Properties

Label 538.3.c.a.187.8
Level $538$
Weight $3$
Character 538.187
Analytic conductor $14.659$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [538,3,Mod(187,538)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("538.187"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(538, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 538.c (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.6594382226\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 187.8
Character \(\chi\) \(=\) 538.187
Dual form 538.3.c.a.351.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{2} +(-1.45158 - 1.45158i) q^{3} +2.00000i q^{4} +1.48345 q^{5} -2.90315i q^{6} +(-2.38989 + 2.38989i) q^{7} +(-2.00000 + 2.00000i) q^{8} -4.78586i q^{9} +(1.48345 + 1.48345i) q^{10} +16.7247i q^{11} +(2.90315 - 2.90315i) q^{12} -15.4852i q^{13} -4.77978 q^{14} +(-2.15334 - 2.15334i) q^{15} -4.00000 q^{16} +(19.4852 + 19.4852i) q^{17} +(4.78586 - 4.78586i) q^{18} +(-23.8056 + 23.8056i) q^{19} +2.96690i q^{20} +6.93821 q^{21} +(-16.7247 + 16.7247i) q^{22} +35.8637 q^{23} +5.80630 q^{24} -22.7994 q^{25} +(15.4852 - 15.4852i) q^{26} +(-20.0112 + 20.0112i) q^{27} +(-4.77978 - 4.77978i) q^{28} +(-17.0186 + 17.0186i) q^{29} -4.30668i q^{30} +(-5.30618 + 5.30618i) q^{31} +(-4.00000 - 4.00000i) q^{32} +(24.2772 - 24.2772i) q^{33} +38.9705i q^{34} +(-3.54528 + 3.54528i) q^{35} +9.57171 q^{36} -13.2056 q^{37} -47.6112 q^{38} +(-22.4780 + 22.4780i) q^{39} +(-2.96690 + 2.96690i) q^{40} +63.9737 q^{41} +(6.93821 + 6.93821i) q^{42} +56.2586i q^{43} -33.4495 q^{44} -7.09959i q^{45} +(35.8637 + 35.8637i) q^{46} +52.9582 q^{47} +(5.80630 + 5.80630i) q^{48} +37.5769i q^{49} +(-22.7994 - 22.7994i) q^{50} -56.5686i q^{51} +30.9705 q^{52} -38.2821 q^{53} -40.0224 q^{54} +24.8103i q^{55} -9.55955i q^{56} +69.1113 q^{57} -34.0372 q^{58} +(-64.4046 + 64.4046i) q^{59} +(4.30668 - 4.30668i) q^{60} -61.9667 q^{61} -10.6124 q^{62} +(11.4377 + 11.4377i) q^{63} -8.00000i q^{64} -22.9716i q^{65} +48.5545 q^{66} +54.1353 q^{67} +(-38.9705 + 38.9705i) q^{68} +(-52.0588 - 52.0588i) q^{69} -7.09057 q^{70} +(-44.3714 + 44.3714i) q^{71} +(9.57171 + 9.57171i) q^{72} +55.0459i q^{73} +(-13.2056 - 13.2056i) q^{74} +(33.0950 + 33.0950i) q^{75} +(-47.6112 - 47.6112i) q^{76} +(-39.9703 - 39.9703i) q^{77} -44.9560 q^{78} -86.7105i q^{79} -5.93381 q^{80} +15.0229 q^{81} +(63.9737 + 63.9737i) q^{82} +(12.3562 - 12.3562i) q^{83} +13.8764i q^{84} +(28.9054 + 28.9054i) q^{85} +(-56.2586 + 56.2586i) q^{86} +49.4076 q^{87} +(-33.4495 - 33.4495i) q^{88} -78.7503i q^{89} +(7.09959 - 7.09959i) q^{90} +(37.0080 + 37.0080i) q^{91} +71.7273i q^{92} +15.4046 q^{93} +(52.9582 + 52.9582i) q^{94} +(-35.3145 + 35.3145i) q^{95} +11.6126i q^{96} +37.8520i q^{97} +(-37.5769 + 37.5769i) q^{98} +80.0422 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 44 q^{2} + 2 q^{3} + 4 q^{7} - 88 q^{8} - 4 q^{12} + 8 q^{14} + 38 q^{15} - 176 q^{16} - 120 q^{18} + 18 q^{19} - 16 q^{21} + 68 q^{23} - 8 q^{24} + 196 q^{25} + 16 q^{26} - 22 q^{27} + 8 q^{28}+ \cdots - 188 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/538\mathbb{Z}\right)^\times\).

\(n\) \(271\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.00000i 0.500000 + 0.500000i
\(3\) −1.45158 1.45158i −0.483859 0.483859i 0.422503 0.906362i \(-0.361152\pi\)
−0.906362 + 0.422503i \(0.861152\pi\)
\(4\) 2.00000i 0.500000i
\(5\) 1.48345 0.296690 0.148345 0.988936i \(-0.452605\pi\)
0.148345 + 0.988936i \(0.452605\pi\)
\(6\) 2.90315i 0.483859i
\(7\) −2.38989 + 2.38989i −0.341413 + 0.341413i −0.856898 0.515486i \(-0.827612\pi\)
0.515486 + 0.856898i \(0.327612\pi\)
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) 4.78586i 0.531762i
\(10\) 1.48345 + 1.48345i 0.148345 + 0.148345i
\(11\) 16.7247i 1.52043i 0.649671 + 0.760215i \(0.274907\pi\)
−0.649671 + 0.760215i \(0.725093\pi\)
\(12\) 2.90315 2.90315i 0.241929 0.241929i
\(13\) 15.4852i 1.19117i −0.803291 0.595586i \(-0.796920\pi\)
0.803291 0.595586i \(-0.203080\pi\)
\(14\) −4.77978 −0.341413
\(15\) −2.15334 2.15334i −0.143556 0.143556i
\(16\) −4.00000 −0.250000
\(17\) 19.4852 + 19.4852i 1.14619 + 1.14619i 0.987296 + 0.158894i \(0.0507929\pi\)
0.158894 + 0.987296i \(0.449207\pi\)
\(18\) 4.78586 4.78586i 0.265881 0.265881i
\(19\) −23.8056 + 23.8056i −1.25293 + 1.25293i −0.298525 + 0.954402i \(0.596495\pi\)
−0.954402 + 0.298525i \(0.903505\pi\)
\(20\) 2.96690i 0.148345i
\(21\) 6.93821 0.330391
\(22\) −16.7247 + 16.7247i −0.760215 + 0.760215i
\(23\) 35.8637 1.55929 0.779645 0.626222i \(-0.215399\pi\)
0.779645 + 0.626222i \(0.215399\pi\)
\(24\) 5.80630 0.241929
\(25\) −22.7994 −0.911975
\(26\) 15.4852 15.4852i 0.595586 0.595586i
\(27\) −20.0112 + 20.0112i −0.741156 + 0.741156i
\(28\) −4.77978 4.77978i −0.170706 0.170706i
\(29\) −17.0186 + 17.0186i −0.586849 + 0.586849i −0.936777 0.349928i \(-0.886206\pi\)
0.349928 + 0.936777i \(0.386206\pi\)
\(30\) 4.30668i 0.143556i
\(31\) −5.30618 + 5.30618i −0.171167 + 0.171167i −0.787492 0.616325i \(-0.788621\pi\)
0.616325 + 0.787492i \(0.288621\pi\)
\(32\) −4.00000 4.00000i −0.125000 0.125000i
\(33\) 24.2772 24.2772i 0.735674 0.735674i
\(34\) 38.9705i 1.14619i
\(35\) −3.54528 + 3.54528i −0.101294 + 0.101294i
\(36\) 9.57171 0.265881
\(37\) −13.2056 −0.356907 −0.178454 0.983948i \(-0.557109\pi\)
−0.178454 + 0.983948i \(0.557109\pi\)
\(38\) −47.6112 −1.25293
\(39\) −22.4780 + 22.4780i −0.576359 + 0.576359i
\(40\) −2.96690 + 2.96690i −0.0741726 + 0.0741726i
\(41\) 63.9737 1.56033 0.780167 0.625571i \(-0.215134\pi\)
0.780167 + 0.625571i \(0.215134\pi\)
\(42\) 6.93821 + 6.93821i 0.165195 + 0.165195i
\(43\) 56.2586i 1.30834i 0.756347 + 0.654170i \(0.226982\pi\)
−0.756347 + 0.654170i \(0.773018\pi\)
\(44\) −33.4495 −0.760215
\(45\) 7.09959i 0.157769i
\(46\) 35.8637 + 35.8637i 0.779645 + 0.779645i
\(47\) 52.9582 1.12677 0.563385 0.826194i \(-0.309499\pi\)
0.563385 + 0.826194i \(0.309499\pi\)
\(48\) 5.80630 + 5.80630i 0.120965 + 0.120965i
\(49\) 37.5769i 0.766875i
\(50\) −22.7994 22.7994i −0.455987 0.455987i
\(51\) 56.5686i 1.10919i
\(52\) 30.9705 0.595586
\(53\) −38.2821 −0.722305 −0.361152 0.932507i \(-0.617617\pi\)
−0.361152 + 0.932507i \(0.617617\pi\)
\(54\) −40.0224 −0.741156
\(55\) 24.8103i 0.451097i
\(56\) 9.55955i 0.170706i
\(57\) 69.1113 1.21248
\(58\) −34.0372 −0.586849
\(59\) −64.4046 + 64.4046i −1.09160 + 1.09160i −0.0962457 + 0.995358i \(0.530683\pi\)
−0.995358 + 0.0962457i \(0.969317\pi\)
\(60\) 4.30668 4.30668i 0.0717781 0.0717781i
\(61\) −61.9667 −1.01585 −0.507924 0.861402i \(-0.669587\pi\)
−0.507924 + 0.861402i \(0.669587\pi\)
