Properties

Label 77.2.e.a.23.1
Level $77$
Weight $2$
Character 77.23
Analytic conductor $0.615$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [77,2,Mod(23,77)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("77.23"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(77, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 77 = 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 77.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.614848095564\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{18})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 23.1
Root \(-0.766044 - 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 77.23
Dual form 77.2.e.a.67.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.939693 + 1.62760i) q^{2} +(-0.326352 - 0.565258i) q^{3} +(-0.766044 - 1.32683i) q^{4} +(-1.76604 + 3.05888i) q^{5} +1.22668 q^{6} +(0.418748 + 2.61240i) q^{7} -0.879385 q^{8} +(1.28699 - 2.22913i) q^{9} +(-3.31908 - 5.74881i) q^{10} +(-0.500000 - 0.866025i) q^{11} +(-0.500000 + 0.866025i) q^{12} +4.41147 q^{13} +(-4.64543 - 1.77330i) q^{14} +2.30541 q^{15} +(2.35844 - 4.08494i) q^{16} +(2.62449 + 4.54574i) q^{17} +(2.41875 + 4.18939i) q^{18} +(-0.907604 + 1.57202i) q^{19} +5.41147 q^{20} +(1.34002 - 1.08926i) q^{21} +1.87939 q^{22} +(3.16637 - 5.48432i) q^{23} +(0.286989 + 0.497079i) q^{24} +(-3.73783 - 6.47410i) q^{25} +(-4.14543 + 7.18009i) q^{26} -3.63816 q^{27} +(3.14543 - 2.55682i) q^{28} +1.92127 q^{29} +(-2.16637 + 3.75227i) q^{30} +(-0.733956 - 1.27125i) q^{31} +(3.55303 + 6.15403i) q^{32} +(-0.326352 + 0.565258i) q^{33} -9.86484 q^{34} +(-8.73055 - 3.33272i) q^{35} -3.94356 q^{36} +(-2.22668 + 3.85673i) q^{37} +(-1.70574 - 2.95442i) q^{38} +(-1.43969 - 2.49362i) q^{39} +(1.55303 - 2.68993i) q^{40} +0.283119 q^{41} +(0.513671 + 3.20459i) q^{42} -3.41147 q^{43} +(-0.766044 + 1.32683i) q^{44} +(4.54576 + 7.87349i) q^{45} +(5.95084 + 10.3072i) q^{46} +(2.27719 - 3.94421i) q^{47} -3.07873 q^{48} +(-6.64930 + 2.18788i) q^{49} +14.0496 q^{50} +(1.71301 - 2.96702i) q^{51} +(-3.37939 - 5.85327i) q^{52} +(3.61721 + 6.26519i) q^{53} +(3.41875 - 5.92145i) q^{54} +3.53209 q^{55} +(-0.368241 - 2.29731i) q^{56} +1.18479 q^{57} +(-1.80541 + 3.12706i) q^{58} +(-4.76991 - 8.26173i) q^{59} +(-1.76604 - 3.05888i) q^{60} +(0.573978 - 0.994159i) q^{61} +2.75877 q^{62} +(6.36231 + 2.42869i) q^{63} -3.92127 q^{64} +(-7.79086 + 13.4942i) q^{65} +(-0.613341 - 1.06234i) q^{66} +(0.347296 + 0.601535i) q^{67} +(4.02094 - 6.96448i) q^{68} -4.13341 q^{69} +(13.6284 - 11.0781i) q^{70} +9.46110 q^{71} +(-1.13176 + 1.96026i) q^{72} +(-1.17365 - 2.03282i) q^{73} +(-4.18479 - 7.24827i) q^{74} +(-2.43969 + 4.22567i) q^{75} +2.78106 q^{76} +(2.05303 - 1.66885i) q^{77} +5.41147 q^{78} +(6.20961 - 10.7554i) q^{79} +(8.33022 + 14.4284i) q^{80} +(-2.67365 - 4.63089i) q^{81} +(-0.266044 + 0.460802i) q^{82} -11.3327 q^{83} +(-2.47178 - 0.943555i) q^{84} -18.5398 q^{85} +(3.20574 - 5.55250i) q^{86} +(-0.627011 - 1.08602i) q^{87} +(0.439693 + 0.761570i) q^{88} +(1.73396 - 3.00330i) q^{89} -17.0865 q^{90} +(1.84730 + 11.5245i) q^{91} -9.70233 q^{92} +(-0.479055 + 0.829748i) q^{93} +(4.27972 + 7.41268i) q^{94} +(-3.20574 - 5.55250i) q^{95} +(2.31908 - 4.01676i) q^{96} +15.3473 q^{97} +(2.68732 - 12.8783i) q^{98} -2.57398 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{3} - 6 q^{5} - 6 q^{6} + 6 q^{8} - 3 q^{10} - 3 q^{11} - 3 q^{12} + 6 q^{13} - 12 q^{14} + 18 q^{15} + 6 q^{16} + 3 q^{17} + 12 q^{18} - 9 q^{19} + 12 q^{20} - 12 q^{21} - 6 q^{24} - 3 q^{25}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/77\mathbb{Z}\right)^\times\).

\(n\) \(45\) \(57\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.939693 + 1.62760i −0.664463 + 1.15088i 0.314968 + 0.949102i \(0.398006\pi\)
−0.979431 + 0.201781i \(0.935327\pi\)
\(3\) −0.326352 0.565258i −0.188419 0.326352i 0.756304 0.654220i \(-0.227003\pi\)
−0.944723 + 0.327868i \(0.893670\pi\)
\(4\) −0.766044 1.32683i −0.383022 0.663414i
\(5\) −1.76604 + 3.05888i −0.789799 + 1.36797i 0.136291 + 0.990669i \(0.456482\pi\)
−0.926090 + 0.377303i \(0.876851\pi\)
\(6\) 1.22668 0.500791
\(7\) 0.418748 + 2.61240i 0.158272 + 0.987396i
\(8\) −0.879385 −0.310910
\(9\) 1.28699 2.22913i 0.428996 0.743043i
\(10\) −3.31908 5.74881i −1.04958 1.81793i
\(11\) −0.500000 0.866025i −0.150756 0.261116i
\(12\) −0.500000 + 0.866025i −0.144338 + 0.250000i
\(13\) 4.41147 1.22352 0.611761 0.791042i \(-0.290461\pi\)
0.611761 + 0.791042i \(0.290461\pi\)
\(14\) −4.64543 1.77330i −1.24154 0.473935i
\(15\) 2.30541 0.595254
\(16\) 2.35844 4.08494i 0.589610 1.02123i
\(17\) 2.62449 + 4.54574i 0.636531 + 1.10250i 0.986189 + 0.165627i \(0.0529647\pi\)
−0.349657 + 0.936878i \(0.613702\pi\)
\(18\) 2.41875 + 4.18939i 0.570104 + 0.987450i
\(19\) −0.907604 + 1.57202i −0.208219 + 0.360645i −0.951153 0.308719i \(-0.900100\pi\)
0.742935 + 0.669364i \(0.233433\pi\)
\(20\) 5.41147 1.21004
\(21\) 1.34002 1.08926i 0.292417 0.237697i
\(22\) 1.87939 0.400686
\(23\) 3.16637 5.48432i 0.660235 1.14356i −0.320319 0.947310i \(-0.603790\pi\)
0.980554 0.196250i \(-0.0628765\pi\)
\(24\) 0.286989 + 0.497079i 0.0585814 + 0.101466i
\(25\) −3.73783 6.47410i −0.747565 1.29482i
\(26\) −4.14543 + 7.18009i −0.812986 + 1.40813i
\(27\) −3.63816 −0.700163
\(28\) 3.14543 2.55682i 0.594430 0.483194i
\(29\) 1.92127 0.356772 0.178386 0.983961i \(-0.442912\pi\)
0.178386 + 0.983961i \(0.442912\pi\)
\(30\) −2.16637 + 3.75227i −0.395524 + 0.685068i
\(31\) −0.733956 1.27125i −0.131822 0.228323i 0.792557 0.609798i \(-0.208749\pi\)
−0.924379 + 0.381475i \(0.875416\pi\)
\(32\) 3.55303 + 6.15403i 0.628094 + 1.08789i
\(33\) −0.326352 + 0.565258i −0.0568106 + 0.0983988i
\(34\) −9.86484 −1.69181
\(35\) −8.73055 3.33272i −1.47573 0.563333i
\(36\) −3.94356 −0.657261
\(37\) −2.22668 + 3.85673i −0.366064 + 0.634042i −0.988946 0.148274i \(-0.952628\pi\)
0.622882 + 0.782316i \(0.285962\pi\)
\(38\) −1.70574 2.95442i −0.276707 0.479271i
\(39\) −1.43969 2.49362i −0.230535 0.399299i
\(40\) 1.55303 2.68993i 0.245556 0.425316i
\(41\) 0.283119 0.0442157 0.0221078 0.999756i \(-0.492962\pi\)
0.0221078 + 0.999756i \(0.492962\pi\)
\(42\) 0.513671 + 3.20459i 0.0792611 + 0.494478i
\(43\) −3.41147 −0.520245 −0.260122 0.965576i \(-0.583763\pi\)
−0.260122 + 0.965576i \(0.583763\pi\)
\(44\) −0.766044 + 1.32683i −0.115486 + 0.200027i
\(45\) 4.54576 + 7.87349i 0.677642 + 1.17371i
\(46\) 5.95084 + 10.3072i 0.877403 + 1.51971i
\(47\) 2.27719 3.94421i 0.332162 0.575322i −0.650773 0.759272i \(-0.725555\pi\)
0.982936 + 0.183950i \(0.0588886\pi\)
\(48\) −3.07873 −0.444376
\(49\) −6.64930 + 2.18788i −0.949900 + 0.312554i
\(50\) 14.0496 1.98692
\(51\) 1.71301 2.96702i 0.239870 0.415466i
\(52\) −3.37939 5.85327i −0.468636 0.811702i
\(53\) 3.61721 + 6.26519i 0.496862 + 0.860591i 0.999993 0.00361947i \(-0.00115212\pi\)
−0.503131 + 0.864210i \(0.667819\pi\)
\(54\) 3.41875 5.92145i 0.465233 0.805807i
\(55\) 3.53209 0.476267
\(56\) −0.368241 2.29731i −0.0492083 0.306991i
\(57\) 1.18479 0.156930
\(58\) −1.80541 + 3.12706i −0.237062 + 0.410603i
\(59\) −4.76991 8.26173i −0.620990 1.07559i −0.989302 0.145884i \(-0.953397\pi\)
0.368312 0.929702i \(-0.379936\pi\)
\(60\) −1.76604 3.05888i −0.227995 0.394900i
\(61\) 0.573978 0.994159i 0.0734903 0.127289i −0.826938 0.562292i \(-0.809920\pi\)
0.900429 + 0.435003i \(0.143253\pi\)
\(62\) 2.75877 0.350364
\(63\) 6.36231 + 2.42869i 0.801576 + 0.305986i
\(64\) −3.92127 −0.490159
\(65\) −7.79086 + 13.4942i −0.966337 + 1.67375i
