817 q^{65} -1.22668 q^{66} -0.694593 q^{67} +8.04189 q^{68} +4.13341 q^{69} +9.46110 q^{71} +2.26352 q^{72} -2.34730 q^{73} +8.36959 q^{74} -4.87939 q^{75} -2.78106 q^{76} +5.41147 q^{78} -12.4192 q^{79} +16.6604 q^{80} +5.34730 q^{81} -0.532089 q^{82} +11.3327 q^{83} -18.5398 q^{85} -6.41147 q^{86} -1.25402 q^{87} -0.879385 q^{88} +3.46791 q^{89} +17.0865 q^{90} -9.70233 q^{92} +0.958111 q^{93} +8.55943 q^{94} +6.41147 q^{95} +4.63816 q^{96} -15.3473 q^{97} -2.57398 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} - 6 q^{5} + 3 q^{6} + 3 q^{8} - 3 q^{10} + 3 q^{11} - 3 q^{12} - 3 q^{13} + 9 q^{15} - 6 q^{16} + 3 q^{17} - 12 q^{18} - 9 q^{19} - 6 q^{20} - 6 q^{24} + 3 q^{25} - 9 q^{26} - 6 q^{27} - 3 q^{29}+ \cdots - 45 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.87939 1.32893 0.664463 0.747321i \(-0.268660\pi\)
0.664463 + 0.747321i \(0.268660\pi\)
\(3\) −0.652704 −0.376839 −0.188419 0.982089i \(-0.560336\pi\)
−0.188419 + 0.982089i \(0.560336\pi\)
\(4\) 1.53209 0.766044
\(5\) −3.53209 −1.57960 −0.789799 0.613366i \(-0.789815\pi\)
−0.789799 + 0.613366i \(0.789815\pi\)
\(6\) −1.22668 −0.500791
\(7\) 0 0
\(8\) −0.879385 −0.310910
\(9\) −2.57398 −0.857993
\(10\) −6.63816 −2.09917
\(11\) 1.00000 0.301511
\(12\) −1.00000 −0.288675
\(13\) −4.41147 −1.22352 −0.611761 0.791042i \(-0.709539\pi\)
−0.611761 + 0.791042i \(0.709539\pi\)
\(14\) 0 0
\(15\) 2.30541 0.595254
\(16\) −4.71688 −1.17922
\(17\) 5.24897 1.27306 0.636531 0.771251i \(-0.280369\pi\)
0.636531 + 0.771251i \(0.280369\pi\)
\(18\) −4.83750 −1.14021
\(19\) −1.81521 −0.416437 −0.208219 0.978082i \(-0.566767\pi\)
−0.208219 + 0.978082i \(0.566767\pi\)
\(20\) −5.41147 −1.21004
\(21\) 0 0
\(22\) 1.87939 0.400686
\(23\) −6.33275 −1.32047 −0.660235 0.751059i \(-0.729543\pi\)
−0.660235 + 0.751059i \(0.729543\pi\)
\(24\) 0.573978 0.117163
\(25\) 7.47565 1.49513
\(26\) −8.29086 −1.62597
\(27\) 3.63816 0.700163
\(28\) 0 0
\(29\) 1.92127 0.356772 0.178386 0.983961i \(-0.442912\pi\)
0.178386 + 0.983961i \(0.442912\pi\)
\(30\) 4.33275 0.791048
\(31\) −1.46791 −0.263645 −0.131822 0.991273i \(-0.542083\pi\)
−0.131822 + 0.991273i \(0.542083\pi\)
\(32\) −7.10607 −1.25619
\(33\) −0.652704 −0.113621
\(34\) 9.86484 1.69181
\(35\) 0 0
\(36\) −3.94356 −0.657261
\(37\) 4.45336 0.732128 0.366064 0.930590i \(-0.380705\pi\)
0.366064 + 0.930590i \(0.380705\pi\)
\(38\) −3.41147 −0.553414
\(39\) 2.87939 0.461071
\(40\) 3.10607 0.491112
\(41\) −0.283119 −0.0442157 −0.0221078 0.999756i \(-0.507038\pi\)
−0.0221078 + 0.999756i \(0.507038\pi\)
\(42\) 0 0
\(43\) −3.41147 −0.520245 −0.260122 0.965576i \(-0.583763\pi\)
−0.260122 + 0.965576i \(0.583763\pi\)
\(44\) 1.53209 0.230971
\(45\) 9.09152 1.35528
\(46\) −11.9017 −1.75481
\(47\) 4.55438 0.664324 0.332162 0.943222i \(-0.392222\pi\)
0.332162 + 0.943222i \(0.392222\pi\)
\(48\) 3.07873 0.444376
\(49\) 0 0
\(50\) 14.0496 1.98692
\(51\) −3.42602 −0.479739
\(52\) −6.75877 −0.937273
\(53\) −7.23442 −0.993724 −0.496862 0.867829i \(-0.665515\pi\)
−0.496862 + 0.867829i \(0.665515\pi\)
\(54\) 6.83750 0.930465
\(55\) −3.53209 −0.476267
\(56\) 0 0
\(57\) 1.18479 0.156930
\(58\) 3.61081 0.474123
\(59\) −9.53983 −1.24198 −0.620990 0.783818i \(-0.713269\pi\)
−0.620990 + 0.783818i \(0.713269\pi\)
\(60\) 3.53209 0.455991
\(61\) 1.14796 0.146981 0.0734903 0.997296i \(-0.476586\pi\)
0.0734903 + 0.997296i \(0.476586\pi\)
\(62\) −2.75877 −0.350364
\(63\) 0 0
\(64\) −3.92127 −0.490159
\(65\) 15.5817 1.93267
\(66\) −1.22668 −0.150994
\(67\) −0.694593 −0.0848580 −0.0424290 0.999099i \(-0.513510\pi\)
−0.0424290 + 0.999099i \(0.513510\pi\)
\(68\) 8.04189 0.975222
\(69\) 4.13341 0.497604
\(70\) 0 0
\(71\) 9.46110 1.12283 0.561413 0.827536i \(-0.310258\pi\)
0.561413 + 0.827536i \(0.310258\pi\)
\(72\) 2.26352 0.266758
\(73\) −2.34730 −0.274730 −0.137365 0.990520i \(-0.543863\pi\)
−0.137365 + 0.990520i \(0.543863\pi\)
\(74\) 8.36959 0.972945
\(75\) −4.87939 −0.563423
\(76\) −2.78106 −0.319009
\(77\) 0 0
\(78\) 5.41147 0.612729
\(79\) −12.4192 −1.39727 −0.698635 0.715478i \(-0.746209\pi\)
−0.698635 + 0.715478i \(0.746209\pi\)
\(80\) 16.6604 1.86269
\(81\) 5.34730 0.594144
\(82\) −0.532089 −0.0587594
\(83\) 11.3327 1.24393 0.621965 0.783045i \(-0.286334\pi\)
0.621965 + 0.783045i \(0.286334\pi\)
\(84\) 0 0
\(85\) −18.5398 −2.01093
\(86\) −6.41147 −0.691367
\(87\) −1.25402 −0.134445
\(88\) −0.879385 −0.0937428
\(89\) 3.46791 0.367598 0.183799 0.982964i \(-0.441160\pi\)
0.183799 + 0.982964i \(0.441160\pi\)
\(90\) 17.0865 1.80107
\(91\) 0 0
\(92\) −9.70233 −1.01154
\(93\) 0.958111 0.0993515
\(94\) 8.55943 0.882838
\(95\) 6.41147 0.657803
\(96\) 4.63816 0.473380
\(97\) −15.3473 −1.55828 −0.779141 0.626849i \(-0.784344\pi\)
−0.779141 + 0.626849i \(0.784344\pi\)
\(98\) 0 0
\(99\) −2.57398 −0.258695
\(100\) 11.4534 1.14534
\(101\) −6.70233 −0.666907 −0.333454 0.942767i \(-0.608214\pi\)
−0.333454 + 0.942767i \(0.608214\pi\)
\(102\) −6.43882 −0.637538