\(62\) −10.6124 −0.171167
\(63\) 11.4377 + 11.4377i 0.181550 + 0.181550i
\(64\) 8.00000i 0.125000i
\(65\) 22.9716i 0.353409i
\(66\) 48.5545 0.735674
\(67\) 54.1353 0.807989 0.403995 0.914761i \(-0.367621\pi\)
0.403995 + 0.914761i \(0.367621\pi\)
\(68\) −38.9705 + 38.9705i −0.573095 + 0.573095i
\(69\) −52.0588 52.0588i −0.754476 0.754476i
\(70\) −7.09057 −0.101294
\(71\) −44.3714 + 44.3714i −0.624949 + 0.624949i −0.946793 0.321844i \(-0.895697\pi\)
0.321844 + 0.946793i \(0.395697\pi\)
\(72\) 9.57171 + 9.57171i 0.132940 + 0.132940i
\(73\) 55.0459i 0.754054i 0.926202 + 0.377027i \(0.123054\pi\)
−0.926202 + 0.377027i \(0.876946\pi\)
\(74\) −13.2056 13.2056i −0.178454 0.178454i
\(75\) 33.0950 + 33.0950i 0.441267 + 0.441267i
\(76\) −47.6112 47.6112i −0.626463 0.626463i
\(77\) −39.9703 39.9703i −0.519094 0.519094i
\(78\) −44.9560 −0.576359
\(79\) 86.7105i 1.09760i −0.835953 0.548801i \(-0.815085\pi\)
0.835953 0.548801i \(-0.184915\pi\)
\(80\) −5.93381 −0.0741726
\(81\) 15.0229 0.185468
\(82\) 63.9737 + 63.9737i 0.780167 + 0.780167i
\(83\) 12.3562 12.3562i 0.148870 0.148870i −0.628743 0.777613i \(-0.716430\pi\)
0.777613 + 0.628743i \(0.216430\pi\)
\(84\) 13.8764i 0.165195i
\(85\) 28.9054 + 28.9054i 0.340063 + 0.340063i
\(86\) −56.2586 + 56.2586i −0.654170 + 0.654170i
\(87\) 49.4076 0.567904
\(88\) −33.4495 33.4495i −0.380108 0.380108i
\(89\) 78.7503i 0.884835i −0.896809 0.442418i \(-0.854121\pi\)
0.896809 0.442418i \(-0.145879\pi\)
\(90\) 7.09959 7.09959i 0.0788843 0.0788843i
\(91\) 37.0080 + 37.0080i 0.406681 + 0.406681i
\(92\) 71.7273i 0.779645i
\(93\) 15.4046 0.165641
\(94\) 52.9582 + 52.9582i 0.563385 + 0.563385i
\(95\) −35.3145 + 35.3145i −0.371731 + 0.371731i
\(96\) 11.6126i 0.120965i
\(97\) 37.8520i 0.390226i 0.980781 + 0.195113i \(0.0625074\pi\)
−0.980781 + 0.195113i \(0.937493\pi\)
\(98\) −37.5769 + 37.5769i −0.383437 + 0.383437i
\(99\) 80.0422 0.808507
\(100\) 45.5987i 0.455987i
\(101\) 1.19352 + 1.19352i 0.0118170 + 0.0118170i 0.712991 0.701174i \(-0.247340\pi\)
−0.701174 + 0.712991i \(0.747340\pi\)
\(102\) 56.5686 56.5686i 0.554594 0.554594i
\(103\) 146.180i 1.41922i −0.704595 0.709610i \(-0.748871\pi\)
0.704595 0.709610i \(-0.251129\pi\)
\(104\) 30.9705 + 30.9705i 0.297793 + 0.297793i
\(105\) 10.2925 0.0980238
\(106\) −38.2821 38.2821i −0.361152 0.361152i
\(107\) 100.468 100.468i 0.938957 0.938957i −0.0592840 0.998241i \(-0.518882\pi\)
0.998241 + 0.0592840i \(0.0188818\pi\)
\(108\) −40.0224 40.0224i −0.370578 0.370578i
\(109\) 91.9046 91.9046i 0.843162 0.843162i −0.146107 0.989269i \(-0.546674\pi\)
0.989269 + 0.146107i \(0.0466744\pi\)
\(110\) −24.8103 + 24.8103i −0.225549 + 0.225549i
\(111\) 19.1689 + 19.1689i 0.172693 + 0.172693i
\(112\) 9.55955 9.55955i 0.0853532 0.0853532i
\(113\) 25.3183 25.3183i 0.224056 0.224056i −0.586148 0.810204i \(-0.699356\pi\)
0.810204 + 0.586148i \(0.199356\pi\)
\(114\) 69.1113 + 69.1113i 0.606239 + 0.606239i
\(115\) 53.2020 0.462626
\(116\) −34.0372 34.0372i −0.293424 0.293424i
\(117\) −74.1101 −0.633420
\(118\) −128.809 −1.09160
\(119\) −93.1351 −0.782648
\(120\) 8.61337 0.0717781
\(121\) −158.717 −1.31171
\(122\) −61.9667 61.9667i −0.507924 0.507924i
\(123\) −92.8627 92.8627i −0.754981 0.754981i
\(124\) −10.6124 10.6124i −0.0855835 0.0855835i
\(125\) −70.9080 −0.567264
\(126\) 22.8753i 0.181550i
\(127\) 86.0078i 0.677226i −0.940926 0.338613i \(-0.890042\pi\)
0.940926 0.338613i \(-0.109958\pi\)
\(128\) 8.00000 8.00000i 0.0625000 0.0625000i
\(129\) 81.6636 81.6636i 0.633052 0.633052i
\(130\) 22.9716 22.9716i 0.176705 0.176705i
\(131\) 247.488 1.88923 0.944613 0.328188i \(-0.106438\pi\)
0.944613 + 0.328188i \(0.106438\pi\)
\(132\) 48.5545 + 48.5545i 0.367837 + 0.367837i
\(133\) 113.786i 0.855530i
\(134\) 54.1353 + 54.1353i 0.403995 + 0.403995i
\(135\) −29.6857 + 29.6857i −0.219894 + 0.219894i
\(136\) −77.9409 −0.573095
\(137\) −127.784 + 127.784i −0.932728 + 0.932728i −0.997876 0.0651474i \(-0.979248\pi\)
0.0651474 + 0.997876i \(0.479248\pi\)
\(138\) 104.118i 0.754476i
\(139\) −29.7644 29.7644i −0.214132 0.214132i 0.591888 0.806020i \(-0.298383\pi\)
−0.806020 + 0.591888i \(0.798383\pi\)
\(140\) −7.09057 7.09057i −0.0506469 0.0506469i
\(141\) −76.8729 76.8729i −0.545198 0.545198i
\(142\) −88.7428 −0.624949
\(143\) 258.987 1.81110
\(144\) 19.1434i 0.132940i
\(145\) −25.2463 + 25.2463i −0.174112 + 0.174112i
\(146\) −55.0459 + 55.0459i −0.377027 + 0.377027i
\(147\) 54.5457 54.5457i 0.371059 0.371059i
\(148\) 26.4111i 0.178454i
\(149\) 230.447i 1.54662i −0.634027 0.773311i \(-0.718599\pi\)
0.634027 0.773311i \(-0.281401\pi\)
\(150\) 66.1900i 0.441267i
\(151\) 59.4678i 0.393826i −0.980421 0.196913i \(-0.936908\pi\)
0.980421 0.196913i \(-0.0630917\pi\)
\(152\) 95.2224i 0.626463i
\(153\) 93.2535 93.2535i 0.609500 0.609500i
\(154\) 79.9405i 0.519094i
\(155\) −7.87145 + 7.87145i −0.0507836 + 0.0507836i
\(156\) −44.9560 44.9560i −0.288179 0.288179i
\(157\) 110.186 + 110.186i 0.701820 + 0.701820i 0.964801 0.262981i \(-0.0847056\pi\)
−0.262981 + 0.964801i \(0.584706\pi\)
\(158\) 86.7105 86.7105i 0.548801 0.548801i
\(159\) 55.5694 + 55.5694i 0.349493 + 0.349493i
\(160\) −5.93381 5.93381i −0.0370863 0.0370863i
\(161\) −85.7102 + 85.7102i −0.532361 + 0.532361i
\(162\) 15.0229 + 15.0229i 0.0927338 + 0.0927338i
\(163\) 64.4420 64.4420i 0.395350 0.395350i −0.481239 0.876589i \(-0.659813\pi\)
0.876589 + 0.481239i \(0.159813\pi\)
\(164\) 127.947i 0.780167i
\(165\) 36.0141 36.0141i 0.218267 0.218267i
\(166\) 24.7124 0.148870
\(167\) 76.6572 + 76.6572i 0.459025 + 0.459025i 0.898335 0.439310i \(-0.144777\pi\)
−0.439310 + 0.898335i \(0.644777\pi\)
\(168\) −13.8764 + 13.8764i −0.0825977 + 0.0825977i
\(169\) −70.7927 −0.418891
\(170\) 57.8108i 0.340063i
\(171\) 113.930 + 113.930i 0.666259 + 0.666259i
\(172\) −112.517 −0.654170
\(173\) −263.472 −1.52296 −0.761481 0.648187i \(-0.775527\pi\)
−0.761481 + 0.648187i \(0.775527\pi\)
\(174\) 49.4076 + 49.4076i 0.283952 + 0.283952i
\(175\) 54.4880 54.4880i 0.311360 0.311360i
\(176\) 66.8990i 0.380108i
\(177\) 186.976 1.05636
\(178\) 78.7503 78.7503i 0.442418 0.442418i
\(179\) 180.188 + 180.188i 1.00664 + 1.00664i 0.999978 + 0.00666055i \(0.00212013\pi\)
0.00666055 + 0.999978i \(0.497880\pi\)
\(180\) 14.1992 0.0788843
\(181\) 44.4320 44.4320i 0.245480 0.245480i −0.573632 0.819113i \(-0.694466\pi\)
0.819113 + 0.573632i \(0.194466\pi\)
\(182\) 74.0160i 0.406681i
\(183\) 89.9494 + 89.9494i 0.491527 + 0.491527i
\(184\) −71.7273 + 71.7273i −0.389823 + 0.389823i
\(185\) −19.5898 −0.105891
\(186\) 15.4046 + 15.4046i 0.0828206 + 0.0828206i