\(66\) −0.613341 1.06234i −0.0754970 0.130765i
\(67\) 0.347296 + 0.601535i 0.0424290 + 0.0734892i 0.886460 0.462805i \(-0.153157\pi\)
−0.844031 + 0.536294i \(0.819824\pi\)
\(68\) 4.02094 6.96448i 0.487611 0.844567i
\(69\) −4.13341 −0.497604
\(70\) 13.6284 11.0781i 1.62890 1.32408i
\(71\) 9.46110 1.12283 0.561413 0.827536i \(-0.310258\pi\)
0.561413 + 0.827536i \(0.310258\pi\)
\(72\) −1.13176 + 1.96026i −0.133379 + 0.231019i
\(73\) −1.17365 2.03282i −0.137365 0.237923i 0.789133 0.614222i \(-0.210530\pi\)
−0.926498 + 0.376299i \(0.877197\pi\)
\(74\) −4.18479 7.24827i −0.486472 0.842595i
\(75\) −2.43969 + 4.22567i −0.281711 + 0.487939i
\(76\) 2.78106 0.319009
\(77\) 2.05303 1.66885i 0.233965 0.190183i
\(78\) 5.41147 0.612729
\(79\) 6.20961 10.7554i 0.698635 1.21007i −0.270304 0.962775i \(-0.587124\pi\)
0.968940 0.247297i \(-0.0795424\pi\)
\(80\) 8.33022 + 14.4284i 0.931347 + 1.61314i
\(81\) −2.67365 4.63089i −0.297072 0.514544i
\(82\) −0.266044 + 0.460802i −0.0293797 + 0.0508871i
\(83\) −11.3327 −1.24393 −0.621965 0.783045i \(-0.713666\pi\)
−0.621965 + 0.783045i \(0.713666\pi\)
\(84\) −2.47178 0.943555i −0.269693 0.102950i
\(85\) −18.5398 −2.01093
\(86\) 3.20574 5.55250i 0.345684 0.598741i
\(87\) −0.627011 1.08602i −0.0672227 0.116433i
\(88\) 0.439693 + 0.761570i 0.0468714 + 0.0811836i
\(89\) 1.73396 3.00330i 0.183799 0.318349i −0.759372 0.650656i \(-0.774494\pi\)
0.943171 + 0.332307i \(0.107827\pi\)
\(90\) −17.0865 −1.80107
\(91\) 1.84730 + 11.5245i 0.193649 + 1.20810i
\(92\) −9.70233 −1.01154
\(93\) −0.479055 + 0.829748i −0.0496757 + 0.0860409i
\(94\) 4.27972 + 7.41268i 0.441419 + 0.764560i
\(95\) −3.20574 5.55250i −0.328902 0.569674i
\(96\) 2.31908 4.01676i 0.236690 0.409959i
\(97\) 15.3473 1.55828 0.779141 0.626849i \(-0.215656\pi\)
0.779141 + 0.626849i \(0.215656\pi\)
\(98\) 2.68732 12.8783i 0.271460 1.30090i
\(99\) −2.57398 −0.258695
\(100\) −5.72668 + 9.91890i −0.572668 + 0.991890i
\(101\) −3.35117 5.80439i −0.333454 0.577558i 0.649733 0.760163i \(-0.274881\pi\)
−0.983187 + 0.182604i \(0.941547\pi\)
\(102\) 3.21941 + 5.57618i 0.318769 + 0.552124i
\(103\) −1.12449 + 1.94767i −0.110799 + 0.191909i −0.916093 0.400967i \(-0.868674\pi\)
0.805294 + 0.592876i \(0.202008\pi\)
\(104\) −3.87939 −0.380405
\(105\) 0.965385 + 6.02265i 0.0942119 + 0.587751i
\(106\) −13.5963 −1.32059
\(107\) 5.76604 9.98708i 0.557425 0.965488i −0.440286 0.897858i \(-0.645123\pi\)
0.997710 0.0676300i \(-0.0215438\pi\)
\(108\) 2.78699 + 4.82721i 0.268178 + 0.464498i
\(109\) 5.99273 + 10.3797i 0.573999 + 0.994196i 0.996150 + 0.0876698i \(0.0279420\pi\)
−0.422151 + 0.906526i \(0.638725\pi\)
\(110\) −3.31908 + 5.74881i −0.316462 + 0.548128i
\(111\) 2.90673 0.275894
\(112\) 11.6591 + 4.45064i 1.10168 + 0.420546i
\(113\) 5.00774 0.471089 0.235544 0.971864i \(-0.424313\pi\)
0.235544 + 0.971864i \(0.424313\pi\)
\(114\) −1.11334 + 1.92836i −0.104274 + 0.180608i
\(115\) 11.1839 + 19.3711i 1.04291 + 1.80637i
\(116\) −1.47178 2.54920i −0.136651 0.236687i
\(117\) 5.67752 9.83375i 0.524887 0.909131i
\(118\) 17.9290 1.65050
\(119\) −10.7763 + 8.75973i −0.987863 + 0.803003i
\(120\) −2.02734 −0.185070
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) 1.07873 + 1.86841i 0.0976632 + 0.169158i
\(123\) −0.0923963 0.160035i −0.00833109 0.0144299i
\(124\) −1.12449 + 1.94767i −0.100982 + 0.174906i
\(125\) 8.74422 0.782107
\(126\) −9.93154 + 8.07305i −0.884772 + 0.719204i
\(127\) −14.2344 −1.26310 −0.631550 0.775335i \(-0.717581\pi\)
−0.631550 + 0.775335i \(0.717581\pi\)
\(128\) −3.42127 + 5.92582i −0.302401 + 0.523774i
\(129\) 1.11334 + 1.92836i 0.0980242 + 0.169783i
\(130\) −14.6420 25.3607i −1.28419 2.22428i
\(131\) −2.55690 + 4.42869i −0.223398 + 0.386936i −0.955838 0.293896i \(-0.905048\pi\)
0.732440 + 0.680832i \(0.238382\pi\)
\(132\) 1.00000 0.0870388
\(133\) −4.48680 1.71275i −0.389055 0.148514i
\(134\) −1.30541 −0.112770
\(135\) 6.42514 11.1287i 0.552988 0.957804i
\(136\) −2.30793 3.99746i −0.197904 0.342779i
\(137\) −9.85369 17.0671i −0.841858 1.45814i −0.888322 0.459221i \(-0.848129\pi\)
0.0464645 0.998920i \(-0.485205\pi\)
\(138\) 3.88413 6.72752i 0.330639 0.572684i
\(139\) −5.28581 −0.448336 −0.224168 0.974550i \(-0.571966\pi\)
−0.224168 + 0.974550i \(0.571966\pi\)
\(140\) 2.26604 + 14.1370i 0.191516 + 1.19479i
\(141\) −2.97266 −0.250343
\(142\) −8.89053 + 15.3988i −0.746077 + 1.29224i
\(143\) −2.20574 3.82045i −0.184453 0.319482i
\(144\) −6.07057 10.5145i −0.505881 0.876212i
\(145\) −3.39306 + 5.87695i −0.281778 + 0.488054i
\(146\) 4.41147 0.365096
\(147\) 3.40673 + 3.04455i 0.280982 + 0.251110i
\(148\) 6.82295 0.560843
\(149\) 8.50774 14.7358i 0.696981 1.20721i −0.272527 0.962148i \(-0.587859\pi\)
0.969508 0.245059i \(-0.0788073\pi\)
\(150\) −4.58512 7.94166i −0.374374 0.648434i
\(151\) −0.651359 1.12819i −0.0530069 0.0918106i 0.838304 0.545202i \(-0.183547\pi\)
−0.891311 + 0.453392i \(0.850214\pi\)
\(152\) 0.798133 1.38241i 0.0647372 0.112128i
\(153\) 13.5107 1.09228
\(154\) 0.786989 + 4.90971i 0.0634174 + 0.395636i
\(155\) 5.18479 0.416453
\(156\) −2.20574 + 3.82045i −0.176600 + 0.305881i
\(157\) −6.84730 11.8599i −0.546474 0.946520i −0.998513 0.0545220i \(-0.982636\pi\)
0.452039 0.891998i \(-0.350697\pi\)
\(158\) 11.6702 + 20.2135i 0.928435 + 1.60810i
\(159\) 2.36097 4.08931i 0.187237 0.324304i
\(160\) −25.0993 −1.98427
\(161\) 15.6532 + 5.97530i 1.23364 + 0.470919i
\(162\) 10.0496 0.789573
\(163\) −8.20233 + 14.2069i −0.642456 + 1.11277i 0.342426 + 0.939545i \(0.388751\pi\)
−0.984883 + 0.173222i \(0.944582\pi\)
\(164\) −0.216881 0.375650i −0.0169356 0.0293333i
\(165\) −1.15270 1.99654i −0.0897379 0.155431i
\(166\) 10.6493 18.4451i 0.826546 1.43162i
\(167\) −8.24628 −0.638116 −0.319058 0.947735i \(-0.603367\pi\)
−0.319058 + 0.947735i \(0.603367\pi\)
\(168\) −1.17840 + 0.957882i −0.0909152 + 0.0739022i
\(169\) 6.46110 0.497008
\(170\) 17.4217 30.1753i 1.33619 2.31434i
\(171\) 2.33615 + 4.04633i 0.178650 + 0.309431i
\(172\) 2.61334 + 4.52644i 0.199265 + 0.345138i
\(173\) −9.61721 + 16.6575i −0.731183 + 1.26645i 0.225195 + 0.974314i \(0.427698\pi\)
−0.956378 + 0.292132i \(0.905635\pi\)
\(174\) 2.35679 0.178668
\(175\) 15.3478 12.4757i 1.16018 0.943076i
\(176\) −4.71688 −0.355548
\(177\) −3.11334 + 5.39246i −0.234013 + 0.405322i
\(178\) 3.25877 + 5.64436i 0.244255 + 0.423062i
\(179\) 0.663848 + 1.14982i 0.0496183 + 0.0859415i 0.889768 0.456413i \(-0.150866\pi\)
−0.840150 + 0.542355i \(0.817533\pi\)
\(180\) 6.96451 12.0629i 0.519104 0.899114i
\(181\) 17.6527 1.31212 0.656058 0.754711i \(-0.272223\pi\)
0.656058 + 0.754711i \(0.272223\pi\)
\(182\) −20.4932 7.82288i −1.51906 0.579871i
\(183\) −0.749275 −0.0553880
\(184\) −2.78446 + 4.82283i −0.205273 + 0.355544i
\(185\) −7.86484 13.6223i −0.578234 1.00153i
\(186\) −0.900330 1.55942i −0.0660154 0.114342i
\(187\) 2.62449 4.54574i 0.191921 0.332418i
\(188\) −6.97771 −0.508902
\(189\) −1.52347 9.50433i −0.110816 0.691338i
\(190\) 12.0496 0.874172
\(191\) −7.77631 + 13.4690i −0.562674 + 0.974580i 0.434588 + 0.900629i \(0.356894\pi\)
−0.997262 + 0.0739507i \(0.976439\pi\)
\(192\) 1.27972 + 2.21653i 0.0923555 + 0.159964i
\(193\) 2.60947 + 4.51974i 0.187834 + 0.325338i 0.944528 0.328432i \(-0.106520\pi\)
−0.756694 + 0.653769i \(0.773187\pi\)
\(194\) −14.4217 + 24.9792i −1.03542 + 1.79340i
\(195\) 10.1702 0.728306
\(196\) 7.99660 + 7.14647i 0.571185 + 0.510462i
\(197\) −4.61856 −0.329058 −0.164529 0.986372i \(-0.552610\pi\)