\(103\) −2.24897 −0.221598 −0.110799 0.993843i \(-0.535341\pi\)
−0.110799 + 0.993843i \(0.535341\pi\)
\(104\) 3.87939 0.380405
\(105\) 0 0
\(106\) −13.5963 −1.32059
\(107\) −11.5321 −1.11485 −0.557425 0.830228i \(-0.688210\pi\)
−0.557425 + 0.830228i \(0.688210\pi\)
\(108\) 5.57398 0.536356
\(109\) −11.9855 −1.14800 −0.573999 0.818856i \(-0.694609\pi\)
−0.573999 + 0.818856i \(0.694609\pi\)
\(110\) −6.63816 −0.632923
\(111\) −2.90673 −0.275894
\(112\) 0 0
\(113\) 5.00774 0.471089 0.235544 0.971864i \(-0.424313\pi\)
0.235544 + 0.971864i \(0.424313\pi\)
\(114\) 2.22668 0.208548
\(115\) 22.3678 2.08581
\(116\) 2.94356 0.273303
\(117\) 11.3550 1.04977
\(118\) −17.9290 −1.65050
\(119\) 0 0
\(120\) −2.02734 −0.185070
\(121\) 1.00000 0.0909091
\(122\) 2.15745 0.195326
\(123\) 0.184793 0.0166622
\(124\) −2.24897 −0.201963
\(125\) −8.74422 −0.782107
\(126\) 0 0
\(127\) −14.2344 −1.26310 −0.631550 0.775335i \(-0.717581\pi\)
−0.631550 + 0.775335i \(0.717581\pi\)
\(128\) 6.84255 0.604802
\(129\) 2.22668 0.196048
\(130\) 29.2841 2.56838
\(131\) −5.11381 −0.446795 −0.223398 0.974727i \(-0.571715\pi\)
−0.223398 + 0.974727i \(0.571715\pi\)
\(132\) −1.00000 −0.0870388
\(133\) 0 0
\(134\) −1.30541 −0.112770
\(135\) −12.8503 −1.10598
\(136\) −4.61587 −0.395807
\(137\) 19.7074 1.68372 0.841858 0.539699i \(-0.181462\pi\)
0.841858 + 0.539699i \(0.181462\pi\)
\(138\) 7.76827 0.661279
\(139\) 5.28581 0.448336 0.224168 0.974550i \(-0.428034\pi\)
0.224168 + 0.974550i \(0.428034\pi\)
\(140\) 0 0
\(141\) −2.97266 −0.250343
\(142\) 17.7811 1.49215
\(143\) −4.41147 −0.368906
\(144\) 12.1411 1.01176
\(145\) −6.78611 −0.563556
\(146\) −4.41147 −0.365096
\(147\) 0 0
\(148\) 6.82295 0.560843
\(149\) −17.0155 −1.39396 −0.696981 0.717089i \(-0.745474\pi\)
−0.696981 + 0.717089i \(0.745474\pi\)
\(150\) −9.17024 −0.748747
\(151\) 1.30272 0.106014 0.0530069 0.998594i \(-0.483119\pi\)
0.0530069 + 0.998594i \(0.483119\pi\)
\(152\) 1.59627 0.129474
\(153\) −13.5107 −1.09228
\(154\) 0 0
\(155\) 5.18479 0.416453
\(156\) 4.41147 0.353201
\(157\) −13.6946 −1.09295 −0.546474 0.837476i \(-0.684030\pi\)
−0.546474 + 0.837476i \(0.684030\pi\)
\(158\) −23.3405 −1.85687
\(159\) 4.72193 0.374474
\(160\) 25.0993 1.98427
\(161\) 0 0
\(162\) 10.0496 0.789573
\(163\) 16.4047 1.28491 0.642456 0.766322i \(-0.277915\pi\)
0.642456 + 0.766322i \(0.277915\pi\)
\(164\) −0.433763 −0.0338712
\(165\) 2.30541 0.179476
\(166\) 21.2986 1.65309
\(167\) 8.24628 0.638116 0.319058 0.947735i \(-0.396633\pi\)
0.319058 + 0.947735i \(0.396633\pi\)
\(168\) 0 0
\(169\) 6.46110 0.497008
\(170\) −34.8435 −2.67237
\(171\) 4.67230 0.357300
\(172\) −5.22668 −0.398531
\(173\) −19.2344 −1.46237 −0.731183 0.682181i \(-0.761031\pi\)
−0.731183 + 0.682181i \(0.761031\pi\)
\(174\) −2.35679 −0.178668
\(175\) 0 0
\(176\) −4.71688 −0.355548
\(177\) 6.22668 0.468026
\(178\) 6.51754 0.488510
\(179\) −1.32770 −0.0992367 −0.0496183 0.998768i \(-0.515800\pi\)
−0.0496183 + 0.998768i \(0.515800\pi\)
\(180\) 13.9290 1.03821
\(181\) −17.6527 −1.31212 −0.656058 0.754711i \(-0.727777\pi\)
−0.656058 + 0.754711i \(0.727777\pi\)
\(182\) 0 0
\(183\) −0.749275 −0.0553880
\(184\) 5.56893 0.410547
\(185\) −15.7297 −1.15647
\(186\) 1.80066 0.132031
\(187\) 5.24897 0.383843
\(188\) 6.97771 0.508902
\(189\) 0 0
\(190\) 12.0496 0.874172
\(191\) 15.5526 1.12535 0.562674 0.826679i \(-0.309773\pi\)
0.562674 + 0.826679i \(0.309773\pi\)
\(192\) 2.55943 0.184711
\(193\) −5.21894 −0.375668 −0.187834 0.982201i \(-0.560147\pi\)
−0.187834 + 0.982201i \(0.560147\pi\)
\(194\) −28.8435 −2.07084
\(195\) −10.1702 −0.728306
\(196\) 0 0
\(197\) −4.61856 −0.329058 −0.164529 0.986372i \(-0.552610\pi\)
−0.164529 + 0.986372i \(0.552610\pi\)
\(198\) −4.83750 −0.343786
\(199\) 6.04963 0.428847 0.214423 0.976741i \(-0.431213\pi\)
0.214423 + 0.976741i \(0.431213\pi\)
\(200\) −6.57398 −0.464850
\(201\) 0.453363 0.0319778
\(202\) −12.5963 −0.886270
\(203\) 0 0
\(204\) −5.24897 −0.367501
\(205\) 1.00000 0.0698430
\(206\) −4.22668 −0.294487
\(207\) 16.3004 1.13295
\(208\) 20.8084 1.44280
\(209\) −1.81521 −0.125561
\(210\) 0 0
\(211\) 8.69459 0.598560 0.299280 0.954165i \(-0.403253\pi\)
0.299280 + 0.954165i \(0.403253\pi\)
\(212\) −11.0838 −0.761237
\(213\) −6.17530 −0.423124
\(214\) −21.6732 −1.48155
\(215\) 12.0496 0.821778
\(216\) −3.19934 −0.217688
\(217\) 0 0
\(218\) −22.5253 −1.52560
\(219\) 1.53209 0.103529
\(220\) −5.41147 −0.364842
\(221\) −23.1557 −1.55762
\(222\) −5.46286 −0.366643
\(223\) 0.221629 0.0148414 0.00742069 0.999972i \(-0.497638\pi\)
0.00742069 + 0.999972i \(0.497638\pi\)
\(224\) 0 0
\(225\) −19.2422 −1.28281
\(226\) 9.41147 0.626042
\(227\) 9.69965 0.643788 0.321894 0.946776i \(-0.395681\pi\)
0.321894 + 0.946776i \(0.395681\pi\)
\(228\) 1.81521 0.120215
\(229\) −23.6946 −1.56578 −0.782891 0.622158i \(-0.786256\pi\)
−0.782891 + 0.622158i \(0.786256\pi\)
\(230\) 42.0378 2.77189
\(231\) 0 0
\(232\) −1.68954 −0.110924