\(187\) −325.885 + 325.885i −1.74270 + 1.74270i
\(188\) 105.916i 0.563385i
\(189\) 95.6491i 0.506080i
\(190\) −70.6289 −0.371731
\(191\) 29.6682i 0.155331i 0.996979 + 0.0776653i \(0.0247466\pi\)
−0.996979 + 0.0776653i \(0.975253\pi\)
\(192\) −11.6126 + 11.6126i −0.0604823 + 0.0604823i
\(193\) 101.866 101.866i 0.527804 0.527804i −0.392113 0.919917i \(-0.628256\pi\)
0.919917 + 0.392113i \(0.128256\pi\)
\(194\) −37.8520 + 37.8520i −0.195113 + 0.195113i
\(195\) −33.3450 + 33.3450i −0.171000 + 0.171000i
\(196\) −75.1537 −0.383437
\(197\) −157.348 + 157.348i −0.798721 + 0.798721i −0.982894 0.184173i \(-0.941039\pi\)
0.184173 + 0.982894i \(0.441039\pi\)
\(198\) 80.0422 + 80.0422i 0.404254 + 0.404254i
\(199\) 320.060i 1.60834i −0.594397 0.804172i \(-0.702609\pi\)
0.594397 0.804172i \(-0.297391\pi\)
\(200\) 45.5987 45.5987i 0.227994 0.227994i
\(201\) −78.5814 78.5814i −0.390952 0.390952i
\(202\) 2.38703i 0.0118170i
\(203\) 81.3452i 0.400715i
\(204\) 113.137 0.554594
\(205\) 94.9019 0.462936
\(206\) 146.180 146.180i 0.709610 0.709610i
\(207\) 171.638i 0.829171i
\(208\) 61.9410i 0.297793i
\(209\) −398.143 398.143i −1.90499 1.90499i
\(210\) 10.2925 + 10.2925i 0.0490119 + 0.0490119i
\(211\) 204.819i 0.970706i 0.874318 + 0.485353i \(0.161309\pi\)
−0.874318 + 0.485353i \(0.838691\pi\)
\(212\) 76.5643i 0.361152i
\(213\) 128.817 0.604774
\(214\) 200.937 0.938957
\(215\) 83.4569i 0.388172i
\(216\) 80.0449i 0.370578i
\(217\) 25.3623i 0.116877i
\(218\) 183.809 0.843162
\(219\) 79.9033 79.9033i 0.364855 0.364855i
\(220\) −49.6207 −0.225549
\(221\) 301.733 301.733i 1.36531 1.36531i
\(222\) 38.3377i 0.172693i
\(223\) −146.712 + 146.712i −0.657900 + 0.657900i −0.954883 0.296983i \(-0.904020\pi\)
0.296983 + 0.954883i \(0.404020\pi\)
\(224\) 19.1191 0.0853532
\(225\) 109.115i 0.484953i
\(226\) 50.6366 0.224056
\(227\) −229.636 + 229.636i −1.01161 + 1.01161i −0.0116807 + 0.999932i \(0.503718\pi\)
−0.999932 + 0.0116807i \(0.996282\pi\)
\(228\) 138.223i 0.606239i
\(229\) 156.971 + 156.971i 0.685461 + 0.685461i 0.961225 0.275764i \(-0.0889308\pi\)
−0.275764 + 0.961225i \(0.588931\pi\)
\(230\) 53.2020 + 53.2020i 0.231313 + 0.231313i
\(231\) 116.040i 0.502337i
\(232\) 68.0745i 0.293424i
\(233\) 307.922i 1.32156i −0.750582 0.660778i \(-0.770227\pi\)
0.750582 0.660778i \(-0.229773\pi\)
\(234\) −74.1101 74.1101i −0.316710 0.316710i
\(235\) 78.5609 0.334302
\(236\) −128.809 128.809i −0.545802 0.545802i
\(237\) −125.867 + 125.867i −0.531084 + 0.531084i
\(238\) −93.1351 93.1351i −0.391324 0.391324i
\(239\) −64.9095 −0.271588 −0.135794 0.990737i \(-0.543359\pi\)
−0.135794 + 0.990737i \(0.543359\pi\)
\(240\) 8.61337 + 8.61337i 0.0358890 + 0.0358890i
\(241\) −3.46495 + 3.46495i −0.0143774 + 0.0143774i −0.714259 0.699882i \(-0.753236\pi\)
0.699882 + 0.714259i \(0.253236\pi\)
\(242\) −158.717 158.717i −0.655855 0.655855i
\(243\) 158.294 + 158.294i 0.651416 + 0.651416i
\(244\) 123.933i 0.507924i
\(245\) 55.7435i 0.227524i
\(246\) 185.725i 0.754981i
\(247\) 368.636 + 368.636i 1.49245 + 1.49245i
\(248\) 21.2247i 0.0855835i
\(249\) −35.8720 −0.144064
\(250\) −70.9080 70.9080i −0.283632 0.283632i
\(251\) −164.176 164.176i −0.654086 0.654086i 0.299888 0.953974i \(-0.403051\pi\)
−0.953974 + 0.299888i \(0.903051\pi\)
\(252\) −22.8753 + 22.8753i −0.0907751 + 0.0907751i
\(253\) 599.811i 2.37079i
\(254\) 86.0078 86.0078i 0.338613 0.338613i
\(255\) 83.9167i 0.329085i
\(256\) 16.0000 0.0625000
\(257\) 263.218 + 263.218i 1.02420 + 1.02420i 0.999700 + 0.0244965i \(0.00779825\pi\)
0.0244965 + 0.999700i \(0.492202\pi\)
\(258\) 163.327 0.633052
\(259\) 31.5598 31.5598i 0.121853 0.121853i
\(260\) 45.9432 0.176705
\(261\) 81.4486 + 81.4486i 0.312064 + 0.312064i
\(262\) 247.488 + 247.488i 0.944613 + 0.944613i
\(263\) −225.288 −0.856610 −0.428305 0.903634i \(-0.640889\pi\)
−0.428305 + 0.903634i \(0.640889\pi\)
\(264\) 97.1089i 0.367837i
\(265\) −56.7897 −0.214301
\(266\) 113.786 113.786i 0.427765 0.427765i
\(267\) −114.312 + 114.312i −0.428135 + 0.428135i
\(268\) 108.271i 0.403995i
\(269\) 182.574 197.554i 0.678716 0.734401i
\(270\) −59.3713 −0.219894
\(271\) 213.289 + 213.289i 0.787043 + 0.787043i 0.981008 0.193966i \(-0.0621350\pi\)
−0.193966 + 0.981008i \(0.562135\pi\)
\(272\) −77.9409 77.9409i −0.286547 0.286547i
\(273\) 107.440i 0.393552i
\(274\) −255.568 −0.932728
\(275\) 381.314i 1.38659i
\(276\) 104.118 104.118i 0.377238 0.377238i
\(277\) 300.555 300.555i 1.08504 1.08504i 0.0890042 0.996031i \(-0.471632\pi\)
0.996031 0.0890042i \(-0.0283684\pi\)
\(278\) 59.5287i 0.214132i
\(279\) 25.3946 + 25.3946i 0.0910201 + 0.0910201i
\(280\) 14.1811i 0.0506469i
\(281\) −89.5044 + 89.5044i −0.318521 + 0.318521i −0.848199 0.529678i \(-0.822313\pi\)
0.529678 + 0.848199i \(0.322313\pi\)
\(282\) 153.746i 0.545198i
\(283\) −355.075 −1.25468 −0.627341 0.778744i \(-0.715857\pi\)
−0.627341 + 0.778744i \(0.715857\pi\)
\(284\) −88.7428 88.7428i −0.312474 0.312474i
\(285\) 102.523 0.359731
\(286\) 258.987 + 258.987i 0.905548 + 0.905548i
\(287\) −152.890 + 152.890i −0.532718 + 0.532718i
\(288\) −19.1434 + 19.1434i −0.0664702 + 0.0664702i
\(289\) 470.348i 1.62750i
\(290\) −50.4926 −0.174112
\(291\) 54.9450 54.9450i 0.188814 0.188814i
\(292\) −110.092 −0.377027
\(293\) −26.4056 −0.0901213 −0.0450607 0.998984i \(-0.514348\pi\)
−0.0450607 + 0.998984i \(0.514348\pi\)
\(294\) 109.091 0.371059
\(295\) −95.5411 + 95.5411i −0.323868 + 0.323868i
\(296\) 26.4111 26.4111i 0.0892268 0.0892268i
\(297\) −334.682 334.682i −1.12688 1.12688i
\(298\) 230.447 230.447i 0.773311 0.773311i
\(299\) 555.358i 1.85738i
\(300\) −66.1900 + 66.1900i −0.220633 + 0.220633i
\(301\) −134.452 134.452i −0.446684 0.446684i
\(302\) 59.4678 59.4678i 0.196913 0.196913i
\(303\) 3.46496i 0.0114355i
\(304\) 95.2224 95.2224i 0.313232 0.313232i
\(305\) −91.9246 −0.301392
\(306\) 186.507 0.609500
\(307\) −19.4030 −0.0632020 −0.0316010 0.999501i \(-0.510061\pi\)
−0.0316010 + 0.999501i \(0.510061\pi\)
\(308\) 79.9405 79.9405i 0.259547 0.259547i
\(309\) −212.191 + 212.191i −0.686702 + 0.686702i
\(310\) −15.7429 −0.0507836
\(311\) −101.590 101.590i −0.326656 0.326656i 0.524657 0.851313i \(-0.324193\pi\)
−0.851313 + 0.524657i \(0.824193\pi\)
\(312\) 89.9120i 0.288179i
\(313\) −279.679 −0.893544 −0.446772 0.894648i \(-0.647426\pi\)
−0.446772 + 0.894648i \(0.647426\pi\)
\(314\) 220.372i 0.701820i
\(315\) 16.9672 + 16.9672i 0.0538642 + 0.0538642i
\(316\) 173.421 0.548801
\(317\) −365.382 365.382i −1.15262 1.15262i −0.986025 0.166600i \(-0.946721\pi\)
−0.166600 0.986025i \(-0.553279\pi\)
\(318\) 111.139i 0.349493i