−0.164529 + 0.986372i \(0.552610\pi\)
\(198\) 2.41875 4.18939i 0.171893 0.297727i
\(199\) 3.02481 + 5.23913i 0.214423 + 0.371392i 0.953094 0.302674i \(-0.0978794\pi\)
−0.738671 + 0.674067i \(0.764546\pi\)
\(200\) 3.28699 + 5.69323i 0.232425 + 0.402572i
\(201\) 0.226682 0.392624i 0.0159889 0.0276936i
\(202\) 12.5963 0.886270
\(203\) 0.804530 + 5.01914i 0.0564669 + 0.352275i
\(204\) −5.24897 −0.367501
\(205\) −0.500000 + 0.866025i −0.0349215 + 0.0604858i
\(206\) −2.11334 3.66041i −0.147243 0.255033i
\(207\) −8.15018 14.1165i −0.566476 0.981166i
\(208\) 10.4042 18.0206i 0.721401 1.24950i
\(209\) 1.81521 0.125561
\(210\) −10.7096 4.08819i −0.739033 0.282112i
\(211\) 8.69459 0.598560 0.299280 0.954165i \(-0.403253\pi\)
0.299280 + 0.954165i \(0.403253\pi\)
\(212\) 5.54189 9.59883i 0.380619 0.659251i
\(213\) −3.08765 5.34796i −0.211562 0.366436i
\(214\) 10.8366 + 18.7696i 0.740776 + 1.28306i
\(215\) 6.02481 10.4353i 0.410889 0.711681i
\(216\) 3.19934 0.217688
\(217\) 3.01367 2.44972i 0.204581 0.166298i
\(218\) −22.5253 −1.52560
\(219\) −0.766044 + 1.32683i −0.0517645 + 0.0896587i
\(220\) −2.70574 4.68647i −0.182421 0.315962i
\(221\) 11.5778 + 20.0534i 0.778810 + 1.34894i
\(222\) −2.73143 + 4.73097i −0.183322 + 0.317522i
\(223\) −0.221629 −0.0148414 −0.00742069 0.999972i \(-0.502362\pi\)
−0.00742069 + 0.999972i \(0.502362\pi\)
\(224\) −14.5890 + 11.8589i −0.974768 + 0.792359i
\(225\) −19.2422 −1.28281
\(226\) −4.70574 + 8.15058i −0.313021 + 0.542168i
\(227\) 4.84982 + 8.40014i 0.321894 + 0.557537i 0.980879 0.194619i \(-0.0623472\pi\)
−0.658985 + 0.752156i \(0.729014\pi\)
\(228\) −0.907604 1.57202i −0.0601075 0.104109i
\(229\) −11.8473 + 20.5201i −0.782891 + 1.35601i 0.147359 + 0.989083i \(0.452923\pi\)
−0.930251 + 0.366925i \(0.880411\pi\)
\(230\) −42.0378 −2.77189
\(231\) −1.61334 0.615862i −0.106150 0.0405207i
\(232\) −1.68954 −0.110924
\(233\) −10.4436 + 18.0888i −0.684181 + 1.18504i 0.289513 + 0.957174i \(0.406507\pi\)
−0.973694 + 0.227861i \(0.926827\pi\)
\(234\) 10.6702 + 18.4814i 0.697536 + 1.20817i
\(235\) 8.04323 + 13.9313i 0.524683 + 0.908777i
\(236\) −7.30793 + 12.6577i −0.475706 + 0.823947i
\(237\) −8.10607 −0.526546
\(238\) −4.13088 25.7709i −0.267765 1.67048i
\(239\) 15.0300 0.972212 0.486106 0.873900i \(-0.338417\pi\)
0.486106 + 0.873900i \(0.338417\pi\)
\(240\) 5.43717 9.41745i 0.350968 0.607894i
\(241\) −14.7699 25.5822i −0.951414 1.64790i −0.742369 0.669991i \(-0.766298\pi\)
−0.209045 0.977906i \(-0.567035\pi\)
\(242\) −0.939693 1.62760i −0.0604057 0.104626i
\(243\) −7.20233 + 12.4748i −0.462030 + 0.800259i
\(244\) −1.75877 −0.112594
\(245\) 5.05051 24.2033i 0.322665 1.54629i
\(246\) 0.347296 0.0221428
\(247\) −4.00387 + 6.93491i −0.254760 + 0.441258i
\(248\) 0.645430 + 1.11792i 0.0409848 + 0.0709878i
\(249\) 3.69846 + 6.40593i 0.234381 + 0.405959i
\(250\) −8.21688 + 14.2321i −0.519681 + 0.900114i
\(251\) 3.77063 0.238000 0.119000 0.992894i \(-0.462031\pi\)
0.119000 + 0.992894i \(0.462031\pi\)
\(252\) −1.65136 10.3022i −0.104026 0.648976i
\(253\) −6.33275 −0.398136
\(254\) 13.3760 23.1679i 0.839284 1.45368i
\(255\) 6.05051 + 10.4798i 0.378897 + 0.656270i
\(256\) −10.3512 17.9287i −0.646948 1.12055i
\(257\) 4.33022 7.50016i 0.270112 0.467847i −0.698778 0.715338i \(-0.746273\pi\)
0.968890 + 0.247491i \(0.0796060\pi\)
\(258\) −4.18479 −0.260534
\(259\) −11.0077 4.20199i −0.683988 0.261099i
\(260\) 23.8726 1.48051
\(261\) 2.47266 4.28277i 0.153054 0.265097i
\(262\) −4.80541 8.32321i −0.296879 0.514210i
\(263\) 2.91740 + 5.05309i 0.179895 + 0.311587i 0.941844 0.336049i \(-0.109091\pi\)
−0.761950 + 0.647636i \(0.775758\pi\)
\(264\) 0.286989 0.497079i 0.0176630 0.0305931i
\(265\) −25.5526 −1.56969
\(266\) 7.00387 5.69323i 0.429435 0.349074i
\(267\) −2.26352 −0.138525
\(268\) 0.532089 0.921605i 0.0325025 0.0562960i
\(269\) 10.9907 + 19.0364i 0.670113 + 1.16067i 0.977872 + 0.209205i \(0.0670876\pi\)
−0.307759 + 0.951464i \(0.599579\pi\)
\(270\) 12.0753 + 20.9151i 0.734881 + 1.27285i
\(271\) −4.92602 + 8.53212i −0.299235 + 0.518289i −0.975961 0.217945i \(-0.930065\pi\)
0.676727 + 0.736235i \(0.263398\pi\)
\(272\) 24.7588 1.50122
\(273\) 5.91147 4.80526i 0.357779 0.290827i
\(274\) 37.0378 2.23753
\(275\) −3.73783 + 6.47410i −0.225399 + 0.390403i
\(276\) 3.16637 + 5.48432i 0.190593 + 0.330117i
\(277\) −11.8195 20.4721i −0.710168 1.23005i −0.964794 0.263007i \(-0.915286\pi\)
0.254626 0.967040i \(-0.418048\pi\)
\(278\) 4.96703 8.60315i 0.297903 0.515983i
\(279\) −3.77837 −0.226205
\(280\) 7.67752 + 2.93075i 0.458819 + 0.175146i
\(281\) 16.2713 0.970662 0.485331 0.874331i \(-0.338699\pi\)
0.485331 + 0.874331i \(0.338699\pi\)
\(282\) 2.79339 4.83829i 0.166344 0.288116i
\(283\) −8.49912 14.7209i −0.505220 0.875067i −0.999982 0.00603853i \(-0.998078\pi\)
0.494761 0.869029i \(-0.335255\pi\)
\(284\) −7.24763 12.5533i −0.430067 0.744899i
\(285\) −2.09240 + 3.62414i −0.123943 + 0.214675i
\(286\) 8.29086 0.490249
\(287\) 0.118555 + 0.739620i 0.00699810 + 0.0436584i
\(288\) 18.2909 1.07780
\(289\) −5.27584 + 9.13803i −0.310344 + 0.537531i
\(290\) −6.37686 11.0450i −0.374462 0.648587i
\(291\) −5.00862 8.67518i −0.293610 0.508548i
\(292\) −1.79813 + 3.11446i −0.105228 + 0.182260i
\(293\) −13.7784 −0.804941 −0.402471 0.915433i \(-0.631848\pi\)
−0.402471 + 0.915433i \(0.631848\pi\)
\(294\) −8.15657 + 2.68383i −0.475701 + 0.156524i
\(295\) 33.6955 1.96183
\(296\) 1.95811 3.39155i 0.113813 0.197130i
\(297\) 1.81908 + 3.15074i 0.105554 + 0.182824i
\(298\) 15.9893 + 27.6943i 0.926237 + 1.60429i
\(299\) 13.9684 24.1939i 0.807812 1.39917i
\(300\) 7.47565 0.431607
\(301\) −1.42855 8.91215i −0.0823402 0.513688i
\(302\) 2.44831 0.140884
\(303\) −2.18732 + 3.78855i −0.125658 + 0.217646i
\(304\) 4.28106 + 7.41501i 0.245536 + 0.425280i
\(305\) 2.02734 + 3.51146i 0.116085 + 0.201065i
\(306\) −12.6959 + 21.9900i −0.725778 + 1.25709i
\(307\) −11.6159 −0.662953 −0.331476 0.943464i \(-0.607547\pi\)
−0.331476 + 0.943464i \(0.607547\pi\)
\(308\) −3.78699 1.44561i −0.215784 0.0823713i
\(309\) 1.46791 0.0835065
\(310\) −4.87211 + 8.43874i −0.276717 + 0.479288i
\(311\) −1.72416 2.98632i −0.0977679 0.169339i 0.812993 0.582274i \(-0.197837\pi\)
−0.910760 + 0.412935i \(0.864504\pi\)
\(312\) 1.26604 + 2.19285i 0.0716757 + 0.124146i
\(313\) 9.71095 16.8199i 0.548895 0.950715i −0.449455 0.893303i \(-0.648382\pi\)
0.998351 0.0574119i \(-0.0182848\pi\)
\(314\) 25.7374 1.45245
\(315\) −18.6652 + 15.1724i −1.05166 + 0.854866i
\(316\) −19.0273 −1.07037
\(317\) 16.4081 28.4196i 0.921569 1.59620i 0.124581 0.992209i \(-0.460241\pi\)
0.796988 0.603995i \(-0.206425\pi\)
\(318\) 4.43717 + 7.68540i 0.248824 + 0.430976i
\(319\) −0.960637 1.66387i −0.0537854 0.0931590i
\(320\) 6.92514 11.9947i 0.387127 0.670524i
\(321\) −7.52704 −0.420118
\(322\) −24.4345 + 19.8621i −1.36168 + 1.10687i
\(323\) −9.52797 −0.530150
\(324\) −4.09627 + 7.09494i −0.227570 + 0.394163i
\(325\) −16.4893 28.5603i −0.914663 1.58424i
\(326\) −15.4153 26.7002i −0.853777 1.47879i
\(327\) 3.91147 6.77487i 0.216305 0.374651i
\(328\) −0.248970 −0.0137471
\(329\) 11.2574 + 4.29731i 0.620642 + 0.236918i
\(330\) 4.33275 0.238510
\(331\) 3.18004 5.50800i 0.174791 0.302747i −0.765298 0.643676i \(-0.777408\pi\)
0.940089 + 0.340929i \(0.110742\pi\)
\(332\) 8.68139 + 15.0366i 0.476453 + 0.825241i
\(333\) 5.73143 + 9.92713i 0.314080 + 0.544003i
\(334\) 7.74897 13.4216i 0.424005 0.734398i
\(335\) −2.45336 −0.134042
\(336\) −1.28921 8.04287i −0.0703322 0.438775i