\(233\) 20.8871 1.36836 0.684181 0.729313i \(-0.260160\pi\)
0.684181 + 0.729313i \(0.260160\pi\)
\(234\) 21.3405 1.39507
\(235\) −16.0865 −1.04937
\(236\) −14.6159 −0.951412
\(237\) 8.10607 0.526546
\(238\) 0 0
\(239\) 15.0300 0.972212 0.486106 0.873900i \(-0.338417\pi\)
0.486106 + 0.873900i \(0.338417\pi\)
\(240\) −10.8743 −0.701935
\(241\) −29.5398 −1.90283 −0.951414 0.307915i \(-0.900369\pi\)
−0.951414 + 0.307915i \(0.900369\pi\)
\(242\) 1.87939 0.120811
\(243\) −14.4047 −0.924060
\(244\) 1.75877 0.112594
\(245\) 0 0
\(246\) 0.347296 0.0221428
\(247\) 8.00774 0.509520
\(248\) 1.29086 0.0819697
\(249\) −7.39693 −0.468761
\(250\) −16.4338 −1.03936
\(251\) −3.77063 −0.238000 −0.119000 0.992894i \(-0.537969\pi\)
−0.119000 + 0.992894i \(0.537969\pi\)
\(252\) 0 0
\(253\) −6.33275 −0.398136
\(254\) −26.7520 −1.67857
\(255\) 12.1010 0.757795
\(256\) 20.7023 1.29390
\(257\) 8.66044 0.540224 0.270112 0.962829i \(-0.412939\pi\)
0.270112 + 0.962829i \(0.412939\pi\)
\(258\) 4.18479 0.260534
\(259\) 0 0
\(260\) 23.8726 1.48051
\(261\) −4.94532 −0.306107
\(262\) −9.61081 −0.593758
\(263\) −5.83481 −0.359790 −0.179895 0.983686i \(-0.557576\pi\)
−0.179895 + 0.983686i \(0.557576\pi\)
\(264\) 0.573978 0.0353259
\(265\) 25.5526 1.56969
\(266\) 0 0
\(267\) −2.26352 −0.138525
\(268\) −1.06418 −0.0650050
\(269\) 21.9813 1.34023 0.670113 0.742259i \(-0.266246\pi\)
0.670113 + 0.742259i \(0.266246\pi\)
\(270\) −24.1506 −1.46976
\(271\) −9.85204 −0.598469 −0.299235 0.954180i \(-0.596731\pi\)
−0.299235 + 0.954180i \(0.596731\pi\)
\(272\) −24.7588 −1.50122
\(273\) 0 0
\(274\) 37.0378 2.23753
\(275\) 7.47565 0.450799
\(276\) 6.33275 0.381187
\(277\) 23.6391 1.42034 0.710168 0.704033i \(-0.248619\pi\)
0.710168 + 0.704033i \(0.248619\pi\)
\(278\) 9.93407 0.595806
\(279\) 3.77837 0.226205
\(280\) 0 0
\(281\) 16.2713 0.970662 0.485331 0.874331i \(-0.338699\pi\)
0.485331 + 0.874331i \(0.338699\pi\)
\(282\) −5.58677 −0.332687
\(283\) −16.9982 −1.01044 −0.505220 0.862990i \(-0.668589\pi\)
−0.505220 + 0.862990i \(0.668589\pi\)
\(284\) 14.4953 0.860135
\(285\) −4.18479 −0.247886
\(286\) −8.29086 −0.490249
\(287\) 0 0
\(288\) 18.2909 1.07780
\(289\) 10.5517 0.620688
\(290\) −12.7537 −0.748924
\(291\) 10.0172 0.587221
\(292\) −3.59627 −0.210456
\(293\) 13.7784 0.804941 0.402471 0.915433i \(-0.368152\pi\)
0.402471 + 0.915433i \(0.368152\pi\)
\(294\) 0 0
\(295\) 33.6955 1.96183
\(296\) −3.91622 −0.227626
\(297\) 3.63816 0.211107
\(298\) −31.9786 −1.85247
\(299\) 27.9368 1.61562
\(300\) −7.47565 −0.431607
\(301\) 0 0
\(302\) 2.44831 0.140884
\(303\) 4.37464 0.251316
\(304\) 8.56212 0.491071
\(305\) −4.05468 −0.232170
\(306\) −25.3919 −1.45156
\(307\) 11.6159 0.662953 0.331476 0.943464i \(-0.392453\pi\)
0.331476 + 0.943464i \(0.392453\pi\)
\(308\) 0 0
\(309\) 1.46791 0.0835065
\(310\) 9.74422 0.553435
\(311\) −3.44831 −0.195536 −0.0977679 0.995209i \(-0.531170\pi\)
−0.0977679 + 0.995209i \(0.531170\pi\)
\(312\) −2.53209 −0.143351
\(313\) 19.4219 1.09779 0.548895 0.835891i \(-0.315049\pi\)
0.548895 + 0.835891i \(0.315049\pi\)
\(314\) −25.7374 −1.45245
\(315\) 0 0
\(316\) −19.0273 −1.07037
\(317\) −32.8161 −1.84314 −0.921569 0.388214i \(-0.873092\pi\)
−0.921569 + 0.388214i \(0.873092\pi\)
\(318\) 8.87433 0.497648
\(319\) 1.92127 0.107571
\(320\) 13.8503 0.774255
\(321\) 7.52704 0.420118
\(322\) 0 0
\(323\) −9.52797 −0.530150
\(324\) 8.19253 0.455141
\(325\) −32.9786 −1.82933
\(326\) 30.8307 1.70755
\(327\) 7.82295 0.432610
\(328\) 0.248970 0.0137471
\(329\) 0 0
\(330\) 4.33275 0.238510
\(331\) −6.36009 −0.349582 −0.174791 0.984606i \(-0.555925\pi\)
−0.174791 + 0.984606i \(0.555925\pi\)
\(332\) 17.3628 0.952906
\(333\) −11.4629 −0.628161
\(334\) 15.4979 0.848010
\(335\) 2.45336 0.134042
\(336\) 0 0
\(337\) −15.5449 −0.846784 −0.423392 0.905947i \(-0.639161\pi\)
−0.423392 + 0.905947i \(0.639161\pi\)
\(338\) 12.1429 0.660487
\(339\) −3.26857 −0.177524
\(340\) −28.4047 −1.54046
\(341\) −1.46791 −0.0794918
\(342\) 8.78106 0.474825
\(343\) 0 0
\(344\) 3.00000 0.161749
\(345\) −14.5996 −0.786014
\(346\) −36.1489 −1.94338
\(347\) −19.7246 −1.05887 −0.529437 0.848350i \(-0.677597\pi\)
−0.529437 + 0.848350i \(0.677597\pi\)
\(348\) −1.92127 −0.102991
\(349\) 5.79385 0.310138 0.155069 0.987904i \(-0.450440\pi\)
0.155069 + 0.987904i \(0.450440\pi\)
\(350\) 0 0
\(351\) −16.0496 −0.856666
\(352\) −7.10607 −0.378755
\(353\) −33.1661 −1.76525 −0.882627 0.470073i \(-0.844227\pi\)
−0.882627 + 0.470073i \(0.844227\pi\)
\(354\) 11.7023 0.621972
\(355\) −33.4175 −1.77361
\(356\) 5.31315 0.281596
\(357\) 0 0
\(358\) −2.49525 −0.131878
\(359\) 4.20977 0.222183 0.111092 0.993810i \(-0.464565\pi\)
0.111092 + 0.993810i \(0.464565\pi\)
\(360\) −7.99495 −0.421371
\(361\) −15.7050 −0.826580
\(362\) −33.1762 −1.74370
\(363\) −0.652704 −0.0342581
\(364\) 0 0
\(365\) 8.29086 0.433963
\(366\) −1.40818 −0.0736066
\(367\) 19.4388 1.01470 0.507349 0.861741i \(-0.330626\pi\)