\(319\) −284.632 284.632i −0.892263 0.892263i
\(320\) 11.8676i 0.0370863i
\(321\) −291.675 −0.908645
\(322\) −171.420 −0.532361
\(323\) −927.715 −2.87218
\(324\) 30.0457i 0.0927338i
\(325\) 353.054i 1.08632i
\(326\) 128.884 0.395350
\(327\) −266.813 −0.815942
\(328\) −127.947 + 127.947i −0.390084 + 0.390084i
\(329\) −126.564 + 126.564i −0.384694 + 0.384694i
\(330\) 72.0282 0.218267
\(331\) 87.4154 0.264095 0.132047 0.991243i \(-0.457845\pi\)
0.132047 + 0.991243i \(0.457845\pi\)
\(332\) 24.7124 + 24.7124i 0.0744351 + 0.0744351i
\(333\) 63.1999i 0.189790i
\(334\) 153.314i 0.459025i
\(335\) 80.3071 0.239723
\(336\) −27.7528 −0.0825977
\(337\) 424.119 424.119i 1.25851 1.25851i 0.306710 0.951803i \(-0.400772\pi\)
0.951803 0.306710i \(-0.0992281\pi\)
\(338\) −70.7927 70.7927i −0.209446 0.209446i
\(339\) −73.5028 −0.216822
\(340\) −57.8108 + 57.8108i −0.170032 + 0.170032i
\(341\) −88.7444 88.7444i −0.260248 0.260248i
\(342\) 227.860i 0.666259i
\(343\) −206.909 206.909i −0.603233 0.603233i
\(344\) −112.517 112.517i −0.327085 0.327085i
\(345\) −77.2268 77.2268i −0.223846 0.223846i
\(346\) −263.472 263.472i −0.761481 0.761481i
\(347\) −350.568 −1.01028 −0.505141 0.863037i \(-0.668559\pi\)
−0.505141 + 0.863037i \(0.668559\pi\)
\(348\) 98.8152i 0.283952i
\(349\) 159.379 0.456672 0.228336 0.973582i \(-0.426671\pi\)
0.228336 + 0.973582i \(0.426671\pi\)
\(350\) 108.976 0.311360
\(351\) 309.878 + 309.878i 0.882845 + 0.882845i
\(352\) 66.8990 66.8990i 0.190054 0.190054i
\(353\) 410.791i 1.16371i 0.813291 + 0.581857i \(0.197674\pi\)
−0.813291 + 0.581857i \(0.802326\pi\)
\(354\) 186.976 + 186.976i 0.528182 + 0.528182i
\(355\) −65.8228 + 65.8228i −0.185416 + 0.185416i
\(356\) 157.501 0.442418
\(357\) 135.193 + 135.193i 0.378691 + 0.378691i
\(358\) 360.377i 1.00664i
\(359\) −280.044 + 280.044i −0.780066 + 0.780066i −0.979842 0.199775i \(-0.935979\pi\)
0.199775 + 0.979842i \(0.435979\pi\)
\(360\) 14.1992 + 14.1992i 0.0394421 + 0.0394421i
\(361\) 772.414i 2.13965i
\(362\) 88.8639 0.245480
\(363\) 230.390 + 230.390i 0.634682 + 0.634682i
\(364\) −74.0160 + 74.0160i −0.203341 + 0.203341i
\(365\) 81.6580i 0.223720i
\(366\) 179.899i 0.491527i
\(367\) −325.936 + 325.936i −0.888109 + 0.888109i −0.994341 0.106232i \(-0.966121\pi\)
0.106232 + 0.994341i \(0.466121\pi\)
\(368\) −143.455 −0.389823
\(369\) 306.169i 0.829726i
\(370\) −19.5898 19.5898i −0.0529454 0.0529454i
\(371\) 91.4901 91.4901i 0.246604 0.246604i
\(372\) 30.8093i 0.0828206i
\(373\) 113.962 + 113.962i 0.305527 + 0.305527i 0.843172 0.537645i \(-0.180686\pi\)
−0.537645 + 0.843172i \(0.680686\pi\)
\(374\) −651.771 −1.74270
\(375\) 102.928 + 102.928i 0.274476 + 0.274476i
\(376\) −105.916 + 105.916i −0.281693 + 0.281693i
\(377\) 263.537 + 263.537i 0.699038 + 0.699038i
\(378\) 95.6491 95.6491i 0.253040 0.253040i
\(379\) −84.8069 + 84.8069i −0.223765 + 0.223765i −0.810082 0.586317i \(-0.800577\pi\)
0.586317 + 0.810082i \(0.300577\pi\)
\(380\) −70.6289 70.6289i −0.185866 0.185866i
\(381\) −124.847 + 124.847i −0.327682 + 0.327682i
\(382\) −29.6682 + 29.6682i −0.0776653 + 0.0776653i
\(383\) 462.145 + 462.145i 1.20665 + 1.20665i 0.972107 + 0.234539i \(0.0753579\pi\)
0.234539 + 0.972107i \(0.424642\pi\)
\(384\) −23.2252 −0.0604823
\(385\) −59.2940 59.2940i −0.154010 0.154010i
\(386\) 203.732 0.527804
\(387\) 269.246 0.695725
\(388\) −75.7039 −0.195113
\(389\) 662.847 1.70398 0.851988 0.523562i \(-0.175397\pi\)
0.851988 + 0.523562i \(0.175397\pi\)
\(390\) −66.6900 −0.171000
\(391\) 698.812 + 698.812i 1.78724 + 1.78724i
\(392\) −75.1537 75.1537i −0.191719 0.191719i
\(393\) −359.248 359.248i −0.914118 0.914118i
\(394\) −314.696 −0.798721
\(395\) 128.631i 0.325648i
\(396\) 160.084i 0.404254i
\(397\) −164.172 + 164.172i −0.413532 + 0.413532i −0.882967 0.469435i \(-0.844458\pi\)
0.469435 + 0.882967i \(0.344458\pi\)
\(398\) 320.060 320.060i 0.804172 0.804172i
\(399\) −165.168 + 165.168i −0.413956 + 0.413956i
\(400\) 91.1975 0.227994
\(401\) 281.823 + 281.823i 0.702801 + 0.702801i 0.965011 0.262210i \(-0.0844513\pi\)
−0.262210 + 0.965011i \(0.584451\pi\)
\(402\) 157.163i 0.390952i
\(403\) 82.1674 + 82.1674i 0.203889 + 0.203889i
\(404\) −2.38703 + 2.38703i −0.00590850 + 0.00590850i
\(405\) 22.2857 0.0550264
\(406\) 81.3452 81.3452i 0.200358 0.200358i
\(407\) 220.860i 0.542653i
\(408\) 113.137 + 113.137i 0.277297 + 0.277297i
\(409\) −60.8514 60.8514i −0.148781 0.148781i 0.628792 0.777573i \(-0.283550\pi\)
−0.777573 + 0.628792i \(0.783550\pi\)
\(410\) 94.9019 + 94.9019i 0.231468 + 0.231468i
\(411\) 370.976 0.902617
\(412\) 292.359 0.709610
\(413\) 307.840i 0.745374i
\(414\) 171.638 171.638i 0.414585 0.414585i
\(415\) 18.3299 18.3299i 0.0441683 0.0441683i
\(416\) −61.9410 + 61.9410i −0.148897 + 0.148897i
\(417\) 86.4105i 0.207219i
\(418\) 796.285i 1.90499i
\(419\) 454.438i 1.08458i 0.840193 + 0.542288i \(0.182442\pi\)
−0.840193 + 0.542288i \(0.817558\pi\)
\(420\) 20.5850i 0.0490119i
\(421\) 119.783i 0.284520i −0.989829 0.142260i \(-0.954563\pi\)
0.989829 0.142260i \(-0.0454370\pi\)
\(422\) −204.819 + 204.819i −0.485353 + 0.485353i
\(423\) 253.450i 0.599174i
\(424\) 76.5643 76.5643i 0.180576 0.180576i
\(425\) −444.251 444.251i −1.04530 1.04530i
\(426\) 128.817 + 128.817i 0.302387 + 0.302387i
\(427\) 148.094 148.094i 0.346823 0.346823i
\(428\) 200.937 + 200.937i 0.469479 + 0.469479i
\(429\) −375.939 375.939i −0.876314 0.876314i
\(430\) −83.4569 + 83.4569i −0.194086 + 0.194086i
\(431\) 507.394 + 507.394i 1.17725 + 1.17725i 0.980442 + 0.196807i \(0.0630571\pi\)
0.196807 + 0.980442i \(0.436943\pi\)
\(432\) 80.0449 80.0449i 0.185289 0.185289i
\(433\) 29.3204i 0.0677145i −0.999427 0.0338572i \(-0.989221\pi\)
0.999427 0.0338572i \(-0.0107792\pi\)
\(434\) 25.3623 25.3623i 0.0584386 0.0584386i
\(435\) 73.2938 0.168491
\(436\) 183.809 + 183.809i 0.421581 + 0.421581i
\(437\) −853.757 + 853.757i −1.95368 + 1.95368i
\(438\) 159.807 0.364855
\(439\) 650.874i 1.48263i 0.671158 + 0.741314i \(0.265797\pi\)
−0.671158 + 0.741314i \(0.734203\pi\)
\(440\) −49.6207 49.6207i −0.112774 0.112774i
\(441\) 179.837 0.407795
\(442\) 603.467 1.36531
\(443\) 279.547 + 279.547i 0.631031 + 0.631031i 0.948327 0.317295i \(-0.102775\pi\)
−0.317295 + 0.948327i \(0.602775\pi\)
\(444\) −38.3377 + 38.3377i −0.0863463 + 0.0863463i
\(445\) 116.822i 0.262522i
\(446\) −293.423 −0.657900
\(447\) −334.511 + 334.511i −0.748346 + 0.748346i
\(448\) 19.1191 + 19.1191i 0.0426766 + 0.0426766i
\(449\) 487.472 1.08568 0.542842 0.839835i \(-0.317348\pi\)
0.542842 + 0.839835i \(0.317348\pi\)
\(450\) −109.115 + 109.115i −0.242477 + 0.242477i