\(337\) −15.5449 −0.846784 −0.423392 0.905947i \(-0.639161\pi\)
−0.423392 + 0.905947i \(0.639161\pi\)
\(338\) −6.07145 + 10.5161i −0.330243 + 0.571998i
\(339\) −1.63429 2.83067i −0.0887622 0.153741i
\(340\) 14.2023 + 24.5992i 0.770230 + 1.33408i
\(341\) −0.733956 + 1.27125i −0.0397459 + 0.0688420i
\(342\) −8.78106 −0.474825
\(343\) −8.50000 16.4545i −0.458957 0.888459i
\(344\) 3.00000 0.161749
\(345\) 7.29978 12.6436i 0.393007 0.680708i
\(346\) −18.0744 31.3059i −0.971688 1.68301i
\(347\) 9.86231 + 17.0820i 0.529437 + 0.917011i 0.999411 + 0.0343308i \(0.0109300\pi\)
−0.469974 + 0.882680i \(0.655737\pi\)
\(348\) −0.960637 + 1.66387i −0.0514956 + 0.0891929i
\(349\) −5.79385 −0.310138 −0.155069 0.987904i \(-0.549560\pi\)
−0.155069 + 0.987904i \(0.549560\pi\)
\(350\) 5.88326 + 36.7033i 0.314473 + 1.96187i
\(351\) −16.0496 −0.856666
\(352\) 3.55303 6.15403i 0.189377 0.328011i
\(353\) −16.5831 28.7227i −0.882627 1.52876i −0.848409 0.529341i \(-0.822439\pi\)
−0.0342183 0.999414i \(-0.510894\pi\)
\(354\) −5.85117 10.1345i −0.310986 0.538644i
\(355\) −16.7087 + 28.9404i −0.886807 + 1.53600i
\(356\) −5.31315 −0.281596
\(357\) 8.46838 + 3.23264i 0.448194 + 0.171089i
\(358\) −2.49525 −0.131878
\(359\) −2.10488 + 3.64577i −0.111092 + 0.192416i −0.916211 0.400697i \(-0.868768\pi\)
0.805119 + 0.593113i \(0.202101\pi\)
\(360\) −3.99747 6.92383i −0.210685 0.364918i
\(361\) 7.85251 + 13.6009i 0.413290 + 0.715839i
\(362\) −16.5881 + 28.7315i −0.871852 + 1.51009i
\(363\) 0.652704 0.0342581
\(364\) 13.8760 11.2794i 0.727299 0.591199i
\(365\) 8.29086 0.433963
\(366\) 0.704088 1.21952i 0.0368033 0.0637451i
\(367\) 9.71941 + 16.8345i 0.507349 + 0.878754i 0.999964 + 0.00850673i \(0.00270781\pi\)
−0.492615 + 0.870247i \(0.663959\pi\)
\(368\) −14.9354 25.8689i −0.778562 1.34851i
\(369\) 0.364370 0.631108i 0.0189684 0.0328542i
\(370\) 29.5621 1.53686
\(371\) −14.8525 + 12.0732i −0.771104 + 0.626807i
\(372\) 1.46791 0.0761076
\(373\) −6.35710 + 11.0108i −0.329158 + 0.570118i −0.982345 0.187078i \(-0.940098\pi\)
0.653187 + 0.757197i \(0.273432\pi\)
\(374\) 4.93242 + 8.54320i 0.255049 + 0.441758i
\(375\) −2.85369 4.94274i −0.147364 0.255242i
\(376\) −2.00253 + 3.46848i −0.103272 + 0.178873i
\(377\) 8.47565 0.436518
\(378\) 16.9008 + 6.45155i 0.869283 + 0.331832i
\(379\) −22.8111 −1.17173 −0.585863 0.810410i \(-0.699245\pi\)
−0.585863 + 0.810410i \(0.699245\pi\)
\(380\) −4.91147 + 8.50692i −0.251953 + 0.436396i
\(381\) 4.64543 + 8.04612i 0.237993 + 0.412215i
\(382\) −14.6147 25.3134i −0.747752 1.29515i
\(383\) −4.14930 + 7.18680i −0.212019 + 0.367228i −0.952346 0.305019i \(-0.901337\pi\)
0.740327 + 0.672247i \(0.234671\pi\)
\(384\) 4.46616 0.227913
\(385\) 1.47906 + 9.22724i 0.0753796 + 0.470264i
\(386\) −9.80840 −0.499234
\(387\) −4.39053 + 7.60462i −0.223183 + 0.386565i
\(388\) −11.7567 20.3632i −0.596857 1.03379i
\(389\) −5.69981 9.87236i −0.288992 0.500548i 0.684578 0.728940i \(-0.259987\pi\)
−0.973569 + 0.228392i \(0.926653\pi\)
\(390\) −9.55690 + 16.5530i −0.483933 + 0.838196i
\(391\) 33.2404 1.68104
\(392\) 5.84730 1.92399i 0.295333 0.0971760i
\(393\) 3.33780 0.168370
\(394\) 4.34002 7.51714i 0.218647 0.378708i
\(395\) 21.9329 + 37.9889i 1.10356 + 1.91143i
\(396\) 1.97178 + 3.41523i 0.0990857 + 0.171622i
\(397\) −3.29086 + 5.69994i −0.165163 + 0.286072i −0.936713 0.350097i \(-0.886149\pi\)
0.771550 + 0.636169i \(0.219482\pi\)
\(398\) −11.3696 −0.569906
\(399\) 0.496130 + 3.09516i 0.0248375 + 0.154952i
\(400\) −35.2618 −1.76309
\(401\) −2.09492 + 3.62851i −0.104615 + 0.181199i −0.913581 0.406657i \(-0.866695\pi\)
0.808966 + 0.587856i \(0.200028\pi\)
\(402\) 0.426022 + 0.737892i 0.0212480 + 0.0368027i
\(403\) −3.23783 5.60808i −0.161288 0.279358i
\(404\) −5.13429 + 8.89284i −0.255440 + 0.442435i
\(405\) 18.8871 0.938509
\(406\) −8.92514 3.40700i −0.442947 0.169087i
\(407\) 4.45336 0.220745
\(408\) −1.50640 + 2.60916i −0.0745777 + 0.129172i
\(409\) −0.386659 0.669713i −0.0191191 0.0331152i 0.856308 0.516466i \(-0.172753\pi\)
−0.875427 + 0.483351i \(0.839419\pi\)
\(410\) −0.939693 1.62760i −0.0464081 0.0803812i
\(411\) −6.43154 + 11.1398i −0.317245 + 0.549484i
\(412\) 3.44562 0.169754
\(413\) 19.5856 15.9205i 0.963744 0.783398i
\(414\) 30.6346 1.50561
\(415\) 20.0141 34.6655i 0.982455 1.70166i
\(416\) 15.6741 + 27.1484i 0.768487 + 1.33106i
\(417\) 1.72503 + 2.98784i 0.0844752 + 0.146315i
\(418\) −1.70574 + 2.95442i −0.0834303 + 0.144506i
\(419\) 13.7547 0.671959 0.335979 0.941869i \(-0.390933\pi\)
0.335979 + 0.941869i \(0.390933\pi\)
\(420\) 7.25150 5.89452i 0.353837 0.287623i
\(421\) −5.80571 −0.282953 −0.141477 0.989942i \(-0.545185\pi\)
−0.141477 + 0.989942i \(0.545185\pi\)
\(422\) −8.17024 + 14.1513i −0.397721 + 0.688873i
\(423\) −5.86143 10.1523i −0.284993 0.493622i
\(424\) −3.18092 5.50952i −0.154479 0.267566i
\(425\) 19.6197 33.9824i 0.951697 1.64839i
\(426\) 11.6058 0.562301
\(427\) 2.83750 + 1.08316i 0.137316 + 0.0524178i
\(428\) −17.6682 −0.854024
\(429\) −1.43969 + 2.49362i −0.0695090 + 0.120393i
\(430\) 11.3229 + 19.6119i 0.546041 + 0.945771i
\(431\) 9.00299 + 15.5936i 0.433659 + 0.751119i 0.997185 0.0749789i \(-0.0238889\pi\)
−0.563526 + 0.826098i \(0.690556\pi\)
\(432\) −8.58037 + 14.8616i −0.412823 + 0.715031i
\(433\) 2.34049 0.112477 0.0562384 0.998417i \(-0.482089\pi\)
0.0562384 + 0.998417i \(0.482089\pi\)
\(434\) 1.15523 + 7.20702i 0.0554528 + 0.345948i
\(435\) 4.42932 0.212370
\(436\) 9.18139 15.9026i 0.439709 0.761598i
\(437\) 5.74763 + 9.95518i 0.274946 + 0.476221i
\(438\) −1.43969 2.49362i −0.0687912 0.119150i
\(439\) 20.0167 34.6699i 0.955343 1.65470i 0.221762 0.975101i \(-0.428819\pi\)
0.733581 0.679602i \(-0.237848\pi\)
\(440\) −3.10607 −0.148076
\(441\) −3.68051 + 17.6379i −0.175262 + 0.839901i
\(442\) −43.5185 −2.06996
\(443\) −9.48798 + 16.4337i −0.450787 + 0.780787i −0.998435 0.0559223i \(-0.982190\pi\)
0.547648 + 0.836709i \(0.315523\pi\)
\(444\) −2.22668 3.85673i −0.105674 0.183032i
\(445\) 6.12449 + 10.6079i 0.290328 + 0.502864i
\(446\) 0.208263 0.360723i 0.00986155 0.0170807i
\(447\) −11.1061 −0.525299
\(448\) −1.64203 10.2439i −0.0775784 0.483981i
\(449\) −31.5371 −1.48833 −0.744165 0.667996i \(-0.767152\pi\)
−0.744165 + 0.667996i \(0.767152\pi\)
\(450\) 18.0817 31.3185i 0.852380 1.47637i
\(451\) −0.141559 0.245188i −0.00666577 0.0115454i
\(452\) −3.83615 6.64441i −0.180437 0.312527i
\(453\) −0.425145 + 0.736372i −0.0199750 + 0.0345978i
\(454\) −18.2294 −0.855547
\(455\) −38.5146 14.7022i −1.80559 0.689250i
\(456\) −1.04189 −0.0487909
\(457\) −5.80928 + 10.0620i −0.271747 + 0.470679i −0.969309 0.245845i \(-0.920935\pi\)
0.697563 + 0.716524i \(0.254268\pi\)
\(458\) −22.2656 38.5652i −1.04040 1.80203i
\(459\) −9.54829 16.5381i −0.445676 0.771933i
\(460\) 17.1348 29.6783i 0.798912 1.38376i
\(461\) −12.9786 −0.604476 −0.302238 0.953233i \(-0.597734\pi\)
−0.302238 + 0.953233i \(0.597734\pi\)
\(462\) 2.51842 2.04715i 0.117167 0.0952418i
\(463\) 35.3705 1.64381 0.821904 0.569626i \(-0.192912\pi\)
0.821904 + 0.569626i \(0.192912\pi\)
\(464\) 4.53121 7.84829i 0.210356 0.364348i
\(465\) −1.69207 2.93075i −0.0784677 0.135910i
\(466\) −19.6275 33.9958i −0.909225 1.57482i
\(467\) 19.9329 34.5248i 0.922384 1.59762i 0.126669 0.991945i \(-0.459572\pi\)
0.795715 0.605671i \(-0.207095\pi\)
\(468\) −17.3969 −0.804173
\(469\) −1.42602 + 1.15917i −0.0658476 + 0.0535255i
\(470\) −30.2327 −1.39453
\(471\) −4.46926 + 7.74098i −0.205932 + 0.356685i
\(472\) 4.19459 + 7.26525i 0.193072 + 0.334410i