0.507349 + 0.861741i \(0.330626\pi\)
\(368\) 29.8708 1.55712
\(369\) 0.728741 0.0379367
\(370\) −29.5621 −1.53686
\(371\) 0 0
\(372\) 1.46791 0.0761076
\(373\) 12.7142 0.658316 0.329158 0.944275i \(-0.393235\pi\)
0.329158 + 0.944275i \(0.393235\pi\)
\(374\) 9.86484 0.510099
\(375\) 5.70739 0.294728
\(376\) −4.00505 −0.206545
\(377\) −8.47565 −0.436518
\(378\) 0 0
\(379\) −22.8111 −1.17173 −0.585863 0.810410i \(-0.699245\pi\)
−0.585863 + 0.810410i \(0.699245\pi\)
\(380\) 9.82295 0.503907
\(381\) 9.29086 0.475985
\(382\) 29.2294 1.49550
\(383\) −8.29860 −0.424039 −0.212019 0.977265i \(-0.568004\pi\)
−0.212019 + 0.977265i \(0.568004\pi\)
\(384\) −4.46616 −0.227913
\(385\) 0 0
\(386\) −9.80840 −0.499234
\(387\) 8.78106 0.446366
\(388\) −23.5134 −1.19371
\(389\) 11.3996 0.577983 0.288992 0.957332i \(-0.406680\pi\)
0.288992 + 0.957332i \(0.406680\pi\)
\(390\) −19.1138 −0.967865
\(391\) −33.2404 −1.68104
\(392\) 0 0
\(393\) 3.33780 0.168370
\(394\) −8.68004 −0.437294
\(395\) 43.8658 2.20713
\(396\) −3.94356 −0.198171
\(397\) −6.58172 −0.330327 −0.165163 0.986266i \(-0.552815\pi\)
−0.165163 + 0.986266i \(0.552815\pi\)
\(398\) 11.3696 0.569906
\(399\) 0 0
\(400\) −35.2618 −1.76309
\(401\) 4.18984 0.209231 0.104615 0.994513i \(-0.466639\pi\)
0.104615 + 0.994513i \(0.466639\pi\)
\(402\) 0.852044 0.0424961
\(403\) 6.47565 0.322575
\(404\) −10.2686 −0.510880
\(405\) −18.8871 −0.938509
\(406\) 0 0
\(407\) 4.45336 0.220745
\(408\) 3.01279 0.149155
\(409\) −0.773318 −0.0382381 −0.0191191 0.999817i \(-0.506086\pi\)
−0.0191191 + 0.999817i \(0.506086\pi\)
\(410\) 1.87939 0.0928162
\(411\) −12.8631 −0.634489
\(412\) −3.44562 −0.169754
\(413\) 0 0
\(414\) 30.6346 1.50561
\(415\) −40.0283 −1.96491
\(416\) 31.3482 1.53697
\(417\) −3.45007 −0.168950
\(418\) −3.41147 −0.166861
\(419\) −13.7547 −0.671959 −0.335979 0.941869i \(-0.609067\pi\)
−0.335979 + 0.941869i \(0.609067\pi\)
\(420\) 0 0
\(421\) −5.80571 −0.282953 −0.141477 0.989942i \(-0.545185\pi\)
−0.141477 + 0.989942i \(0.545185\pi\)
\(422\) 16.3405 0.795443
\(423\) −11.7229 −0.569985
\(424\) 6.36184 0.308958
\(425\) 39.2395 1.90339
\(426\) −11.6058 −0.562301
\(427\) 0 0
\(428\) −17.6682 −0.854024
\(429\) 2.87939 0.139018
\(430\) 22.6459 1.09208
\(431\) −18.0060 −0.867318 −0.433659 0.901077i \(-0.642778\pi\)
−0.433659 + 0.901077i \(0.642778\pi\)
\(432\) −17.1607 −0.825647
\(433\) −2.34049 −0.112477 −0.0562384 0.998417i \(-0.517911\pi\)
−0.0562384 + 0.998417i \(0.517911\pi\)
\(434\) 0 0
\(435\) 4.42932 0.212370
\(436\) −18.3628 −0.879418
\(437\) 11.4953 0.549892
\(438\) 2.87939 0.137582
\(439\) 40.0333 1.91069 0.955343 0.295498i \(-0.0954857\pi\)
0.955343 + 0.295498i \(0.0954857\pi\)
\(440\) 3.10607 0.148076
\(441\) 0 0
\(442\) −43.5185 −2.06996
\(443\) 18.9760 0.901575 0.450787 0.892631i \(-0.351143\pi\)
0.450787 + 0.892631i \(0.351143\pi\)
\(444\) −4.45336 −0.211347
\(445\) −12.2490 −0.580657
\(446\) 0.416527 0.0197231
\(447\) 11.1061 0.525299
\(448\) 0 0
\(449\) −31.5371 −1.48833 −0.744165 0.667996i \(-0.767152\pi\)
−0.744165 + 0.667996i \(0.767152\pi\)
\(450\) −36.1634 −1.70476
\(451\) −0.283119 −0.0133315
\(452\) 7.67230 0.360875
\(453\) −0.850289 −0.0399501
\(454\) 18.2294 0.855547
\(455\) 0 0
\(456\) −1.04189 −0.0487909
\(457\) 11.6186 0.543493 0.271747 0.962369i \(-0.412399\pi\)
0.271747 + 0.962369i \(0.412399\pi\)
\(458\) −44.5313 −2.08081
\(459\) 19.0966 0.891352
\(460\) 34.2695 1.59782
\(461\) 12.9786 0.604476 0.302238 0.953233i \(-0.402266\pi\)
0.302238 + 0.953233i \(0.402266\pi\)
\(462\) 0 0
\(463\) 35.3705 1.64381 0.821904 0.569626i \(-0.192912\pi\)
0.821904 + 0.569626i \(0.192912\pi\)
\(464\) −9.06242 −0.420712
\(465\) −3.38413 −0.156935
\(466\) 39.2550 1.81845
\(467\) 39.8658 1.84477 0.922384 0.386274i \(-0.126238\pi\)
0.922384 + 0.386274i \(0.126238\pi\)
\(468\) 17.3969 0.804173
\(469\) 0 0
\(470\) −30.2327 −1.39453
\(471\) 8.93851 0.411865
\(472\) 8.38919 0.386144
\(473\) −3.41147 −0.156860
\(474\) 15.2344 0.699740
\(475\) −13.5699 −0.622628
\(476\) 0 0
\(477\) 18.6212 0.852608
\(478\) 28.2472 1.29200
\(479\) 30.3800 1.38810 0.694049 0.719928i \(-0.255825\pi\)
0.694049 + 0.719928i \(0.255825\pi\)
\(480\) −16.3824 −0.747750
\(481\) −19.6459 −0.895776
\(482\) −55.5167 −2.52872
\(483\) 0 0
\(484\) 1.53209 0.0696404
\(485\) 54.2080 2.46146
\(486\) −27.0719 −1.22801
\(487\) −10.4311 −0.472677 −0.236339 0.971671i \(-0.575947\pi\)
−0.236339 + 0.971671i \(0.575947\pi\)
\(488\) −1.00950 −0.0456977
\(489\) −10.7074 −0.484205
\(490\) 0 0
\(491\) −10.2763 −0.463763 −0.231882 0.972744i \(-0.574488\pi\)
−0.231882 + 0.972744i \(0.574488\pi\)
\(492\) 0.283119 0.0127640
\(493\) 10.0847 0.454193
\(494\) 15.0496 0.677115
\(495\) 9.09152 0.408633
\(496\) 6.92396 0.310895
\(497\) 0 0
\(498\) −13.9017 −0.622949
\(499\) −36.5185 −1.63479 −0.817396 0.576077i \(-0.804583\pi\)
−0.817396 + 0.576077i \(0.804583\pi\)
\(500\) −13.3969 −0.599129
\(501\) −5.38238 −0.240467