\(451\) 1069.94i 2.37238i
\(452\) 50.6366 + 50.6366i 0.112028 + 0.112028i
\(453\) −86.3220 + 86.3220i −0.190556 + 0.190556i
\(454\) −459.272 −1.01161
\(455\) 54.8996 + 54.8996i 0.120658 + 0.120658i
\(456\) −138.223 + 138.223i −0.303120 + 0.303120i
\(457\) 389.253i 0.851756i 0.904780 + 0.425878i \(0.140035\pi\)
−0.904780 + 0.425878i \(0.859965\pi\)
\(458\) 313.941i 0.685461i
\(459\) −779.846 −1.69901
\(460\) 106.404i 0.231313i
\(461\) −113.397 + 113.397i −0.245981 + 0.245981i −0.819319 0.573338i \(-0.805648\pi\)
0.573338 + 0.819319i \(0.305648\pi\)
\(462\) −116.040 + 116.040i −0.251168 + 0.251168i
\(463\) 316.766 316.766i 0.684159 0.684159i −0.276775 0.960935i \(-0.589266\pi\)
0.960935 + 0.276775i \(0.0892658\pi\)
\(464\) 68.0745 68.0745i 0.146712 0.146712i
\(465\) 22.8520 0.0491441
\(466\) 307.922 307.922i 0.660778 0.660778i
\(467\) 114.556 + 114.556i 0.245301 + 0.245301i 0.819039 0.573738i \(-0.194507\pi\)
−0.573738 + 0.819039i \(0.694507\pi\)
\(468\) 148.220i 0.316710i
\(469\) −129.377 + 129.377i −0.275858 + 0.275858i
\(470\) 78.5609 + 78.5609i 0.167151 + 0.167151i
\(471\) 319.886i 0.679163i
\(472\) 257.618i 0.545802i
\(473\) −940.911 −1.98924
\(474\) −251.734 −0.531084
\(475\) 542.753 542.753i 1.14264 1.14264i
\(476\) 186.270i 0.391324i
\(477\) 183.213i 0.384094i
\(478\) −64.9095 64.9095i −0.135794 0.135794i
\(479\) −609.039 609.039i −1.27148 1.27148i −0.945312 0.326169i \(-0.894242\pi\)
−0.326169 0.945312i \(-0.605758\pi\)
\(480\) 17.2267i 0.0358890i
\(481\) 204.491i 0.425138i
\(482\) −6.92991 −0.0143774
\(483\) 248.830 0.515175
\(484\) 317.434i 0.655855i
\(485\) 56.1516i 0.115776i
\(486\) 316.588i 0.651416i
\(487\) 317.453 0.651854 0.325927 0.945395i \(-0.394324\pi\)
0.325927 + 0.945395i \(0.394324\pi\)
\(488\) 123.933 123.933i 0.253962 0.253962i
\(489\) −187.085 −0.382587
\(490\) −55.7435 + 55.7435i −0.113762 + 0.113762i
\(491\) 714.712i 1.45563i −0.685776 0.727813i \(-0.740537\pi\)
0.685776 0.727813i \(-0.259463\pi\)
\(492\) 185.725 185.725i 0.377491 0.377491i
\(493\) −663.223 −1.34528
\(494\) 737.271i 1.49245i
\(495\) 118.739 0.239876
\(496\) 21.2247 21.2247i 0.0427917 0.0427917i
\(497\) 212.085i 0.426731i
\(498\) −35.8720 35.8720i −0.0720321 0.0720321i
\(499\) −271.717 271.717i −0.544523 0.544523i 0.380329 0.924851i \(-0.375811\pi\)
−0.924851 + 0.380329i \(0.875811\pi\)
\(500\) 141.816i 0.283632i
\(501\) 222.547i 0.444207i
\(502\) 328.351i 0.654086i
\(503\) 253.136 + 253.136i 0.503253 + 0.503253i 0.912447 0.409194i \(-0.134190\pi\)
−0.409194 + 0.912447i \(0.634190\pi\)
\(504\) −45.7507 −0.0907751
\(505\) 1.77052 + 1.77052i 0.00350599 + 0.00350599i
\(506\) −599.811 + 599.811i −1.18540 + 1.18540i
\(507\) 102.761 + 102.761i 0.202684 + 0.202684i
\(508\) 172.016 0.338613
\(509\) 418.999 + 418.999i 0.823181 + 0.823181i 0.986563 0.163382i \(-0.0522403\pi\)
−0.163382 + 0.986563i \(0.552240\pi\)
\(510\) 83.9167 83.9167i 0.164543 0.164543i
\(511\) −131.554 131.554i −0.257444 0.257444i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) 952.758i 1.85723i
\(514\) 526.437i 1.02420i
\(515\) 216.850i 0.421069i
\(516\) 163.327 + 163.327i 0.316526 + 0.316526i
\(517\) 885.712i 1.71318i
\(518\) 63.1197 0.121853
\(519\) 382.450 + 382.450i 0.736898 + 0.736898i
\(520\) 45.9432 + 45.9432i 0.0883523 + 0.0883523i
\(521\) 548.945 548.945i 1.05364 1.05364i 0.0551602 0.998478i \(-0.482433\pi\)
0.998478 0.0551602i \(-0.0175669\pi\)
\(522\) 162.897i 0.312064i
\(523\) −99.1601 + 99.1601i −0.189599 + 0.189599i −0.795523 0.605924i \(-0.792804\pi\)
0.605924 + 0.795523i \(0.292804\pi\)
\(524\) 494.977i 0.944613i
\(525\) −158.187 −0.301308
\(526\) −225.288 225.288i −0.428305 0.428305i
\(527\) −206.784 −0.392380
\(528\) −97.1089 + 97.1089i −0.183918 + 0.183918i
\(529\) 757.203 1.43139
\(530\) −56.7897 56.7897i −0.107150 0.107150i
\(531\) 308.231 + 308.231i 0.580473 + 0.580473i
\(532\) 227.571 0.427765
\(533\) 990.648i 1.85863i
\(534\) −228.624 −0.428135
\(535\) 149.040 149.040i 0.278579 0.278579i
\(536\) −108.271 + 108.271i −0.201997 + 0.201997i
\(537\) 523.114i 0.974141i
\(538\) 380.128 14.9794i 0.706558 0.0278428i
\(539\) −628.463 −1.16598
\(540\) −59.3713 59.3713i −0.109947 0.109947i
\(541\) −125.464 125.464i −0.231911 0.231911i 0.581579 0.813490i \(-0.302435\pi\)
−0.813490 + 0.581579i \(0.802435\pi\)
\(542\) 426.577i 0.787043i
\(543\) −128.993 −0.237556
\(544\) 155.882i 0.286547i
\(545\) 136.336 136.336i 0.250158 0.250158i
\(546\) 107.440 107.440i 0.196776 0.196776i
\(547\) 439.337i 0.803176i 0.915820 + 0.401588i \(0.131542\pi\)
−0.915820 + 0.401588i \(0.868458\pi\)
\(548\) −255.568 255.568i −0.466364 0.466364i
\(549\) 296.564i 0.540189i
\(550\) 381.314 381.314i 0.693297 0.693297i
\(551\) 810.277i 1.47056i
\(552\) 208.235 0.377238
\(553\) 207.229 + 207.229i 0.374735 + 0.374735i
\(554\) 601.110 1.08504
\(555\) 28.4361 + 28.4361i 0.0512362 + 0.0512362i
\(556\) 59.5287 59.5287i 0.107066 0.107066i
\(557\) 234.353 234.353i 0.420741 0.420741i −0.464718 0.885459i \(-0.653844\pi\)
0.885459 + 0.464718i \(0.153844\pi\)
\(558\) 50.7892i 0.0910201i
\(559\) 871.178 1.55846
\(560\) 14.1811 14.1811i 0.0253235 0.0253235i
\(561\) 946.095 1.68644
\(562\) −179.009 −0.318521
\(563\) −122.898 −0.218292 −0.109146 0.994026i \(-0.534812\pi\)
−0.109146 + 0.994026i \(0.534812\pi\)
\(564\) 153.746 153.746i 0.272599 0.272599i
\(565\) 37.5584 37.5584i 0.0664751 0.0664751i
\(566\) −355.075 355.075i −0.627341 0.627341i
\(567\) −35.9030 + 35.9030i −0.0633210 + 0.0633210i
\(568\) 177.486i 0.312474i
\(569\) 27.5868 27.5868i 0.0484830 0.0484830i −0.682450 0.730933i \(-0.739085\pi\)
0.730933 + 0.682450i \(0.239085\pi\)
\(570\) 102.523 + 102.523i 0.179865 + 0.179865i
\(571\) −250.973 + 250.973i −0.439532 + 0.439532i −0.891854 0.452323i \(-0.850596\pi\)
0.452323 + 0.891854i \(0.350596\pi\)
\(572\) 517.973i 0.905548i
\(573\) 43.0656 43.0656i 0.0751581 0.0751581i
\(574\) −305.780 −0.532718
\(575\) −817.669 −1.42203
\(576\) −38.2869 −0.0664702
\(577\) −47.1126 + 47.1126i −0.0816510 + 0.0816510i −0.746753 0.665102i \(-0.768388\pi\)
0.665102 + 0.746753i \(0.268388\pi\)
\(578\) −470.348 + 470.348i −0.813751 + 0.813751i
\(579\) −295.733 −0.510765
\(580\) −50.4926 50.4926i −0.0870562 0.0870562i
\(581\) 59.0600i 0.101652i
\(582\) 109.890 0.188814
\(583\) 640.259i 1.09821i
\(584\) −110.092 110.092i −0.188513 0.188513i
\(585\) −109.939 −0.187930
\(586\) −26.4056 26.4056i −0.0450607 0.0450607i
\(587\) 198.837i 0.338734i −0.985553 0.169367i \(-0.945828\pi\)
0.985553 0.169367i \(-0.0541724\pi\)
\(588\) 109.091 + 109.091i 0.185529 + 0.185529i