\(473\) 1.70574 + 2.95442i 0.0784299 + 0.135845i
\(474\) 7.61721 13.1934i 0.349870 0.605993i
\(475\) 13.5699 0.622628
\(476\) 19.8778 + 7.58797i 0.911097 + 0.347794i
\(477\) 18.6212 0.852608
\(478\) −14.1236 + 24.4628i −0.645999 + 1.11890i
\(479\) 15.1900 + 26.3099i 0.694049 + 1.20213i 0.970500 + 0.241100i \(0.0775083\pi\)
−0.276451 + 0.961028i \(0.589158\pi\)
\(480\) 8.19119 + 14.1876i 0.373875 + 0.647570i
\(481\) −9.82295 + 17.0138i −0.447888 + 0.775765i
\(482\) 55.5167 2.52872
\(483\) −1.73086 10.7981i −0.0787567 0.491332i
\(484\) 1.53209 0.0696404
\(485\) −27.1040 + 46.9455i −1.23073 + 2.13169i
\(486\) −13.5360 23.4450i −0.614004 1.06349i
\(487\) 5.21554 + 9.03358i 0.236339 + 0.409350i 0.959661 0.281160i \(-0.0907192\pi\)
−0.723322 + 0.690511i \(0.757386\pi\)
\(488\) −0.504748 + 0.874249i −0.0228489 + 0.0395754i
\(489\) 10.7074 0.484205
\(490\) 34.6472 + 30.9638i 1.56520 + 1.39880i
\(491\) −10.2763 −0.463763 −0.231882 0.972744i \(-0.574488\pi\)
−0.231882 + 0.972744i \(0.574488\pi\)
\(492\) −0.141559 + 0.245188i −0.00638199 + 0.0110539i
\(493\) 5.04236 + 8.73362i 0.227096 + 0.393342i
\(494\) −7.52481 13.0334i −0.338557 0.586399i
\(495\) 4.54576 7.87349i 0.204317 0.353887i
\(496\) −6.92396 −0.310895
\(497\) 3.96182 + 24.7162i 0.177712 + 1.10867i
\(498\) −13.9017 −0.622949
\(499\) 18.2592 31.6259i 0.817396 1.41577i −0.0901991 0.995924i \(-0.528750\pi\)
0.907595 0.419847i \(-0.137916\pi\)
\(500\) −6.69846 11.6021i −0.299564 0.518861i
\(501\) 2.69119 + 4.66128i 0.120233 + 0.208250i
\(502\) −3.54323 + 6.13706i −0.158142 + 0.273910i
\(503\) −31.3628 −1.39840 −0.699199 0.714928i \(-0.746460\pi\)
−0.699199 + 0.714928i \(0.746460\pi\)
\(504\) −5.59492 2.13575i −0.249218 0.0951340i
\(505\) 23.6732 1.05345
\(506\) 5.95084 10.3072i 0.264547 0.458209i
\(507\) −2.10859 3.65219i −0.0936459 0.162199i
\(508\) 10.9042 + 18.8866i 0.483796 + 0.837959i
\(509\) 5.78224 10.0151i 0.256293 0.443913i −0.708953 0.705256i \(-0.750832\pi\)
0.965246 + 0.261343i \(0.0841654\pi\)
\(510\) −22.7425 −1.00705
\(511\) 4.81908 3.91728i 0.213183 0.173290i
\(512\) 25.2226 1.11469
\(513\) 3.30200 5.71924i 0.145787 0.252511i
\(514\) 8.13816 + 14.0957i 0.358959 + 0.621735i
\(515\) −3.97178 6.87933i −0.175018 0.303139i
\(516\) 1.70574 2.95442i 0.0750909 0.130061i
\(517\) −4.55438 −0.200301
\(518\) 17.1830 13.9676i 0.754979 0.613700i
\(519\) 12.5544 0.551076
\(520\) 6.85117 11.8666i 0.300444 0.520383i
\(521\) 15.2802 + 26.4661i 0.669437 + 1.15950i 0.978062 + 0.208315i \(0.0667979\pi\)
−0.308625 + 0.951184i \(0.599869\pi\)
\(522\) 4.64708 + 8.04898i 0.203397 + 0.352294i
\(523\) 2.22756 3.85825i 0.0974044 0.168709i −0.813205 0.581977i \(-0.802279\pi\)
0.910610 + 0.413268i \(0.135613\pi\)
\(524\) 7.83481 0.342265
\(525\) −12.0608 4.60397i −0.526375 0.200934i
\(526\) −10.9659 −0.478134
\(527\) 3.85251 6.67274i 0.167818 0.290669i
\(528\) 1.53936 + 2.66625i 0.0669922 + 0.116034i
\(529\) −8.55185 14.8122i −0.371820 0.644010i
\(530\) 24.0116 41.5893i 1.04300 1.80653i
\(531\) −24.5553 −1.06561
\(532\) 1.16456 + 7.26525i 0.0504902 + 0.314988i
\(533\) 1.24897 0.0540989
\(534\) 2.12701 3.68409i 0.0920448 0.159426i
\(535\) 20.3662 + 35.2753i 0.880507 + 1.52508i
\(536\) −0.305407 0.528981i −0.0131916 0.0228485i
\(537\) 0.433296 0.750491i 0.0186981 0.0323861i
\(538\) −41.3114 −1.78106
\(539\) 5.21941 + 4.66452i 0.224816 + 0.200915i
\(540\) −19.6878 −0.847227
\(541\) 8.33527 14.4371i 0.358361 0.620700i −0.629326 0.777142i \(-0.716669\pi\)
0.987687 + 0.156441i \(0.0500022\pi\)
\(542\) −9.25789 16.0351i −0.397661 0.688768i
\(543\) −5.76099 9.97833i −0.247228 0.428211i
\(544\) −18.6498 + 32.3023i −0.799602 + 1.38495i
\(545\) −42.3337 −1.81338
\(546\) 2.26604 + 14.1370i 0.0969777 + 0.605006i
\(547\) 36.2080 1.54814 0.774071 0.633098i \(-0.218217\pi\)
0.774071 + 0.633098i \(0.218217\pi\)
\(548\) −15.0967 + 26.1483i −0.644900 + 1.11700i
\(549\) −1.47741 2.55894i −0.0630542 0.109213i
\(550\) −7.02481 12.1673i −0.299539 0.518817i
\(551\) −1.74376 + 3.02027i −0.0742865 + 0.128668i
\(552\) 3.63486 0.154710
\(553\) 30.6976 + 11.7182i 1.30539 + 0.498309i
\(554\) 44.4270 1.88752
\(555\) −5.13341 + 8.89132i −0.217901 + 0.377416i
\(556\) 4.04916 + 7.01336i 0.171723 + 0.297433i
\(557\) 0.334970 + 0.580185i 0.0141931 + 0.0245832i 0.873035 0.487658i \(-0.162149\pi\)
−0.858842 + 0.512241i \(0.828815\pi\)
\(558\) 3.55051 6.14966i 0.150305 0.260336i
\(559\) −15.0496 −0.636532
\(560\) −34.2044 + 27.8038i −1.44540 + 1.17492i
\(561\) −3.42602 −0.144647
\(562\) −15.2900 + 26.4830i −0.644969 + 1.11712i
\(563\) 6.51707 + 11.2879i 0.274662 + 0.475728i 0.970050 0.242906i \(-0.0781007\pi\)
−0.695388 + 0.718635i \(0.744767\pi\)
\(564\) 2.27719 + 3.94421i 0.0958869 + 0.166081i
\(565\) −8.84389 + 15.3181i −0.372065 + 0.644436i
\(566\) 31.9463 1.34280
\(567\) 10.9782 8.92383i 0.461040 0.374765i
\(568\) −8.31996 −0.349098
\(569\) −13.7208 + 23.7650i −0.575204 + 0.996282i 0.420816 + 0.907146i \(0.361744\pi\)
−0.996019 + 0.0891361i \(0.971589\pi\)
\(570\) −3.93242 6.81115i −0.164711 0.285288i
\(571\) −8.11974 14.0638i −0.339800 0.588552i 0.644595 0.764525i \(-0.277026\pi\)
−0.984395 + 0.175973i \(0.943693\pi\)
\(572\) −3.37939 + 5.85327i −0.141299 + 0.244737i
\(573\) 10.1513 0.424075
\(574\) −1.31521 0.502055i −0.0548957 0.0209554i
\(575\) −47.3414 −1.97427
\(576\) −5.04664 + 8.74103i −0.210277 + 0.364210i
\(577\) −11.8589 20.5402i −0.493693 0.855101i 0.506281 0.862369i \(-0.331020\pi\)
−0.999974 + 0.00726770i \(0.997687\pi\)
\(578\) −9.91534 17.1739i −0.412424 0.714339i
\(579\) 1.70321 2.95005i 0.0707830 0.122600i
\(580\) 10.3969 0.431709
\(581\) −4.74557 29.6057i −0.196879 1.22825i
\(582\) 18.8262 0.780373
\(583\) 3.61721 6.26519i 0.149810 0.259478i
\(584\) 1.03209 + 1.78763i 0.0427081 + 0.0739727i
\(585\) 20.0535 + 34.7337i 0.829110 + 1.43606i
\(586\) 12.9474 22.4256i 0.534854 0.926394i
\(587\) −44.5904 −1.84044 −0.920221 0.391399i \(-0.871991\pi\)
−0.920221 + 0.391399i \(0.871991\pi\)
\(588\) 1.42989 6.85240i 0.0589678 0.282588i
\(589\) 2.66456 0.109791
\(590\) −31.6634 + 54.8427i −1.30356 + 2.25784i
\(591\) 1.50727 + 2.61068i 0.0620010 + 0.107389i
\(592\) 10.5030 + 18.1917i 0.431670 + 0.747675i
\(593\) 21.4217 37.1035i 0.879685 1.52366i 0.0279992 0.999608i \(-0.491086\pi\)
0.851686 0.524052i \(-0.175580\pi\)
\(594\) −6.83750 −0.280546
\(595\) −7.76352 48.4335i −0.318273 1.98558i
\(596\) −26.0692 −1.06784
\(597\) 1.97431 3.41960i 0.0808030 0.139955i
\(598\) 26.2520 + 45.4697i 1.07352 + 1.85940i
\(599\) 0.316552 + 0.548284i 0.0129339 + 0.0224023i 0.872420 0.488757i \(-0.162550\pi\)
−0.859486 + 0.511159i \(0.829216\pi\)
\(600\) 2.14543 3.71599i 0.0875868 0.151705i
\(601\) −3.45842 −0.141072 −0.0705359 0.997509i \(-0.522471\pi\)
−0.0705359 + 0.997509i \(0.522471\pi\)
\(602\) 15.8478 + 6.04958i 0.645907 + 0.246562i
\(603\) 1.78787 0.0728075
\(604\) −0.997941 + 1.72848i −0.0406056 + 0.0703310i
\(605\) −1.76604 3.05888i −0.0717999 0.124361i
\(606\) −4.11081 7.12014i −0.166990 0.289236i
\(607\) −24.1374 + 41.8073i −0.979708 + 1.69690i −0.316279 + 0.948666i \(0.602433\pi\)
−0.663430 + 0.748239i \(0.730900\pi\)
\(608\) −12.8990 −0.523123
\(609\) 2.57455 2.09277i 0.104326 0.0848035i
\(610\) −7.62031 −0.308537
\(611\) 10.0458 17.3998i 0.406408 0.703919i
\(612\) −10.3498 17.9264i −0.418367 0.724633i
\(613\) 10.6578 + 18.4598i 0.430463 + 0.745583i 0.996913 0.0785125i \(-0.0250171\pi\)
−0.566450 + 0.824096i \(0.691684\pi\)