\(502\) −7.08647 −0.316284
\(503\) 31.3628 1.39840 0.699199 0.714928i \(-0.253540\pi\)
0.699199 + 0.714928i \(0.253540\pi\)
\(504\) 0 0
\(505\) 23.6732 1.05345
\(506\) −11.9017 −0.529094
\(507\) −4.21719 −0.187292
\(508\) −21.8084 −0.967591
\(509\) 11.5645 0.512587 0.256293 0.966599i \(-0.417499\pi\)
0.256293 + 0.966599i \(0.417499\pi\)
\(510\) 22.7425 1.00705
\(511\) 0 0
\(512\) 25.2226 1.11469
\(513\) −6.60401 −0.291574
\(514\) 16.2763 0.717917
\(515\) 7.94356 0.350035
\(516\) 3.41147 0.150182
\(517\) 4.55438 0.200301
\(518\) 0 0
\(519\) 12.5544 0.551076
\(520\) −13.7023 −0.600887
\(521\) 30.5604 1.33887 0.669437 0.742869i \(-0.266535\pi\)
0.669437 + 0.742869i \(0.266535\pi\)
\(522\) −9.29416 −0.406794
\(523\) 4.45512 0.194809 0.0974044 0.995245i \(-0.468946\pi\)
0.0974044 + 0.995245i \(0.468946\pi\)
\(524\) −7.83481 −0.342265
\(525\) 0 0
\(526\) −10.9659 −0.478134
\(527\) −7.70502 −0.335636
\(528\) 3.07873 0.133984
\(529\) 17.1037 0.743639
\(530\) 48.0232 2.08600
\(531\) 24.5553 1.06561
\(532\) 0 0
\(533\) 1.24897 0.0540989
\(534\) −4.25402 −0.184090
\(535\) 40.7324 1.76101
\(536\) 0.610815 0.0263832
\(537\) 0.866592 0.0373962
\(538\) 41.3114 1.78106
\(539\) 0 0
\(540\) −19.6878 −0.847227
\(541\) −16.6705 −0.716723 −0.358361 0.933583i \(-0.616664\pi\)
−0.358361 + 0.933583i \(0.616664\pi\)
\(542\) −18.5158 −0.795321
\(543\) 11.5220 0.494456
\(544\) −37.2995 −1.59920
\(545\) 42.3337 1.81338
\(546\) 0 0
\(547\) 36.2080 1.54814 0.774071 0.633098i \(-0.218217\pi\)
0.774071 + 0.633098i \(0.218217\pi\)
\(548\) 30.1935 1.28980
\(549\) −2.95481 −0.126108
\(550\) 14.0496 0.599078
\(551\) −3.48751 −0.148573
\(552\) −3.63486 −0.154710
\(553\) 0 0
\(554\) 44.4270 1.88752
\(555\) 10.2668 0.435802
\(556\) 8.09833 0.343446
\(557\) −0.669940 −0.0283863 −0.0141931 0.999899i \(-0.504518\pi\)
−0.0141931 + 0.999899i \(0.504518\pi\)
\(558\) 7.10101 0.300610
\(559\) 15.0496 0.636532
\(560\) 0 0
\(561\) −3.42602 −0.144647
\(562\) 30.5800 1.28994
\(563\) 13.0341 0.549324 0.274662 0.961541i \(-0.411434\pi\)
0.274662 + 0.961541i \(0.411434\pi\)
\(564\) −4.55438 −0.191774
\(565\) −17.6878 −0.744131
\(566\) −31.9463 −1.34280
\(567\) 0 0
\(568\) −8.31996 −0.349098
\(569\) 27.4415 1.15041 0.575204 0.818010i \(-0.304923\pi\)
0.575204 + 0.818010i \(0.304923\pi\)
\(570\) −7.86484 −0.329422
\(571\) 16.2395 0.679601 0.339800 0.940498i \(-0.389640\pi\)
0.339800 + 0.940498i \(0.389640\pi\)
\(572\) −6.75877 −0.282598
\(573\) −10.1513 −0.424075
\(574\) 0 0
\(575\) −47.3414 −1.97427
\(576\) 10.0933 0.420553
\(577\) −23.7178 −0.987386 −0.493693 0.869636i \(-0.664353\pi\)
−0.493693 + 0.869636i \(0.664353\pi\)
\(578\) 19.8307 0.824848
\(579\) 3.40642 0.141566
\(580\) −10.3969 −0.431709
\(581\) 0 0
\(582\) 18.8262 0.780373
\(583\) −7.23442 −0.299619
\(584\) 2.06418 0.0854163
\(585\) −40.1070 −1.65822
\(586\) 25.8949 1.06971
\(587\) 44.5904 1.84044 0.920221 0.391399i \(-0.128009\pi\)
0.920221 + 0.391399i \(0.128009\pi\)
\(588\) 0 0
\(589\) 2.66456 0.109791
\(590\) 63.3269 2.60713
\(591\) 3.01455 0.124002
\(592\) −21.0060 −0.863341
\(593\) 42.8435 1.75937 0.879685 0.475556i \(-0.157753\pi\)
0.879685 + 0.475556i \(0.157753\pi\)
\(594\) 6.83750 0.280546
\(595\) 0 0
\(596\) −26.0692 −1.06784
\(597\) −3.94862 −0.161606
\(598\) 52.5039 2.14705
\(599\) −0.633103 −0.0258679 −0.0129339 0.999916i \(-0.504117\pi\)
−0.0129339 + 0.999916i \(0.504117\pi\)
\(600\) 4.29086 0.175174
\(601\) 3.45842 0.141072 0.0705359 0.997509i \(-0.477529\pi\)
0.0705359 + 0.997509i \(0.477529\pi\)
\(602\) 0 0
\(603\) 1.78787 0.0728075
\(604\) 1.99588 0.0812113
\(605\) −3.53209 −0.143600
\(606\) 8.22163 0.333981
\(607\) −48.2749 −1.95942 −0.979708 0.200428i \(-0.935767\pi\)
−0.979708 + 0.200428i \(0.935767\pi\)
\(608\) 12.8990 0.523123
\(609\) 0 0
\(610\) −7.62031 −0.308537
\(611\) −20.0915 −0.812816
\(612\) −20.6996 −0.836734
\(613\) −21.3155 −0.860925 −0.430463 0.902608i \(-0.641650\pi\)
−0.430463 + 0.902608i \(0.641650\pi\)
\(614\) 21.8307 0.881015
\(615\) −0.652704 −0.0263196
\(616\) 0 0
\(617\) −12.4243 −0.500182 −0.250091 0.968222i \(-0.580461\pi\)
−0.250091 + 0.968222i \(0.580461\pi\)
\(618\) 2.75877 0.110974
\(619\) −36.3405 −1.46065 −0.730324 0.683101i \(-0.760631\pi\)
−0.730324 + 0.683101i \(0.760631\pi\)
\(620\) 7.94356 0.319021
\(621\) −23.0395 −0.924544
\(622\) −6.48070 −0.259853
\(623\) 0 0
\(624\) −13.5817 −0.543704
\(625\) −6.49289 −0.259716
\(626\) 36.5012 1.45888
\(627\) 1.18479 0.0473161
\(628\) −20.9813 −0.837246
\(629\) 23.3756 0.932045
\(630\) 0 0
\(631\) 15.9195 0.633746 0.316873 0.948468i \(-0.397367\pi\)
0.316873 + 0.948468i \(0.397367\pi\)
\(632\) 10.9213 0.434425
\(633\) −5.67499 −0.225561
\(634\) −61.6742 −2.44939
\(635\) 50.2772 1.99519
\(636\) 7.23442 0.286864
\(637\) 0 0
\(638\) 3.61081 0.142954
\(639\) −24.3527 −0.963377
\(640\) −24.1685 −0.955343
\(641\) −12.4739 −0.492689 −0.246345 0.969182i \(-0.579230\pi\)