\(589\) 252.633i 0.428919i
\(590\) −191.082 −0.323868
\(591\) 456.805 0.772936
\(592\) 52.8223 0.0892268
\(593\) 665.761i 1.12270i −0.827579 0.561350i \(-0.810282\pi\)
0.827579 0.561350i \(-0.189718\pi\)
\(594\) 669.365i 1.12688i
\(595\) −138.161 −0.232204
\(596\) 460.893 0.773311
\(597\) −464.592 + 464.592i −0.778211 + 0.778211i
\(598\) 555.358 555.358i 0.928692 0.928692i
\(599\) −73.5083 −0.122718 −0.0613592 0.998116i \(-0.519544\pi\)
−0.0613592 + 0.998116i \(0.519544\pi\)
\(600\) −132.380 −0.220633
\(601\) 217.542 + 217.542i 0.361967 + 0.361967i 0.864537 0.502570i \(-0.167612\pi\)
−0.502570 + 0.864537i \(0.667612\pi\)
\(602\) 268.904i 0.446684i
\(603\) 259.084i 0.429658i
\(604\) 118.936 0.196913
\(605\) −235.449 −0.389172
\(606\) 3.46496 3.46496i 0.00571776 0.00571776i
\(607\) −266.305 266.305i −0.438723 0.438723i 0.452859 0.891582i \(-0.350404\pi\)
−0.891582 + 0.452859i \(0.850404\pi\)
\(608\) 190.445 0.313232
\(609\) −118.079 + 118.079i −0.193889 + 0.193889i
\(610\) −91.9246 91.9246i −0.150696 0.150696i
\(611\) 820.071i 1.34218i
\(612\) 186.507 + 186.507i 0.304750 + 0.304750i
\(613\) −217.417 217.417i −0.354677 0.354677i 0.507170 0.861846i \(-0.330692\pi\)
−0.861846 + 0.507170i \(0.830692\pi\)
\(614\) −19.4030 19.4030i −0.0316010 0.0316010i
\(615\) −137.757 137.757i −0.223996 0.223996i
\(616\) 159.881 0.259547
\(617\) 649.130i 1.05207i 0.850462 + 0.526037i \(0.176323\pi\)
−0.850462 + 0.526037i \(0.823677\pi\)
\(618\) −424.382 −0.686702
\(619\) −170.857 −0.276021 −0.138011 0.990431i \(-0.544071\pi\)
−0.138011 + 0.990431i \(0.544071\pi\)
\(620\) −15.7429 15.7429i −0.0253918 0.0253918i
\(621\) −717.676 + 717.676i −1.15568 + 1.15568i
\(622\) 203.180i 0.326656i
\(623\) 188.205 + 188.205i 0.302094 + 0.302094i
\(624\) 89.9120 89.9120i 0.144090 0.144090i
\(625\) 464.796 0.743673
\(626\) −279.679 279.679i −0.446772 0.446772i
\(627\) 1155.87i 1.84349i
\(628\) −220.372 + 220.372i −0.350910 + 0.350910i
\(629\) −257.313 257.313i −0.409083 0.409083i
\(630\) 33.9344i 0.0538642i
\(631\) −1170.63 −1.85520 −0.927598 0.373579i \(-0.878130\pi\)
−0.927598 + 0.373579i \(0.878130\pi\)
\(632\) 173.421 + 173.421i 0.274400 + 0.274400i
\(633\) 297.310 297.310i 0.469684 0.469684i
\(634\) 730.764i 1.15262i
\(635\) 127.588i 0.200927i
\(636\) −111.139 + 111.139i −0.174747 + 0.174747i
\(637\) 581.887 0.913480
\(638\) 569.264i 0.892263i
\(639\) 212.355 + 212.355i 0.332324 + 0.332324i
\(640\) 11.8676 11.8676i 0.0185431 0.0185431i
\(641\) 832.894i 1.29937i −0.760205 0.649683i \(-0.774902\pi\)
0.760205 0.649683i \(-0.225098\pi\)
\(642\) −291.675 291.675i −0.454322 0.454322i
\(643\) 1189.28 1.84959 0.924793 0.380471i \(-0.124238\pi\)
0.924793 + 0.380471i \(0.124238\pi\)
\(644\) −171.420 171.420i −0.266181 0.266181i
\(645\) 121.144 121.144i 0.187820 0.187820i
\(646\) −927.715 927.715i −1.43609 1.43609i
\(647\) 349.154 349.154i 0.539651 0.539651i −0.383775 0.923426i \(-0.625376\pi\)
0.923426 + 0.383775i \(0.125376\pi\)
\(648\) −30.0457 + 30.0457i −0.0463669 + 0.0463669i
\(649\) −1077.15 1077.15i −1.65971 1.65971i
\(650\) −353.054 + 353.054i −0.543160 + 0.543160i
\(651\) −36.8154 + 36.8154i −0.0565520 + 0.0565520i
\(652\) 128.884 + 128.884i 0.197675 + 0.197675i
\(653\) 823.923 1.26175 0.630875 0.775884i \(-0.282696\pi\)
0.630875 + 0.775884i \(0.282696\pi\)
\(654\) −266.813 266.813i −0.407971 0.407971i
\(655\) 367.137 0.560515
\(656\) −255.895 −0.390084
\(657\) 263.442 0.400977
\(658\) −253.128 −0.384694
\(659\) 149.041 0.226163 0.113081 0.993586i \(-0.463928\pi\)
0.113081 + 0.993586i \(0.463928\pi\)
\(660\) 72.0282 + 72.0282i 0.109134 + 0.109134i
\(661\) 115.313 + 115.313i 0.174452 + 0.174452i 0.788932 0.614480i \(-0.210634\pi\)
−0.614480 + 0.788932i \(0.710634\pi\)
\(662\) 87.4154 + 87.4154i 0.132047 + 0.132047i
\(663\) −875.978 −1.32123
\(664\) 49.4249i 0.0744351i
\(665\) 168.795i 0.253827i
\(666\) −63.1999 + 63.1999i −0.0948948 + 0.0948948i
\(667\) −610.350 + 610.350i −0.915068 + 0.915068i
\(668\) −153.314 + 153.314i −0.229513 + 0.229513i
\(669\) 425.926 0.636661
\(670\) 80.3071 + 80.3071i 0.119861 + 0.119861i
\(671\) 1036.38i 1.54453i
\(672\) −27.7528 27.7528i −0.0412989 0.0412989i
\(673\) 723.480 723.480i 1.07501 1.07501i 0.0780593 0.996949i \(-0.475128\pi\)
0.996949 0.0780593i \(-0.0248723\pi\)
\(674\) 848.238 1.25851
\(675\) 456.243 456.243i 0.675916 0.675916i
\(676\) 141.585i 0.209446i
\(677\) −737.948 737.948i −1.09003 1.09003i −0.995525 0.0945020i \(-0.969874\pi\)
−0.0945020 0.995525i \(-0.530126\pi\)
\(678\) −73.5028 73.5028i −0.108411 0.108411i
\(679\) −90.4620 90.4620i −0.133228 0.133228i
\(680\) −115.622 −0.170032
\(681\) 666.668 0.978955
\(682\) 177.489i 0.260248i
\(683\) 367.695 367.695i 0.538353 0.538353i −0.384692 0.923045i \(-0.625692\pi\)
0.923045 + 0.384692i \(0.125692\pi\)
\(684\) −227.860 + 227.860i −0.333129 + 0.333129i
\(685\) −189.561 + 189.561i −0.276731 + 0.276731i
\(686\) 413.818i 0.603233i
\(687\) 455.710i 0.663333i
\(688\) 225.035i 0.327085i
\(689\) 592.808i 0.860389i
\(690\) 154.454i 0.223846i
\(691\) −54.3680 + 54.3680i −0.0786802 + 0.0786802i −0.745352 0.666671i \(-0.767718\pi\)
0.666671 + 0.745352i \(0.267718\pi\)
\(692\) 526.945i 0.761481i
\(693\) −191.292 + 191.292i −0.276035 + 0.276035i
\(694\) −350.568 350.568i −0.505141 0.505141i
\(695\) −44.1540 44.1540i −0.0635309 0.0635309i
\(696\) −98.8152 + 98.8152i −0.141976 + 0.141976i
\(697\) 1246.54 + 1246.54i 1.78844 + 1.78844i
\(698\) 159.379 + 159.379i 0.228336 + 0.228336i
\(699\) −446.973 + 446.973i −0.639446 + 0.639446i
\(700\) 108.976 + 108.976i 0.155680 + 0.155680i
\(701\) 159.161 159.161i 0.227048 0.227048i −0.584410 0.811458i \(-0.698674\pi\)
0.811458 + 0.584410i \(0.198674\pi\)
\(702\) 619.757i 0.882845i
\(703\) 314.366 314.366i 0.447178 0.447178i
\(704\) 133.798 0.190054
\(705\) −114.037 114.037i −0.161755 0.161755i
\(706\) −410.791 + 410.791i −0.581857 + 0.581857i
\(707\) −5.70474 −0.00806895
\(708\) 373.953i 0.528182i
\(709\) 463.429 + 463.429i 0.653638 + 0.653638i 0.953867 0.300229i \(-0.0970632\pi\)
−0.300229 + 0.953867i \(0.597063\pi\)
\(710\) −131.646 −0.185416
\(711\) −414.984 −0.583663
\(712\) 157.501 + 157.501i 0.221209 + 0.221209i
\(713\) −190.299 + 190.299i −0.266899 + 0.266899i
\(714\) 270.385i 0.378691i
\(715\) 384.194 0.537334
\(716\) −360.377 + 360.377i −0.503319 + 0.503319i
\(717\) 94.2211 + 94.2211i 0.131410 + 0.131410i
\(718\) −560.088 −0.780066
\(719\) 601.498 601.498i 0.836576 0.836576i −0.151831 0.988407i \(-0.548517\pi\)
0.988407 + 0.151831i \(0.0485168\pi\)
\(720\) 28.3983i 0.0394421i
\(721\) 349.353 + 349.353i 0.484540 + 0.484540i