\(614\) 10.9153 18.9059i 0.440507 0.762981i
\(615\) 0.652704 0.0263196
\(616\) −1.80541 + 1.46756i −0.0727419 + 0.0591297i
\(617\) −12.4243 −0.500182 −0.250091 0.968222i \(-0.580461\pi\)
−0.250091 + 0.968222i \(0.580461\pi\)
\(618\) −1.37939 + 2.38917i −0.0554870 + 0.0961063i
\(619\) −18.1702 31.4718i −0.730324 1.26496i −0.956745 0.290928i \(-0.906036\pi\)
0.226421 0.974030i \(-0.427297\pi\)
\(620\) −3.97178 6.87933i −0.159511 0.276280i
\(621\) −11.5198 + 19.9528i −0.462272 + 0.800679i
\(622\) 6.48070 0.259853
\(623\) 8.57192 + 3.27217i 0.343427 + 0.131097i
\(624\) −13.5817 −0.543704
\(625\) 3.24644 5.62301i 0.129858 0.224920i
\(626\) 18.2506 + 31.6110i 0.729441 + 1.26343i
\(627\) −0.592396 1.02606i −0.0236580 0.0409769i
\(628\) −10.4907 + 18.1704i −0.418623 + 0.725077i
\(629\) −23.3756 −0.932045
\(630\) −7.15493 44.6367i −0.285059 1.77837i
\(631\) 15.9195 0.633746 0.316873 0.948468i \(-0.397367\pi\)
0.316873 + 0.948468i \(0.397367\pi\)
\(632\) −5.46064 + 9.45810i −0.217212 + 0.376223i
\(633\) −2.83750 4.91469i −0.112780 0.195341i
\(634\) 30.8371 + 53.4114i 1.22470 + 2.12124i
\(635\) 25.1386 43.5414i 0.997596 1.72789i
\(636\) −7.23442 −0.286864
\(637\) −29.3332 + 9.65177i −1.16222 + 0.382417i
\(638\) 3.61081 0.142954
\(639\) 12.1763 21.0900i 0.481688 0.834309i
\(640\) −12.0842 20.9305i −0.477672 0.827352i
\(641\) 6.23695 + 10.8027i 0.246345 + 0.426681i 0.962509 0.271250i \(-0.0874372\pi\)
−0.716164 + 0.697932i \(0.754104\pi\)
\(642\) 7.07310 12.2510i 0.279153 0.483507i
\(643\) −36.8331 −1.45255 −0.726277 0.687402i \(-0.758751\pi\)
−0.726277 + 0.687402i \(0.758751\pi\)
\(644\) −4.06283 25.3464i −0.160098 0.998788i
\(645\) −7.86484 −0.309678
\(646\) 8.95336 15.5077i 0.352265 0.610142i
\(647\) −10.2294 17.7178i −0.402158 0.696558i 0.591828 0.806064i \(-0.298406\pi\)
−0.993986 + 0.109506i \(0.965073\pi\)
\(648\) 2.35117 + 4.07234i 0.0923626 + 0.159977i
\(649\) −4.76991 + 8.26173i −0.187236 + 0.324301i
\(650\) 61.9796 2.43104
\(651\) −2.36824 0.904030i −0.0928187 0.0354317i
\(652\) 25.1334 0.984300
\(653\) 7.77972 13.4749i 0.304444 0.527312i −0.672694 0.739921i \(-0.734863\pi\)
0.977137 + 0.212609i \(0.0681961\pi\)
\(654\) 7.35117 + 12.7326i 0.287453 + 0.497884i
\(655\) −9.03121 15.6425i −0.352879 0.611204i
\(656\) 0.667718 1.15652i 0.0260700 0.0451546i
\(657\) −6.04189 −0.235717
\(658\) −17.5728 + 14.2844i −0.685059 + 0.556863i
\(659\) −23.6673 −0.921945 −0.460973 0.887414i \(-0.652499\pi\)
−0.460973 + 0.887414i \(0.652499\pi\)
\(660\) −1.76604 + 3.05888i −0.0687432 + 0.119067i
\(661\) −10.0988 17.4916i −0.392798 0.680345i 0.600020 0.799985i \(-0.295159\pi\)
−0.992817 + 0.119640i \(0.961826\pi\)
\(662\) 5.97653 + 10.3517i 0.232284 + 0.402328i
\(663\) 7.55690 13.0889i 0.293486 0.508332i
\(664\) 9.96585 0.386750
\(665\) 13.1630 10.6998i 0.510438 0.414920i
\(666\) −21.5431 −0.834779
\(667\) 6.08347 10.5369i 0.235553 0.407990i
\(668\) 6.31702 + 10.9414i 0.244413 + 0.423335i
\(669\) 0.0723291 + 0.125278i 0.00279640 + 0.00484351i
\(670\) 2.30541 3.99308i 0.0890657 0.154266i
\(671\) −1.14796 −0.0443163
\(672\) 11.4645 + 4.37636i 0.442253 + 0.168822i
\(673\) 7.92633 0.305537 0.152769 0.988262i \(-0.451181\pi\)
0.152769 + 0.988262i \(0.451181\pi\)
\(674\) 14.6074 25.3008i 0.562656 0.974550i
\(675\) 13.5988 + 23.5538i 0.523418 + 0.906586i
\(676\) −4.94949 8.57277i −0.190365 0.329722i
\(677\) −18.0282 + 31.2258i −0.692881 + 1.20010i 0.278009 + 0.960578i \(0.410325\pi\)
−0.970890 + 0.239526i \(0.923008\pi\)
\(678\) 6.14290 0.235917
\(679\) 6.42665 + 40.0933i 0.246632 + 1.53864i
\(680\) 16.3037 0.625217
\(681\) 3.16550 5.48280i 0.121302 0.210101i
\(682\) −1.37939 2.38917i −0.0528194 0.0914859i
\(683\) 6.17840 + 10.7013i 0.236410 + 0.409474i 0.959681 0.281090i \(-0.0906959\pi\)
−0.723272 + 0.690564i \(0.757363\pi\)
\(684\) 3.57919 6.19934i 0.136854 0.237038i
\(685\) 69.6082 2.65959
\(686\) 34.7686 + 1.62760i 1.32747 + 0.0621419i
\(687\) 15.4655 0.590047
\(688\) −8.04576 + 13.9357i −0.306742 + 0.531292i
\(689\) 15.9572 + 27.6387i 0.607922 + 1.05295i
\(690\) 13.7191 + 23.7622i 0.522277 + 0.904611i
\(691\) −4.00000 + 6.92820i −0.152167 + 0.263561i −0.932024 0.362397i \(-0.881959\pi\)
0.779857 + 0.625958i \(0.215292\pi\)
\(692\) 29.4688 1.12024
\(693\) −1.07785 6.72427i −0.0409441 0.255434i
\(694\) −37.0702 −1.40716
\(695\) 9.33497 16.1686i 0.354096 0.613312i
\(696\) 0.551385 + 0.955026i 0.0209002 + 0.0362002i
\(697\) 0.743041 + 1.28698i 0.0281447 + 0.0487480i
\(698\) 5.44444 9.43005i 0.206075 0.356933i
\(699\) 13.6331 0.515651
\(700\) −28.3102 10.8069i −1.07003 0.408462i
\(701\) 12.7611 0.481981 0.240991 0.970527i \(-0.422528\pi\)
0.240991 + 0.970527i \(0.422528\pi\)
\(702\) 15.0817 26.1223i 0.569223 0.985923i
\(703\) −4.04189 7.00076i −0.152443 0.264039i
\(704\) 1.96064 + 3.39592i 0.0738943 + 0.127989i
\(705\) 5.24985 9.09300i 0.197721 0.342462i
\(706\) 62.3319 2.34589
\(707\) 13.7601 11.1852i 0.517502 0.420662i
\(708\) 9.53983 0.358529
\(709\) −2.35251 + 4.07467i −0.0883504 + 0.153027i −0.906814 0.421531i \(-0.861493\pi\)
0.818464 + 0.574558i \(0.194826\pi\)
\(710\) −31.4021 54.3901i −1.17850 2.04122i
\(711\) −15.9834 27.6840i −0.599424 1.03823i
\(712\) −1.52481 + 2.64106i −0.0571449 + 0.0989778i
\(713\) −9.29591 −0.348135
\(714\) −13.2191 + 10.7454i −0.494712 + 0.402137i
\(715\) 15.5817 0.582723
\(716\) 1.01707 1.76162i 0.0380098 0.0658350i
\(717\) −4.90508 8.49584i −0.183183 0.317283i
\(718\) −3.95589 6.85180i −0.147632 0.255707i
\(719\) −26.3109 + 45.5719i −0.981232 + 1.69954i −0.323619 + 0.946187i \(0.604900\pi\)
−0.657613 + 0.753356i \(0.728434\pi\)
\(720\) 42.8836 1.59818
\(721\) −5.55896 2.12203i −0.207027 0.0790284i
\(722\) −29.5158 −1.09846
\(723\) −9.64038 + 16.6976i −0.358529 + 0.620991i
\(724\) −13.5228 23.4221i −0.502569 0.870475i
\(725\) −7.18139 12.4385i −0.266710 0.461955i
\(726\) −0.613341 + 1.06234i −0.0227632 + 0.0394270i
\(727\) −22.3901 −0.830404 −0.415202 0.909729i \(-0.636289\pi\)
−0.415202 + 0.909729i \(0.636289\pi\)
\(728\) −1.62449 10.1345i −0.0602074 0.375610i
\(729\) −6.63991 −0.245923
\(730\) −7.79086 + 13.4942i −0.288353 + 0.499441i
\(731\) −8.95336 15.5077i −0.331152 0.573572i
\(732\) 0.573978 + 0.994159i 0.0212148 + 0.0367452i
\(733\) 15.1079 26.1676i 0.558022 0.966523i −0.439639 0.898174i \(-0.644894\pi\)
0.997662 0.0683484i \(-0.0217729\pi\)
\(734\) −36.5330 −1.34846
\(735\) −15.3293 + 5.04395i −0.565431 + 0.186049i
\(736\) 45.0009 1.65876
\(737\) 0.347296 0.601535i 0.0127928 0.0221578i
\(738\) 0.684793 + 1.18610i 0.0252076 + 0.0436608i
\(739\) −6.38578 11.0605i −0.234905 0.406867i 0.724340 0.689443i \(-0.242145\pi\)
−0.959245 + 0.282576i \(0.908811\pi\)
\(740\) −12.0496 + 20.8706i −0.442953 + 0.767217i
\(741\) 5.22668 0.192007
\(742\) −5.69341 35.5189i −0.209012 1.30394i
\(743\) −37.4989 −1.37570 −0.687850 0.725853i \(-0.741445\pi\)
−0.687850 + 0.725853i \(0.741445\pi\)
\(744\) 0.421274 0.729669i 0.0154447 0.0267509i
\(745\) 30.0501 + 52.0483i 1.10095 + 1.90690i
\(746\) −11.9474 20.6936i −0.437427 0.757645i
\(747\) −14.5851 + 25.2622i −0.533642 + 0.924295i
\(748\) −8.04189 −0.294041
\(749\) 28.5048 + 10.8812i 1.04154 + 0.397589i
\(750\) 10.7264 0.391672
\(751\) −18.3923 + 31.8565i −0.671146 + 1.16246i 0.306433 + 0.951892i \(0.400864\pi\)
−0.977579 + 0.210567i \(0.932469\pi\)
\(752\) −10.7412 18.6044i −0.391692 0.678431i
\(753\) −1.23055 2.13138i −0.0448438 0.0776718i
\(754\) −7.96451 + 13.7949i −0.290050 + 0.502382i
\(755\) 4.60132 0.167459