−0.246345 + 0.969182i \(0.579230\pi\)
\(642\) 14.1462 0.558306
\(643\) 36.8331 1.45255 0.726277 0.687402i \(-0.241249\pi\)
0.726277 + 0.687402i \(0.241249\pi\)
\(644\) 0 0
\(645\) −7.86484 −0.309678
\(646\) −17.9067 −0.704531
\(647\) −20.4587 −0.804316 −0.402158 0.915570i \(-0.631740\pi\)
−0.402158 + 0.915570i \(0.631740\pi\)
\(648\) −4.70233 −0.184725
\(649\) −9.53983 −0.374471
\(650\) −61.9796 −2.43104
\(651\) 0 0
\(652\) 25.1334 0.984300
\(653\) −15.5594 −0.608888 −0.304444 0.952530i \(-0.598471\pi\)
−0.304444 + 0.952530i \(0.598471\pi\)
\(654\) 14.7023 0.574907
\(655\) 18.0624 0.705757
\(656\) 1.33544 0.0521400
\(657\) 6.04189 0.235717
\(658\) 0 0
\(659\) −23.6673 −0.921945 −0.460973 0.887414i \(-0.652499\pi\)
−0.460973 + 0.887414i \(0.652499\pi\)
\(660\) 3.53209 0.137486
\(661\) −20.1976 −0.785595 −0.392798 0.919625i \(-0.628493\pi\)
−0.392798 + 0.919625i \(0.628493\pi\)
\(662\) −11.9531 −0.464569
\(663\) 15.1138 0.586972
\(664\) −9.96585 −0.386750
\(665\) 0 0
\(666\) −21.5431 −0.834779
\(667\) −12.1669 −0.471106
\(668\) 12.6340 0.488826
\(669\) −0.144658 −0.00559281
\(670\) 4.61081 0.178131
\(671\) 1.14796 0.0443163
\(672\) 0 0
\(673\) 7.92633 0.305537 0.152769 0.988262i \(-0.451181\pi\)
0.152769 + 0.988262i \(0.451181\pi\)
\(674\) −29.2148 −1.12531
\(675\) 27.1976 1.04684
\(676\) 9.89899 0.380730
\(677\) −36.0564 −1.38576 −0.692881 0.721052i \(-0.743659\pi\)
−0.692881 + 0.721052i \(0.743659\pi\)
\(678\) −6.14290 −0.235917
\(679\) 0 0
\(680\) 16.3037 0.625217
\(681\) −6.33099 −0.242604
\(682\) −2.75877 −0.105639
\(683\) −12.3568 −0.472819 −0.236410 0.971653i \(-0.575971\pi\)
−0.236410 + 0.971653i \(0.575971\pi\)
\(684\) 7.15839 0.273708
\(685\) −69.6082 −2.65959
\(686\) 0 0
\(687\) 15.4655 0.590047
\(688\) 16.0915 0.613483
\(689\) 31.9145 1.21584
\(690\) −27.4382 −1.04455
\(691\) −8.00000 −0.304334 −0.152167 0.988355i \(-0.548625\pi\)
−0.152167 + 0.988355i \(0.548625\pi\)
\(692\) −29.4688 −1.12024
\(693\) 0 0
\(694\) −37.0702 −1.40716
\(695\) −18.6699 −0.708191
\(696\) 1.10277 0.0418004
\(697\) −1.48608 −0.0562893
\(698\) 10.8889 0.412150
\(699\) −13.6331 −0.515651
\(700\) 0 0
\(701\) 12.7611 0.481981 0.240991 0.970527i \(-0.422528\pi\)
0.240991 + 0.970527i \(0.422528\pi\)
\(702\) −30.1634 −1.13845
\(703\) −8.08378 −0.304885
\(704\) −3.92127 −0.147789
\(705\) 10.4997 0.395441
\(706\) −62.3319 −2.34589
\(707\) 0 0
\(708\) 9.53983 0.358529
\(709\) 4.70502 0.176701 0.0883504 0.996089i \(-0.471840\pi\)
0.0883504 + 0.996089i \(0.471840\pi\)
\(710\) −62.8043 −2.35700
\(711\) 31.9668 1.19885
\(712\) −3.04963 −0.114290
\(713\) 9.29591 0.348135
\(714\) 0 0
\(715\) 15.5817 0.582723
\(716\) −2.03415 −0.0760197
\(717\) −9.81016 −0.366367
\(718\) 7.91178 0.295265
\(719\) −52.6219 −1.96246 −0.981232 0.192831i \(-0.938233\pi\)
−0.981232 + 0.192831i \(0.938233\pi\)
\(720\) −42.8836 −1.59818
\(721\) 0 0
\(722\) −29.5158 −1.09846
\(723\) 19.2808 0.717059
\(724\) −27.0455 −1.00514
\(725\) 14.3628 0.533420
\(726\) −1.22668 −0.0455264
\(727\) 22.3901 0.830404 0.415202 0.909729i \(-0.363711\pi\)
0.415202 + 0.909729i \(0.363711\pi\)
\(728\) 0 0
\(729\) −6.63991 −0.245923
\(730\) 15.5817 0.576705
\(731\) −17.9067 −0.662304
\(732\) −1.14796 −0.0424297
\(733\) 30.2158 1.11604 0.558022 0.829826i \(-0.311560\pi\)
0.558022 + 0.829826i \(0.311560\pi\)
\(734\) 36.5330 1.34846
\(735\) 0 0
\(736\) 45.0009 1.65876
\(737\) −0.694593 −0.0255857
\(738\) 1.36959 0.0504151
\(739\) 12.7716 0.469810 0.234905 0.972018i \(-0.424522\pi\)
0.234905 + 0.972018i \(0.424522\pi\)
\(740\) −24.0993 −0.885906
\(741\) −5.22668 −0.192007
\(742\) 0 0
\(743\) −37.4989 −1.37570 −0.687850 0.725853i \(-0.741445\pi\)
−0.687850 + 0.725853i \(0.741445\pi\)
\(744\) −0.842549 −0.0308893
\(745\) 60.1002 2.20190
\(746\) 23.8949 0.874853
\(747\) −29.1702 −1.06728
\(748\) 8.04189 0.294041
\(749\) 0 0
\(750\) 10.7264 0.391672
\(751\) 36.7847 1.34229 0.671146 0.741325i \(-0.265802\pi\)
0.671146 + 0.741325i \(0.265802\pi\)
\(752\) −21.4825 −0.783385
\(753\) 2.46110 0.0896876
\(754\) −15.9290 −0.580101
\(755\) −4.60132 −0.167459
\(756\) 0 0
\(757\) −2.27126 −0.0825503 −0.0412752 0.999148i \(-0.513142\pi\)
−0.0412752 + 0.999148i \(0.513142\pi\)
\(758\) −42.8708 −1.55714
\(759\) 4.13341 0.150033
\(760\) −5.63816 −0.204517
\(761\) −10.1908 −0.369415 −0.184708 0.982793i \(-0.559134\pi\)
−0.184708 + 0.982793i \(0.559134\pi\)
\(762\) 17.4611 0.632549
\(763\) 0 0
\(764\) 23.8280 0.862067
\(765\) 47.7211 1.72536
\(766\) −15.5963 −0.563516
\(767\) 42.0847 1.51959
\(768\) −13.5125 −0.487590
\(769\) 27.7802 1.00178 0.500891 0.865511i \(-0.333006\pi\)
0.500891 + 0.865511i \(0.333006\pi\)
\(770\) 0 0
\(771\) −5.65270 −0.203577
\(772\) −7.99588 −0.287778
\(773\) 10.7820 0.387801 0.193901 0.981021i \(-0.437886\pi\)
0.193901 + 0.981021i \(0.437886\pi\)
\(774\) 16.5030 0.593188
\(775\) −10.9736 −0.394183
\(776\) 13.4962 0.484485
\(777\) 0 0
\(778\) 21.4243 0.768097
\(779\) 0.513919 0.0184131