\(722\) 772.414 772.414i 1.06983 1.06983i
\(723\) 10.0593 0.0139133
\(724\) 88.8639 + 88.8639i 0.122740 + 0.122740i
\(725\) 388.014 388.014i 0.535191 0.535191i
\(726\) 460.779i 0.634682i
\(727\) 485.676i 0.668055i −0.942563 0.334028i \(-0.891592\pi\)
0.942563 0.334028i \(-0.108408\pi\)
\(728\) −148.032 −0.203341
\(729\) 594.758i 0.815854i
\(730\) −81.6580 + 81.6580i −0.111860 + 0.111860i
\(731\) −1096.21 + 1096.21i −1.49961 + 1.49961i
\(732\) −179.899 + 179.899i −0.245763 + 0.245763i
\(733\) 56.7078 56.7078i 0.0773640 0.0773640i −0.667366 0.744730i \(-0.732578\pi\)
0.744730 + 0.667366i \(0.232578\pi\)
\(734\) −651.872 −0.888109
\(735\) 80.9158 80.9158i 0.110090 0.110090i
\(736\) −143.455 143.455i −0.194911 0.194911i
\(737\) 905.398i 1.22849i
\(738\) 306.169 306.169i 0.414863 0.414863i
\(739\) −93.1093 93.1093i −0.125994 0.125994i 0.641298 0.767292i \(-0.278396\pi\)
−0.767292 + 0.641298i \(0.778396\pi\)
\(740\) 39.1796i 0.0529454i
\(741\) 1070.20i 1.44427i
\(742\) 182.980 0.246604
\(743\) 1213.32 1.63301 0.816503 0.577342i \(-0.195910\pi\)
0.816503 + 0.577342i \(0.195910\pi\)
\(744\) −30.8093 + 30.8093i −0.0414103 + 0.0414103i
\(745\) 341.856i 0.458868i
\(746\) 227.923i 0.305527i
\(747\) −59.1351 59.1351i −0.0791635 0.0791635i
\(748\) −651.771 651.771i −0.871351 0.871351i
\(749\) 480.217i 0.641144i
\(750\) 205.857i 0.274476i
\(751\) 310.835 0.413895 0.206947 0.978352i \(-0.433647\pi\)
0.206947 + 0.978352i \(0.433647\pi\)
\(752\) −211.833 −0.281693
\(753\) 476.627i 0.632971i
\(754\) 527.075i 0.699038i
\(755\) 88.2175i 0.116844i
\(756\) 191.298 0.253040
\(757\) 980.801 980.801i 1.29564 1.29564i 0.364399 0.931243i \(-0.381275\pi\)
0.931243 0.364399i \(-0.118725\pi\)
\(758\) −169.614 −0.223765
\(759\) 870.671 870.671i 1.14713 1.14713i
\(760\) 141.258i 0.185866i
\(761\) 76.9778 76.9778i 0.101153 0.101153i −0.654719 0.755872i \(-0.727213\pi\)
0.755872 + 0.654719i \(0.227213\pi\)
\(762\) −249.694 −0.327682
\(763\) 439.284i 0.575732i
\(764\) −59.3363 −0.0776653
\(765\) 138.337 138.337i 0.180833 0.180833i
\(766\) 924.290i 1.20665i
\(767\) 997.321 + 997.321i 1.30029 + 1.30029i
\(768\) −23.2252 23.2252i −0.0302412 0.0302412i
\(769\) 1169.72i 1.52109i −0.649284 0.760546i \(-0.724931\pi\)
0.649284 0.760546i \(-0.275069\pi\)
\(770\) 118.588i 0.154010i
\(771\) 764.163i 0.991132i
\(772\) 203.732 + 203.732i 0.263902 + 0.263902i
\(773\) −985.851 −1.27536 −0.637678 0.770303i \(-0.720105\pi\)
−0.637678 + 0.770303i \(0.720105\pi\)
\(774\) 269.246 + 269.246i 0.347863 + 0.347863i
\(775\) 120.977 120.977i 0.156100 0.156100i
\(776\) −75.7039 75.7039i −0.0975566 0.0975566i
\(777\) −91.6230 −0.117919
\(778\) 662.847 + 662.847i 0.851988 + 0.851988i
\(779\) −1522.93 + 1522.93i −1.95498 + 1.95498i
\(780\) −66.6900 66.6900i −0.0855000 0.0855000i
\(781\) −742.100 742.100i −0.950192 0.950192i
\(782\) 1397.62i 1.78724i
\(783\) 681.126i 0.869893i
\(784\) 150.307i 0.191719i
\(785\) 163.455 + 163.455i 0.208223 + 0.208223i
\(786\) 718.497i 0.914118i
\(787\) 874.742 1.11149 0.555744 0.831353i \(-0.312433\pi\)
0.555744 + 0.831353i \(0.312433\pi\)
\(788\) −314.696 314.696i −0.399360 0.399360i
\(789\) 327.023 + 327.023i 0.414478 + 0.414478i
\(790\) 128.631 128.631i 0.162824 0.162824i
\(791\) 121.016i 0.152991i
\(792\) −160.084 + 160.084i −0.202127 + 0.202127i
\(793\) 959.569i 1.21005i
\(794\) −328.344 −0.413532
\(795\) 82.4346 + 82.4346i 0.103691 + 0.103691i
\(796\) 640.121 0.804172
\(797\) −56.4662 + 56.4662i −0.0708484 + 0.0708484i −0.741643 0.670795i \(-0.765953\pi\)
0.670795 + 0.741643i \(0.265953\pi\)
\(798\) −330.337 −0.413956
\(799\) 1031.90 + 1031.90i 1.29149 + 1.29149i
\(800\) 91.1975 + 91.1975i 0.113997 + 0.113997i
\(801\) −376.888 −0.470522
\(802\) 563.646i 0.702801i
\(803\) −920.629 −1.14649
\(804\) 157.163 157.163i 0.195476 0.195476i
\(805\) −127.147 + 127.147i −0.157946 + 0.157946i
\(806\) 164.335i 0.203889i
\(807\) −551.785 + 21.7438i −0.683749 + 0.0269440i
\(808\) −4.77407 −0.00590850
\(809\) −1013.01 1013.01i −1.25217 1.25217i −0.954744 0.297429i \(-0.903871\pi\)
−0.297429 0.954744i \(-0.596129\pi\)
\(810\) 22.2857 + 22.2857i 0.0275132 + 0.0275132i
\(811\) 1520.11i 1.87436i 0.348844 + 0.937181i \(0.386574\pi\)
−0.348844 + 0.937181i \(0.613426\pi\)
\(812\) 162.690 0.200358
\(813\) 619.209i 0.761635i
\(814\) 220.860 220.860i 0.271326 0.271326i
\(815\) 95.5966 95.5966i 0.117296 0.117296i
\(816\) 226.274i 0.277297i
\(817\) −1339.27 1339.27i −1.63925 1.63925i
\(818\) 121.703i 0.148781i
\(819\) 177.115 177.115i 0.216258 0.216258i
\(820\) 189.804i 0.231468i
\(821\) 518.307 0.631311 0.315656 0.948874i \(-0.397776\pi\)
0.315656 + 0.948874i \(0.397776\pi\)
\(822\) 370.976 + 370.976i 0.451309 + 0.451309i
\(823\) −180.463 −0.219274 −0.109637 0.993972i \(-0.534969\pi\)
−0.109637 + 0.993972i \(0.534969\pi\)
\(824\) 292.359 + 292.359i 0.354805 + 0.354805i
\(825\) −553.505 + 553.505i −0.670916 + 0.670916i
\(826\) 307.840 307.840i 0.372687 0.372687i
\(827\) 767.274i 0.927780i 0.885893 + 0.463890i \(0.153547\pi\)
−0.885893 + 0.463890i \(0.846453\pi\)
\(828\) 343.277 0.414585
\(829\) 44.2063 44.2063i 0.0533249 0.0533249i −0.679941 0.733266i \(-0.737995\pi\)
0.733266 + 0.679941i \(0.237995\pi\)
\(830\) 36.6597 0.0441683
\(831\) −872.556 −1.05001
\(832\) −123.882 −0.148897
\(833\) −732.194 + 732.194i −0.878984 + 0.878984i
\(834\) −86.4105 + 86.4105i −0.103610 + 0.103610i
\(835\) 113.717 + 113.717i 0.136188 + 0.136188i
\(836\) 796.285 796.285i 0.952494 0.952494i
\(837\) 212.366i 0.253723i
\(838\) −454.438 + 454.438i −0.542288 + 0.542288i
\(839\) −256.099 256.099i −0.305243 0.305243i 0.537818 0.843061i \(-0.319249\pi\)
−0.843061 + 0.537818i \(0.819249\pi\)
\(840\) −20.5850 + 20.5850i −0.0245059 + 0.0245059i
\(841\) 261.733i 0.311217i
\(842\) 119.783 119.783i 0.142260 0.142260i
\(843\) 259.845 0.308238
\(844\) −409.638 −0.485353
\(845\) −105.017 −0.124281
\(846\) 253.450 253.450i 0.299587 0.299587i
\(847\) 379.316 379.316i 0.447835 0.447835i
\(848\) 153.129 0.180576
\(849\) 515.419 + 515.419i 0.607089 + 0.607089i
\(850\) 888.502i 1.04530i
\(851\) −473.600 −0.556522
\(852\) 257.634i 0.302387i
\(853\) 214.882 + 214.882i 0.251914 + 0.251914i 0.821755 0.569841i \(-0.192995\pi\)
−0.569841 + 0.821755i \(0.692995\pi\)
\(854\) 296.187 0.346823
\(855\) 169.010 + 169.010i 0.197672 + 0.197672i
\(856\) 401.874i 0.469479i
\(857\) 4.01980 + 4.01980i 0.00469054 + 0.00469054i 0.709448 0.704758i \(-0.248944\pi\)
−0.704758 + 0.709448i \(0.748944\pi\)
\(858\) 751.877i 0.876314i
\(859\) −574.526 −0.668831 −0.334415 0.942426i \(-0.608539\pi\)