\(756\) −11.4436 + 9.30212i −0.416198 + 0.338315i
\(757\) −2.27126 −0.0825503 −0.0412752 0.999148i \(-0.513142\pi\)
−0.0412752 + 0.999148i \(0.513142\pi\)
\(758\) 21.4354 37.1272i 0.778569 1.34852i
\(759\) 2.06670 + 3.57964i 0.0750166 + 0.129933i
\(760\) 2.81908 + 4.88279i 0.102259 + 0.177117i
\(761\) −5.09539 + 8.82547i −0.184708 + 0.319923i −0.943478 0.331435i \(-0.892467\pi\)
0.758770 + 0.651358i \(0.225801\pi\)
\(762\) −17.4611 −0.632549
\(763\) −24.6065 + 20.0019i −0.890816 + 0.724117i
\(764\) 23.8280 0.862067
\(765\) −23.8606 + 41.3277i −0.862680 + 1.49421i
\(766\) −7.79813 13.5068i −0.281758 0.488019i
\(767\) −21.0424 36.4464i −0.759795 1.31600i
\(768\) −6.75624 + 11.7022i −0.243795 + 0.422265i
\(769\) −27.7802 −1.00178 −0.500891 0.865511i \(-0.666994\pi\)
−0.500891 + 0.865511i \(0.666994\pi\)
\(770\) −16.4081 6.26347i −0.591306 0.225720i
\(771\) −5.65270 −0.203577
\(772\) 3.99794 6.92464i 0.143889 0.249223i
\(773\) 5.39100 + 9.33748i 0.193901 + 0.335846i 0.946540 0.322588i \(-0.104553\pi\)
−0.752639 + 0.658433i \(0.771219\pi\)
\(774\) −8.25150 14.2920i −0.296594 0.513716i
\(775\) −5.48680 + 9.50341i −0.197092 + 0.341373i
\(776\) −13.4962 −0.484485
\(777\) 1.21719 + 7.59354i 0.0436663 + 0.272417i
\(778\) 21.4243 0.768097
\(779\) −0.256959 + 0.445067i −0.00920653 + 0.0159462i
\(780\) −7.79086 13.4942i −0.278958 0.483169i
\(781\) −4.73055 8.19356i −0.169272 0.293188i
\(782\) −31.2358 + 54.1019i −1.11699 + 1.93468i
\(783\) −6.98990 −0.249798
\(784\) −6.74463 + 32.3220i −0.240880 + 1.15436i
\(785\) 48.3705 1.72642
\(786\) −3.13651 + 5.43259i −0.111875 + 0.193774i
\(787\) 10.6736 + 18.4873i 0.380474 + 0.659001i 0.991130 0.132895i \(-0.0424274\pi\)
−0.610656 + 0.791896i \(0.709094\pi\)
\(788\) 3.53802 + 6.12803i 0.126037 + 0.218302i
\(789\) 1.90420 3.29817i 0.0677913 0.117418i
\(790\) −82.4407 −2.93311
\(791\) 2.09698 + 13.0822i 0.0745601 + 0.465151i
\(792\) 2.26352 0.0804306
\(793\) 2.53209 4.38571i 0.0899171 0.155741i
\(794\) −6.18479 10.7124i −0.219490 0.380168i
\(795\) 8.33915 + 14.4438i 0.295759 + 0.512270i
\(796\) 4.63429 8.02682i 0.164258 0.284503i
\(797\) 39.3096 1.39242 0.696209 0.717839i \(-0.254868\pi\)
0.696209 + 0.717839i \(0.254868\pi\)
\(798\) −5.50387 2.10100i −0.194835 0.0743745i
\(799\) 23.9058 0.845726
\(800\) 26.5612 46.0054i 0.939082 1.62654i
\(801\) −4.46316 7.73043i −0.157698 0.273141i
\(802\) −3.93717 6.81937i −0.139026 0.240800i
\(803\) −1.17365 + 2.03282i −0.0414171 + 0.0717366i
\(804\) −0.694593 −0.0244964
\(805\) −45.9219 + 37.3285i −1.61853 + 1.31566i
\(806\) 12.1702 0.428679
\(807\) 7.17365 12.4251i 0.252524 0.437385i
\(808\) 2.94697 + 5.10430i 0.103674 + 0.179569i
\(809\) −1.62330 2.81164i −0.0570723 0.0988521i 0.836078 0.548611i \(-0.184843\pi\)
−0.893150 + 0.449759i \(0.851510\pi\)
\(810\) −17.7481 + 30.7406i −0.623604 + 1.08011i
\(811\) 33.4056 1.17303 0.586515 0.809939i \(-0.300500\pi\)
0.586515 + 0.809939i \(0.300500\pi\)
\(812\) 6.04323 4.91236i 0.212076 0.172390i
\(813\) 6.43047 0.225526
\(814\) −4.18479 + 7.24827i −0.146677 + 0.254052i
\(815\) −28.9714 50.1799i −1.01482 1.75772i
\(816\) −8.08007 13.9951i −0.282859 0.489926i
\(817\) 3.09627 5.36289i 0.108325 0.187624i
\(818\) 1.45336 0.0508157
\(819\) 28.0672 + 10.7141i 0.980746 + 0.374381i
\(820\) 1.53209 0.0535029
\(821\) 12.0988 20.9557i 0.422251 0.731360i −0.573908 0.818919i \(-0.694573\pi\)
0.996159 + 0.0875596i \(0.0279068\pi\)
\(822\) −12.0873 20.9359i −0.421595 0.730223i
\(823\) 23.3576 + 40.4565i 0.814193 + 1.41022i 0.909906 + 0.414815i \(0.136154\pi\)
−0.0957121 + 0.995409i \(0.530513\pi\)
\(824\) 0.988856 1.71275i 0.0344484 0.0596664i
\(825\) 4.87939 0.169878
\(826\) 7.50774 + 46.8378i 0.261228 + 1.62970i
\(827\) 1.89992 0.0660667 0.0330333 0.999454i \(-0.489483\pi\)
0.0330333 + 0.999454i \(0.489483\pi\)
\(828\) −12.4868 + 21.6278i −0.433946 + 0.751617i
\(829\) −25.4850 44.1414i −0.885132 1.53309i −0.845562 0.533877i \(-0.820735\pi\)
−0.0395699 0.999217i \(-0.512599\pi\)
\(830\) 37.6143 + 65.1498i 1.30561 + 2.26138i
\(831\) −7.71466 + 13.3622i −0.267619 + 0.463529i
\(832\) −17.2986 −0.599721
\(833\) −27.3965 24.4839i −0.949233 0.848319i
\(834\) −6.48400 −0.224523
\(835\) 14.5633 25.2244i 0.503984 0.872926i
\(836\) −1.39053 2.40847i −0.0480925 0.0832986i
\(837\) 2.67024 + 4.62500i 0.0922972 + 0.159863i
\(838\) −12.9251 + 22.3870i −0.446492 + 0.773346i
\(839\) 42.9368 1.48234 0.741171 0.671317i \(-0.234271\pi\)
0.741171 + 0.671317i \(0.234271\pi\)
\(840\) −0.848945 5.29623i −0.0292914 0.182737i
\(841\) −25.3087 −0.872714
\(842\) 5.45558 9.44935i 0.188012 0.325646i
\(843\) −5.31016 9.19746i −0.182891 0.316777i
\(844\) −6.66044 11.5362i −0.229262 0.397093i
\(845\) −11.4106 + 19.7637i −0.392536 + 0.679893i
\(846\) 22.0318 0.757468
\(847\) −2.47178 0.943555i −0.0849314 0.0324209i
\(848\) 34.1239 1.17182
\(849\) −5.54741 + 9.60839i −0.190387 + 0.329759i
\(850\) 36.8730 + 63.8660i 1.26474 + 2.19059i
\(851\) 14.1010 + 24.4237i 0.483377 + 0.837233i
\(852\) −4.73055 + 8.19356i −0.162066 + 0.280707i
\(853\) 52.3560 1.79263 0.896317 0.443414i \(-0.146233\pi\)
0.896317 + 0.443414i \(0.146233\pi\)
\(854\) −4.42932 + 3.60046i −0.151568 + 0.123205i
\(855\) −16.5030 −0.564390
\(856\) −5.07057 + 8.78249i −0.173309 + 0.300179i
\(857\) 0.489018 + 0.847004i 0.0167045 + 0.0289331i 0.874257 0.485464i \(-0.161349\pi\)
−0.857552 + 0.514397i \(0.828016\pi\)
\(858\) −2.70574 4.68647i −0.0923723 0.159994i
\(859\) 17.0073 29.4576i 0.580283 1.00508i −0.415163 0.909747i \(-0.636275\pi\)
0.995446 0.0953319i \(-0.0303912\pi\)
\(860\) −18.4611 −0.629518
\(861\) 0.379385 0.308391i 0.0129294 0.0105099i
\(862\) −33.8402 −1.15260
\(863\) 11.3478 19.6549i 0.386282 0.669061i −0.605664 0.795721i \(-0.707092\pi\)
0.991946 + 0.126660i \(0.0404257\pi\)
\(864\) −12.9265 22.3893i −0.439768 0.761701i
\(865\) −33.9688 58.8358i −1.15498 2.00048i
\(866\) −2.19934 + 3.80937i −0.0747366 + 0.129448i
\(867\) 6.88713 0.233899
\(868\) −5.55896 2.12203i −0.188684 0.0720263i
\(869\) −12.4192 −0.421293
\(870\) −4.16220 + 7.20914i −0.141112 + 0.244413i
\(871\) 1.53209 + 2.65366i 0.0519129 + 0.0899157i
\(872\) −5.26991 9.12776i −0.178462 0.309105i
\(873\) 19.7518 34.2111i 0.668497 1.15787i
\(874\) −21.6040 −0.730766
\(875\) 3.66163 + 22.8434i 0.123786 + 0.772249i
\(876\) 2.34730 0.0793078
\(877\) 0.614218 1.06386i 0.0207407 0.0359239i −0.855469 0.517854i \(-0.826731\pi\)
0.876209 + 0.481930i \(0.160064\pi\)
\(878\) 37.6190 + 65.1581i 1.26958 + 2.19898i
\(879\) 4.49660 + 7.78833i 0.151666 + 0.262694i
\(880\) 8.33022 14.4284i 0.280812 0.486380i
\(881\) 9.13516 0.307771 0.153886 0.988089i \(-0.450821\pi\)
0.153886 + 0.988089i \(0.450821\pi\)
\(882\) −25.2489 22.5646i −0.850173 0.759790i
\(883\) 44.8256 1.50850 0.754251 0.656586i \(-0.228000\pi\)
0.754251 + 0.656586i \(0.228000\pi\)
\(884\) 17.7383 30.7236i 0.596603 1.03335i
\(885\) −10.9966 19.0467i −0.369647 0.640247i
\(886\) −17.8316 30.8852i −0.599063 1.03761i
\(887\) 11.5089 19.9340i 0.386432 0.669320i −0.605535 0.795819i \(-0.707041\pi\)
0.991967 + 0.126499i \(0.0403741\pi\)
\(888\) −2.55613 −0.0857782
\(889\) −5.96064 37.1860i −0.199913 1.24718i
\(890\) −23.0205 −0.771650
\(891\) −2.67365 + 4.63089i −0.0895706 + 0.155141i
\(892\) 0.169778 + 0.294064i 0.00568458 + 0.00984598i
\(893\) 4.13357 + 7.15955i 0.138325 + 0.239585i
\(894\) 10.4363 18.0762i 0.349042 0.604558i
\(895\) −4.68954 −0.156754
\(896\) −16.9133 6.45632i −0.565033 0.215691i
\(897\) −18.2344 −0.608830