\(780\) −15.5817 −0.557915
\(781\) 9.46110 0.338545
\(782\) −62.4715 −2.23398
\(783\) 6.98990 0.249798
\(784\) 0 0
\(785\) 48.3705 1.72642
\(786\) 6.27301 0.223751
\(787\) 21.3473 0.760949 0.380474 0.924791i \(-0.375761\pi\)
0.380474 + 0.924791i \(0.375761\pi\)
\(788\) −7.07604 −0.252073
\(789\) 3.80840 0.135583
\(790\) 82.4407 2.93311
\(791\) 0 0
\(792\) 2.26352 0.0804306
\(793\) −5.06418 −0.179834
\(794\) −12.3696 −0.438980
\(795\) −16.6783 −0.591518
\(796\) 9.26857 0.328516
\(797\) −39.3096 −1.39242 −0.696209 0.717839i \(-0.745132\pi\)
−0.696209 + 0.717839i \(0.745132\pi\)
\(798\) 0 0
\(799\) 23.9058 0.845726
\(800\) −53.1225 −1.87816
\(801\) −8.92633 −0.315396
\(802\) 7.87433 0.278052
\(803\) −2.34730 −0.0828343
\(804\) 0.694593 0.0244964
\(805\) 0 0
\(806\) 12.1702 0.428679
\(807\) −14.3473 −0.505049
\(808\) 5.89393 0.207348
\(809\) 3.24661 0.114145 0.0570723 0.998370i \(-0.481823\pi\)
0.0570723 + 0.998370i \(0.481823\pi\)
\(810\) −35.4962 −1.24721
\(811\) −33.4056 −1.17303 −0.586515 0.809939i \(-0.699500\pi\)
−0.586515 + 0.809939i \(0.699500\pi\)
\(812\) 0 0
\(813\) 6.43047 0.225526
\(814\) 8.36959 0.293354
\(815\) −57.9427 −2.02965
\(816\) 16.1601 0.565718
\(817\) 6.19253 0.216649
\(818\) −1.45336 −0.0508157
\(819\) 0 0
\(820\) 1.53209 0.0535029
\(821\) −24.1976 −0.844502 −0.422251 0.906479i \(-0.638760\pi\)
−0.422251 + 0.906479i \(0.638760\pi\)
\(822\) −24.1747 −0.843189
\(823\) −46.7151 −1.62839 −0.814193 0.580594i \(-0.802821\pi\)
−0.814193 + 0.580594i \(0.802821\pi\)
\(824\) 1.97771 0.0688968
\(825\) −4.87939 −0.169878
\(826\) 0 0
\(827\) 1.89992 0.0660667 0.0330333 0.999454i \(-0.489483\pi\)
0.0330333 + 0.999454i \(0.489483\pi\)
\(828\) 24.9736 0.867892
\(829\) −50.9701 −1.77026 −0.885132 0.465340i \(-0.845932\pi\)
−0.885132 + 0.465340i \(0.845932\pi\)
\(830\) −75.2285 −2.61122
\(831\) −15.4293 −0.535237
\(832\) 17.2986 0.599721
\(833\) 0 0
\(834\) −6.48400 −0.224523
\(835\) −29.1266 −1.00797
\(836\) −2.78106 −0.0961849
\(837\) −5.34049 −0.184594
\(838\) −25.8503 −0.892983
\(839\) −42.9368 −1.48234 −0.741171 0.671317i \(-0.765729\pi\)
−0.741171 + 0.671317i \(0.765729\pi\)
\(840\) 0 0
\(841\) −25.3087 −0.872714
\(842\) −10.9112 −0.376024
\(843\) −10.6203 −0.365783
\(844\) 13.3209 0.458524
\(845\) −22.8212 −0.785073
\(846\) −22.0318 −0.757468
\(847\) 0 0
\(848\) 34.1239 1.17182
\(849\) 11.0948 0.380773
\(850\) 73.7461 2.52947
\(851\) −28.2020 −0.966753
\(852\) −9.46110 −0.324132
\(853\) −52.3560 −1.79263 −0.896317 0.443414i \(-0.853767\pi\)
−0.896317 + 0.443414i \(0.853767\pi\)
\(854\) 0 0
\(855\) −16.5030 −0.564390
\(856\) 10.1411 0.346617
\(857\) 0.978036 0.0334091 0.0167045 0.999860i \(-0.494683\pi\)
0.0167045 + 0.999860i \(0.494683\pi\)
\(858\) 5.41147 0.184745
\(859\) 34.0147 1.16057 0.580283 0.814415i \(-0.302942\pi\)
0.580283 + 0.814415i \(0.302942\pi\)
\(860\) 18.4611 0.629518
\(861\) 0 0
\(862\) −33.8402 −1.15260
\(863\) −22.6955 −0.772565 −0.386282 0.922381i \(-0.626241\pi\)
−0.386282 + 0.922381i \(0.626241\pi\)
\(864\) −25.8530 −0.879536
\(865\) 67.9377 2.30995
\(866\) −4.39868 −0.149473
\(867\) −6.88713 −0.233899
\(868\) 0 0
\(869\) −12.4192 −0.421293
\(870\) 8.32440 0.282224
\(871\) 3.06418 0.103826
\(872\) 10.5398 0.356924
\(873\) 39.5036 1.33699
\(874\) 21.6040 0.730766
\(875\) 0 0
\(876\) 2.34730 0.0793078
\(877\) −1.22844 −0.0414813 −0.0207407 0.999785i \(-0.506602\pi\)
−0.0207407 + 0.999785i \(0.506602\pi\)
\(878\) 75.2380 2.53916
\(879\) −8.99319 −0.303333
\(880\) 16.6604 0.561623
\(881\) −9.13516 −0.307771 −0.153886 0.988089i \(-0.549179\pi\)
−0.153886 + 0.988089i \(0.549179\pi\)
\(882\) 0 0
\(883\) 44.8256 1.50850 0.754251 0.656586i \(-0.228000\pi\)
0.754251 + 0.656586i \(0.228000\pi\)
\(884\) −35.4766 −1.19321
\(885\) −21.9932 −0.739293
\(886\) 35.6631 1.19813
\(887\) 23.0178 0.772864 0.386432 0.922318i \(-0.373707\pi\)
0.386432 + 0.922318i \(0.373707\pi\)
\(888\) 2.55613 0.0857782
\(889\) 0 0
\(890\) −23.0205 −0.771650
\(891\) 5.34730 0.179141
\(892\) 0.339556 0.0113692
\(893\) −8.26714 −0.276649
\(894\) 20.8726 0.698083
\(895\) 4.68954 0.156754
\(896\) 0 0
\(897\) −18.2344 −0.608830
\(898\) −59.2704 −1.97788
\(899\) −2.82026 −0.0940609
\(900\) −29.4807 −0.982690
\(901\) −37.9733 −1.26507
\(902\) −0.532089 −0.0177166
\(903\) 0 0
\(904\) −4.40373 −0.146466
\(905\) 62.3509 2.07261
\(906\) −1.59802 −0.0530907
\(907\) −28.3209 −0.940380 −0.470190 0.882565i \(-0.655815\pi\)
−0.470190 + 0.882565i \(0.655815\pi\)
\(908\) 14.8607 0.493170
\(909\) 17.2517 0.572201
\(910\) 0 0
\(911\) 2.97596 0.0985978 0.0492989 0.998784i \(-0.484301\pi\)
0.0492989 + 0.998784i \(0.484301\pi\)
\(912\) −5.58853 −0.185055
\(913\) 11.3327 0.375059
\(914\) 21.8357 0.722262
\(915\) 2.64651 0.0874908
\(916\) −36.3022 −1.19946
\(917\) 0 0
\(918\) 35.8898 1.18454
\(919\) 21.7939 0.718913 0.359456 0.933162i \(-0.382962\pi\)
0.359456 + 0.933162i \(0.382962\pi\)
\(920\) −19.6699 −0.648499
\(921\) −7.58172 −0.249826
\(922\) 24.3919 0.803304
\(923\) −41.7374 −1.37380
\(924\) 0 0
\(925\) 33.2918 1.09463
\(926\) 66.4748 2.18450
\(927\) 5.78880 0.190129
\(928\) −13.6527 −0.448172
\(929\) −37.0651 −1.21607 −0.608033 0.793911i \(-0.708041\pi\)
−0.608033 + 0.793911i \(0.708041\pi\)
\(930\) −6.36009 −0.208556
\(931\) 0 0
\(932\) 32.0009 1.04823
\(933\) 2.25072 0.0736854
\(934\) 74.9231 2.45156
\(935\) −18.5398 −0.606317
\(936\) −9.98545 −0.326385
\(937\) −39.8340 −1.30132 −0.650660 0.759369i \(-0.725508\pi\)
−0.650660 + 0.759369i \(0.725508\pi\)
\(938\) 0 0
\(939\) −12.6767 −0.413690
\(940\) −24.6459 −0.803861
\(941\) −13.6919 −0.446343 −0.223172 0.974779i \(-0.571641\pi\)
−0.223172 + 0.974779i \(0.571641\pi\)
\(942\) 16.7989 0.547338
\(943\) 1.79292 0.0583855
\(944\) 44.9982 1.46457
\(945\) 0 0
\(946\) −6.41147 −0.208455
\(947\) −47.1334 −1.53163 −0.765815 0.643061i \(-0.777664\pi\)
−0.765815 + 0.643061i \(0.777664\pi\)
\(948\) 12.4192 0.403357
\(949\) 10.3550 0.336139
\(950\) −25.5030 −0.827426
\(951\) 21.4192 0.694566
\(952\) 0 0
\(953\) −26.8990 −0.871344 −0.435672 0.900106i \(-0.643489\pi\)
−0.435672 + 0.900106i \(0.643489\pi\)
\(954\) 34.9965 1.13305
\(955\) −54.9332 −1.77760
\(956\) 23.0273 0.744757
\(957\) −1.25402 −0.0405368
\(958\) 57.0958 1.84468
\(959\) 0 0
\(960\) −9.04013 −0.291769
\(961\) −28.8452 −0.930492
\(962\) −36.9222 −1.19042
\(963\) 29.6833 0.956532
\(964\) −45.2576 −1.45765
\(965\) 18.4338 0.593404
\(966\) 0 0
\(967\) −39.4270 −1.26789 −0.633943 0.773380i \(-0.718565\pi\)
−0.633943 + 0.773380i \(0.718565\pi\)
\(968\) −0.879385 −0.0282645
\(969\) 6.21894 0.199781
\(970\) 101.878 3.27110
\(971\) −16.0814 −0.516077 −0.258039 0.966135i \(-0.583076\pi\)
−0.258039 + 0.966135i \(0.583076\pi\)
\(972\) −22.0692 −0.707871
\(973\) 0 0
\(974\) −19.6040 −0.628153
\(975\) 21.5253 0.689361
\(976\) −5.41477 −0.173323
\(977\) 27.4279 0.877496 0.438748 0.898610i \(-0.355422\pi\)
0.438748 + 0.898610i \(0.355422\pi\)
\(978\) −20.1233 −0.643472
\(979\) 3.46791 0.110835
\(980\) 0 0
\(981\) 30.8503 0.984974
\(982\) −19.3131 −0.616307
\(983\) 7.46616 0.238133 0.119067 0.992886i \(-0.462010\pi\)
0.119067 + 0.992886i \(0.462010\pi\)
\(984\) −0.162504 −0.00518043
\(985\) 16.3131 0.519780
\(986\) 18.9531 0.603588
\(987\) 0 0
\(988\) 12.2686 0.390315
\(989\) 21.6040 0.686967
\(990\) 17.0865 0.543044
\(991\) −24.2704 −0.770976 −0.385488 0.922713i \(-0.625967\pi\)
−0.385488 + 0.922713i \(0.625967\pi\)
\(992\) 10.4311 0.331187
\(993\) 4.15125 0.131736
\(994\) 0 0
\(995\) −21.3678 −0.677406
\(996\) −11.3327 −0.359092
\(997\) 33.1162 1.04880 0.524400 0.851472i \(-0.324290\pi\)
0.524400 + 0.851472i \(0.324290\pi\)
\(998\) −68.6323 −2.17252
\(999\) 16.2020 0.512610
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 539.2.a.g.1.3 3
3.2 odd 2 4851.2.a.bk.1.1 3
4.3 odd 2 8624.2.a.co.1.2 3
7.2 even 3 539.2.e.m.67.1 6
7.3 odd 6 77.2.e.a.23.1 6
7.4 even 3 539.2.e.m.177.1 6
7.5 odd 6 77.2.e.a.67.1 yes 6
7.6 odd 2 539.2.a.j.1.3 3
11.10 odd 2 5929.2.a.u.1.1 3
21.5 even 6 693.2.i.h.298.3 6
21.17 even 6 693.2.i.h.100.3 6
21.20 even 2 4851.2.a.bj.1.1 3
28.3 even 6 1232.2.q.m.177.2 6
28.19 even 6 1232.2.q.m.529.2 6
28.27 even 2 8624.2.a.ch.1.2 3
77.3 odd 30 847.2.n.g.9.3 24
77.5 odd 30 847.2.n.g.487.3 24
77.10 even 6 847.2.e.c.485.3 6
77.17 even 30 847.2.n.f.366.3 24
77.19 even 30 847.2.n.f.130.3 24
77.24 even 30 847.2.n.f.807.1 24
77.26 odd 30 847.2.n.g.753.3 24
77.31 odd 30 847.2.n.g.807.3 24
77.38 odd 30 847.2.n.g.366.1 24
77.40 even 30 847.2.n.f.753.1 24
77.47 odd 30 847.2.n.g.130.1 24
77.52 even 30 847.2.n.f.9.1 24
77.54 even 6 847.2.e.c.606.3 6
77.59 odd 30 847.2.n.g.632.1 24
77.61 even 30 847.2.n.f.487.1 24
77.68 even 30 847.2.n.f.81.3 24
77.73 even 30 847.2.n.f.632.3 24
77.75 odd 30 847.2.n.g.81.1 24
77.76 even 2 5929.2.a.x.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.2.e.a.23.1 6 7.3 odd 6
77.2.e.a.67.1 yes 6 7.5 odd 6
539.2.a.g.1.3 3 1.1 even 1 trivial
539.2.a.j.1.3 3 7.6 odd 2
539.2.e.m.67.1 6 7.2 even 3
539.2.e.m.177.1 6 7.4 even 3
693.2.i.h.100.3 6 21.17 even 6
693.2.i.h.298.3 6 21.5 even 6
847.2.e.c.485.3 6 77.10 even 6
847.2.e.c.606.3 6 77.54 even 6
847.2.n.f.9.1 24 77.52 even 30
847.2.n.f.81.3 24 77.68 even 30
847.2.n.f.130.3 24 77.19 even 30
847.2.n.f.366.3 24 77.17 even 30
847.2.n.f.487.1 24 77.61 even 30
847.2.n.f.632.3 24 77.73 even 30
847.2.n.f.753.1 24 77.40 even 30
847.2.n.f.807.1 24 77.24 even 30
847.2.n.g.9.3 24 77.3 odd 30
847.2.n.g.81.1 24 77.75 odd 30
847.2.n.g.130.1 24 77.47 odd 30
847.2.n.g.366.1 24 77.38 odd 30
847.2.n.g.487.3 24 77.5 odd 30
847.2.n.g.632.1 24 77.59 odd 30
847.2.n.g.753.3 24 77.26 odd 30
847.2.n.g.807.3 24 77.31 odd 30
1232.2.q.m.177.2 6 28.3 even 6
1232.2.q.m.529.2 6 28.19 even 6
4851.2.a.bj.1.1 3 21.20 even 2
4851.2.a.bk.1.1 3 3.2 odd 2
5929.2.a.u.1.1 3 11.10 odd 2
5929.2.a.x.1.1 3 77.76 even 2
8624.2.a.ch.1.2 3 28.27 even 2
8624.2.a.co.1.2 3 4.3 odd 2