\(898\) 29.6352 51.3297i 0.988940 1.71289i
\(899\) −1.41013 2.44242i −0.0470305 0.0814592i
\(900\) 14.7404 + 25.5310i 0.491345 + 0.851035i
\(901\) −18.9866 + 32.8858i −0.632536 + 1.09559i
\(902\) 0.532089 0.0177166
\(903\) −4.57145 + 3.71599i −0.152128 + 0.123661i
\(904\) −4.40373 −0.146466
\(905\) −31.1755 + 53.9975i −1.03631 + 1.79494i
\(906\) −0.799011 1.38393i −0.0265454 0.0459779i
\(907\) 14.1604 + 24.5266i 0.470190 + 0.814393i 0.999419 0.0340863i \(-0.0108521\pi\)
−0.529229 + 0.848479i \(0.677519\pi\)
\(908\) 7.43036 12.8698i 0.246585 0.427098i
\(909\) −17.2517 −0.572201
\(910\) 60.1211 48.8706i 1.99300 1.62005i
\(911\) 2.97596 0.0985978 0.0492989 0.998784i \(-0.484301\pi\)
0.0492989 + 0.998784i \(0.484301\pi\)
\(912\) 2.79426 4.83981i 0.0925273 0.160262i
\(913\) 5.66637 + 9.81445i 0.187530 + 0.324811i
\(914\) −10.9179 18.9103i −0.361131 0.625497i
\(915\) 1.32325 2.29194i 0.0437454 0.0757692i
\(916\) 36.3022 1.19946
\(917\) −12.6402 4.82516i −0.417417 0.159341i
\(918\) 35.8898 1.18454
\(919\) −10.8969 + 18.8740i −0.359456 + 0.622597i −0.987870 0.155283i \(-0.950371\pi\)
0.628414 + 0.777879i \(0.283705\pi\)
\(920\) −9.83497 17.0347i −0.324249 0.561616i
\(921\) 3.79086 + 6.56596i 0.124913 + 0.216356i
\(922\) 12.1959 21.1240i 0.401652 0.695681i
\(923\) 41.7374 1.37380
\(924\) 0.418748 + 2.61240i 0.0137758 + 0.0859418i
\(925\) 33.2918 1.09463
\(926\) −33.2374 + 57.5689i −1.09225 + 1.89183i
\(927\) 2.89440 + 5.01325i 0.0950646 + 0.164657i
\(928\) 6.82635 + 11.8236i 0.224086 + 0.388128i
\(929\) −18.5326 + 32.0993i −0.608033 + 1.05314i 0.383531 + 0.923528i \(0.374708\pi\)
−0.991564 + 0.129617i \(0.958625\pi\)
\(930\) 6.36009 0.208556
\(931\) 2.59555 12.4385i 0.0850658 0.407656i
\(932\) 32.0009 1.04823
\(933\) −1.12536 + 1.94919i −0.0368427 + 0.0638135i
\(934\) 37.4616 + 64.8853i 1.22578 + 2.12311i
\(935\) 9.26991 + 16.0560i 0.303159 + 0.525086i
\(936\) −4.99273 + 8.64766i −0.163192 + 0.282657i
\(937\) 39.8340 1.30132 0.650660 0.759369i \(-0.274492\pi\)
0.650660 + 0.759369i \(0.274492\pi\)
\(938\) −0.546637 3.41025i −0.0178483 0.111349i
\(939\) −12.6767 −0.413690
\(940\) 12.3229 21.3440i 0.401930 0.696164i
\(941\) −6.84595 11.8575i −0.223172 0.386545i 0.732598 0.680662i \(-0.238308\pi\)
−0.955769 + 0.294117i \(0.904974\pi\)
\(942\) −8.39945 14.5483i −0.273669 0.474009i
\(943\) 0.896459 1.55271i 0.0291927 0.0505633i
\(944\) −44.9982 −1.46457
\(945\) 31.7631 + 12.1250i 1.03325 + 0.394425i
\(946\) −6.41147 −0.208455
\(947\) 23.5667 40.8187i 0.765815 1.32643i −0.174000 0.984746i \(-0.555669\pi\)
0.939815 0.341685i \(-0.110998\pi\)
\(948\) 6.20961 + 10.7554i 0.201679 + 0.349318i
\(949\) −5.17752 8.96773i −0.168069 0.291105i
\(950\) −12.7515 + 22.0862i −0.413713 + 0.716572i
\(951\) −21.4192 −0.694566
\(952\) 9.47653 7.70318i 0.307136 0.249662i
\(953\) −26.8990 −0.871344 −0.435672 0.900106i \(-0.643489\pi\)
−0.435672 + 0.900106i \(0.643489\pi\)
\(954\) −17.4982 + 30.3078i −0.566527 + 0.981253i
\(955\) −27.4666 47.5736i −0.888799 1.53945i
\(956\) −11.5137 19.9423i −0.372379 0.644979i
\(957\) −0.627011 + 1.08602i −0.0202684 + 0.0351059i
\(958\) −57.0958 −1.84468
\(959\) 40.4599 32.8886i 1.30652 1.06203i
\(960\) −9.04013 −0.291769
\(961\) 14.4226 24.9807i 0.465246 0.805829i
\(962\) −18.4611 31.9756i −0.595210 1.03093i
\(963\) −14.8417 25.7065i −0.478266 0.828381i
\(964\) −22.6288 + 39.1943i −0.728825 + 1.26236i
\(965\) −18.4338 −0.593404
\(966\) 19.2015 + 7.32979i 0.617797 + 0.235832i
\(967\) −39.4270 −1.26789 −0.633943 0.773380i \(-0.718565\pi\)
−0.633943 + 0.773380i \(0.718565\pi\)
\(968\) 0.439693 0.761570i 0.0141323 0.0244778i
\(969\) 3.10947 + 5.38576i 0.0998906 + 0.173016i
\(970\) −50.9389 88.2287i −1.63555 2.83285i
\(971\) −8.04071 + 13.9269i −0.258039 + 0.446936i −0.965716 0.259599i \(-0.916409\pi\)
0.707678 + 0.706535i \(0.249743\pi\)
\(972\) 22.0692 0.707871
\(973\) −2.21342 13.8087i −0.0709590 0.442685i
\(974\) −19.6040 −0.628153
\(975\) −10.7626 + 18.6414i −0.344680 + 0.597004i
\(976\) −2.70739 4.68933i −0.0866613 0.150102i
\(977\) −13.7139 23.7532i −0.438748 0.759934i 0.558845 0.829272i \(-0.311245\pi\)
−0.997593 + 0.0693382i \(0.977911\pi\)
\(978\) −10.0617 + 17.4273i −0.321736 + 0.557263i
\(979\) −3.46791 −0.110835
\(980\) −35.9825 + 11.8396i −1.14942 + 0.378204i
\(981\) 30.8503 0.984974
\(982\) 9.65657 16.7257i 0.308154 0.533738i
\(983\) 3.73308 + 6.46588i 0.119067 + 0.206230i 0.919398 0.393328i \(-0.128676\pi\)
−0.800331 + 0.599558i \(0.795343\pi\)
\(984\) 0.0812519 + 0.140732i 0.00259022 + 0.00448639i
\(985\) 8.15657 14.1276i 0.259890 0.450143i
\(986\) −18.9531 −0.603588
\(987\) −1.24480 7.76578i −0.0396223 0.247188i
\(988\) 12.2686 0.390315
\(989\) −10.8020 + 18.7096i −0.343484 + 0.594931i
\(990\) 8.54323 + 14.7973i 0.271522 + 0.470290i
\(991\) 12.1352 + 21.0188i 0.385488 + 0.667685i 0.991837 0.127514i \(-0.0406998\pi\)
−0.606349 + 0.795199i \(0.707366\pi\)
\(992\) 5.21554 9.03358i 0.165593 0.286816i
\(993\) −4.15125 −0.131736
\(994\) −43.9509 16.7774i −1.39404 0.532147i
\(995\) −21.3678 −0.677406
\(996\) 5.66637 9.81445i 0.179546 0.310983i
\(997\) 16.5581 + 28.6794i 0.524400 + 0.908287i 0.999596 + 0.0284075i \(0.00904361\pi\)
−0.475197 + 0.879880i \(0.657623\pi\)
\(998\) 34.3161 + 59.4373i 1.08626 + 1.88145i
\(999\) 8.10101 14.0314i 0.256305 0.443933i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 77.2.e.a.23.1 6
3.2 odd 2 693.2.i.h.100.3 6
4.3 odd 2 1232.2.q.m.177.2 6
7.2 even 3 539.2.a.j.1.3 3
7.3 odd 6 539.2.e.m.67.1 6
7.4 even 3 inner 77.2.e.a.67.1 yes 6
7.5 odd 6 539.2.a.g.1.3 3
7.6 odd 2 539.2.e.m.177.1 6
11.2 odd 10 847.2.n.f.807.1 24
11.3 even 5 847.2.n.g.9.3 24
11.4 even 5 847.2.n.g.632.1 24
11.5 even 5 847.2.n.g.366.1 24
11.6 odd 10 847.2.n.f.366.3 24
11.7 odd 10 847.2.n.f.632.3 24
11.8 odd 10 847.2.n.f.9.1 24
11.9 even 5 847.2.n.g.807.3 24
11.10 odd 2 847.2.e.c.485.3 6
21.2 odd 6 4851.2.a.bj.1.1 3
21.5 even 6 4851.2.a.bk.1.1 3
21.11 odd 6 693.2.i.h.298.3 6
28.11 odd 6 1232.2.q.m.529.2 6
28.19 even 6 8624.2.a.co.1.2 3
28.23 odd 6 8624.2.a.ch.1.2 3
77.4 even 15 847.2.n.g.753.3 24
77.18 odd 30 847.2.n.f.753.1 24
77.25 even 15 847.2.n.g.130.1 24
77.32 odd 6 847.2.e.c.606.3 6
77.39 odd 30 847.2.n.f.487.1 24
77.46 odd 30 847.2.n.f.81.3 24
77.53 even 15 847.2.n.g.81.1 24
77.54 even 6 5929.2.a.u.1.1 3
77.60 even 15 847.2.n.g.487.3 24
77.65 odd 6 5929.2.a.x.1.1 3
77.74 odd 30 847.2.n.f.130.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.2.e.a.23.1 6 1.1 even 1 trivial
77.2.e.a.67.1 yes 6 7.4 even 3 inner
539.2.a.g.1.3 3 7.5 odd 6
539.2.a.j.1.3 3 7.2 even 3
539.2.e.m.67.1 6 7.3 odd 6
539.2.e.m.177.1 6 7.6 odd 2
693.2.i.h.100.3 6 3.2 odd 2
693.2.i.h.298.3 6 21.11 odd 6
847.2.e.c.485.3 6 11.10 odd 2
847.2.e.c.606.3 6 77.32 odd 6
847.2.n.f.9.1 24 11.8 odd 10
847.2.n.f.81.3 24 77.46 odd 30
847.2.n.f.130.3 24 77.74 odd 30
847.2.n.f.366.3 24 11.6 odd 10
847.2.n.f.487.1 24 77.39 odd 30
847.2.n.f.632.3 24 11.7 odd 10
847.2.n.f.753.1 24 77.18 odd 30
847.2.n.f.807.1 24 11.2 odd 10
847.2.n.g.9.3 24 11.3 even 5
847.2.n.g.81.1 24 77.53 even 15
847.2.n.g.130.1 24 77.25 even 15
847.2.n.g.366.1 24 11.5 even 5
847.2.n.g.487.3 24 77.60 even 15
847.2.n.g.632.1 24 11.4 even 5
847.2.n.g.753.3 24 77.4 even 15
847.2.n.g.807.3 24 11.9 even 5
1232.2.q.m.177.2 6 4.3 odd 2
1232.2.q.m.529.2 6 28.11 odd 6
4851.2.a.bj.1.1 3 21.2 odd 6
4851.2.a.bk.1.1 3 21.5 even 6
5929.2.a.u.1.1 3 77.54 even 6
5929.2.a.x.1.1 3 77.65 odd 6
8624.2.a.ch.1.2 3 28.23 odd 6
8624.2.a.co.1.2 3 28.19 even 6