−0.334415 + 0.942426i \(0.608539\pi\)
\(860\) −166.914 −0.194086
\(861\) 443.863 0.515520
\(862\) 1014.79i 1.17725i
\(863\) 93.0275i 0.107796i 0.998546 + 0.0538978i \(0.0171645\pi\)
−0.998546 + 0.0538978i \(0.982835\pi\)
\(864\) 160.090 0.185289
\(865\) −390.849 −0.451848
\(866\) 29.3204 29.3204i 0.0338572 0.0338572i
\(867\) 682.746 682.746i 0.787481 0.787481i
\(868\) 50.7247 0.0584386
\(869\) 1450.21 1.66883
\(870\) 73.2938 + 73.2938i 0.0842457 + 0.0842457i
\(871\) 838.298i 0.962454i
\(872\) 367.619i 0.421581i
\(873\) 181.154 0.207508
\(874\) −1707.51 −1.95368
\(875\) 169.462 169.462i 0.193671 0.193671i
\(876\) 159.807 + 159.807i 0.182428 + 0.182428i
\(877\) 578.799 0.659976 0.329988 0.943985i \(-0.392955\pi\)
0.329988 + 0.943985i \(0.392955\pi\)
\(878\) −650.874 + 650.874i −0.741314 + 0.741314i
\(879\) 38.3297 + 38.3297i 0.0436060 + 0.0436060i
\(880\) 99.2414i 0.112774i
\(881\) −699.808 699.808i −0.794334 0.794334i 0.187862 0.982195i \(-0.439844\pi\)
−0.982195 + 0.187862i \(0.939844\pi\)
\(882\) 179.837 + 179.837i 0.203897 + 0.203897i
\(883\) 623.282 + 623.282i 0.705869 + 0.705869i 0.965664 0.259795i \(-0.0836551\pi\)
−0.259795 + 0.965664i \(0.583655\pi\)
\(884\) 603.467 + 603.467i 0.682655 + 0.682655i
\(885\) 277.370 0.313413
\(886\) 559.094i 0.631031i
\(887\) 1414.07 1.59422 0.797109 0.603836i \(-0.206362\pi\)
0.797109 + 0.603836i \(0.206362\pi\)
\(888\) −76.6755 −0.0863463
\(889\) 205.549 + 205.549i 0.231214 + 0.231214i
\(890\) 116.822 116.822i 0.131261 0.131261i
\(891\) 251.254i 0.281991i
\(892\) −293.423 293.423i −0.328950 0.328950i
\(893\) −1260.70 + 1260.70i −1.41176 + 1.41176i
\(894\) −669.021 −0.748346
\(895\) 267.301 + 267.301i 0.298660 + 0.298660i
\(896\) 38.2382i 0.0426766i
\(897\) −806.144 + 806.144i −0.898711 + 0.898711i
\(898\) 487.472 + 487.472i 0.542842 + 0.542842i
\(899\) 180.608i 0.200898i
\(900\) −218.229 −0.242477
\(901\) −745.936 745.936i −0.827898 0.827898i
\(902\) −1069.94 + 1069.94i −1.18619 + 1.18619i
\(903\) 390.334i 0.432264i
\(904\) 101.273i 0.112028i
\(905\) 65.9126 65.9126i 0.0728317 0.0728317i
\(906\) −172.644 −0.190556
\(907\) 1601.45i 1.76566i 0.469697 + 0.882828i \(0.344363\pi\)
−0.469697 + 0.882828i \(0.655637\pi\)
\(908\) −459.272 459.272i −0.505806 0.505806i
\(909\) 5.71200 5.71200i 0.00628383 0.00628383i
\(910\) 109.799i 0.120658i
\(911\) 344.275 + 344.275i 0.377909 + 0.377909i 0.870347 0.492438i \(-0.163894\pi\)
−0.492438 + 0.870347i \(0.663894\pi\)
\(912\) −276.445 −0.303120
\(913\) 206.655 + 206.655i 0.226347 + 0.226347i
\(914\) −389.253 + 389.253i −0.425878 + 0.425878i
\(915\) 133.436 + 133.436i 0.145831 + 0.145831i
\(916\) −313.941 + 313.941i −0.342731 + 0.342731i
\(917\) −591.470 + 591.470i −0.645005 + 0.645005i
\(918\) −779.846 779.846i −0.849506 0.849506i
\(919\) 373.791 373.791i 0.406737 0.406737i −0.473862 0.880599i \(-0.657141\pi\)
0.880599 + 0.473862i \(0.157141\pi\)
\(920\) −106.404 + 106.404i −0.115657 + 0.115657i
\(921\) 28.1649 + 28.1649i 0.0305808 + 0.0305808i
\(922\) −226.794 −0.245981
\(923\) 687.101 + 687.101i 0.744422 + 0.744422i
\(924\) −232.079 −0.251168
\(925\) 301.079 0.325490
\(926\) 633.531 0.684159
\(927\) −699.595 −0.754687
\(928\) 136.149 0.146712
\(929\) 800.114 + 800.114i 0.861264 + 0.861264i 0.991485 0.130221i \(-0.0415687\pi\)
−0.130221 + 0.991485i \(0.541569\pi\)
\(930\) 22.8520 + 22.8520i 0.0245721 + 0.0245721i
\(931\) −894.540 894.540i −0.960838 0.960838i
\(932\) 615.845 0.660778
\(933\) 294.931i 0.316111i
\(934\) 229.111i 0.245301i
\(935\) −483.435 + 483.435i −0.517043 + 0.517043i
\(936\) 148.220 148.220i 0.158355 0.158355i
\(937\) −691.254 + 691.254i −0.737731 + 0.737731i −0.972138 0.234407i \(-0.924685\pi\)
0.234407 + 0.972138i \(0.424685\pi\)
\(938\) −258.755 −0.275858
\(939\) 405.975 + 405.975i 0.432349 + 0.432349i
\(940\) 157.122i 0.167151i
\(941\) −41.4249 41.4249i −0.0440222 0.0440222i 0.684753 0.728775i \(-0.259910\pi\)
−0.728775 + 0.684753i \(0.759910\pi\)
\(942\) 319.886 319.886i 0.339582 0.339582i
\(943\) 2294.33 2.43301
\(944\) 257.618 257.618i 0.272901 0.272901i
\(945\) 141.891i 0.150149i
\(946\) −940.911 940.911i −0.994620 0.994620i
\(947\) −1073.37 1073.37i −1.13344 1.13344i −0.989601 0.143843i \(-0.954054\pi\)
−0.143843 0.989601i \(-0.545946\pi\)
\(948\) −251.734 251.734i −0.265542 0.265542i
\(949\) 852.400 0.898208
\(950\) 1085.51 1.14264
\(951\) 1060.76i 1.11541i
\(952\) 186.270 186.270i 0.195662 0.195662i
\(953\) −470.334 + 470.334i −0.493530 + 0.493530i −0.909417 0.415886i \(-0.863471\pi\)
0.415886 + 0.909417i \(0.363471\pi\)
\(954\) −183.213 + 183.213i −0.192047 + 0.192047i
\(955\) 44.0113i 0.0460851i
\(956\) 129.819i 0.135794i
\(957\) 826.330i 0.863458i
\(958\) 1218.08i 1.27148i
\(959\) 610.778i 0.636891i
\(960\) −17.2267 + 17.2267i −0.0179445 + 0.0179445i
\(961\) 904.689i 0.941404i
\(962\) −204.491 + 204.491i −0.212569 + 0.212569i
\(963\) −480.827 480.827i −0.499302 0.499302i
\(964\) −6.92991 6.92991i −0.00718870 0.00718870i
\(965\) 151.113 151.113i 0.156594 0.156594i
\(966\) 248.830 + 248.830i 0.257588 + 0.257588i
\(967\) −731.642 731.642i −0.756610 0.756610i 0.219094 0.975704i \(-0.429690\pi\)
−0.975704 + 0.219094i \(0.929690\pi\)
\(968\) 317.434 317.434i 0.327928 0.327928i
\(969\) 1346.65 + 1346.65i 1.38973 + 1.38973i
\(970\) −56.1516 + 56.1516i −0.0578882 + 0.0578882i
\(971\) 1669.22i 1.71907i −0.511076 0.859536i \(-0.670753\pi\)
0.511076 0.859536i \(-0.329247\pi\)
\(972\) −316.588 + 316.588i −0.325708 + 0.325708i
\(973\) 142.267 0.146215
\(974\) 317.453 + 317.453i 0.325927 + 0.325927i
\(975\) 512.484 512.484i 0.525625 0.525625i
\(976\) 247.867 0.253962
\(977\) 786.373i 0.804886i −0.915445 0.402443i \(-0.868161\pi\)
0.915445 0.402443i \(-0.131839\pi\)
\(978\) −187.085 187.085i −0.191293 0.191293i
\(979\) 1317.08 1.34533
\(980\) −111.487 −0.113762
\(981\) −439.842 439.842i −0.448361 0.448361i
\(982\) 714.712 714.712i 0.727813 0.727813i
\(983\) 1129.81i 1.14935i −0.818382 0.574675i \(-0.805128\pi\)
0.818382 0.574675i \(-0.194872\pi\)
\(984\) 371.451 0.377491
\(985\) −233.418 + 233.418i −0.236973 + 0.236973i
\(986\) −663.223 663.223i −0.672640 0.672640i
\(987\) 367.435 0.372275
\(988\) −737.271 + 737.271i −0.746226 + 0.746226i
\(989\) 2017.64i 2.04008i
\(990\) 118.739 + 118.739i 0.119938 + 0.119938i
\(991\) 301.024 301.024i 0.303758 0.303758i −0.538724 0.842482i \(-0.681093\pi\)
0.842482 + 0.538724i \(0.181093\pi\)
\(992\) 42.4494 0.0427917
\(993\) −126.890 126.890i −0.127785 0.127785i
\(994\) 212.085 212.085i 0.213365 0.213365i
\(995\) 474.794i 0.477180i
\(996\) 71.7440i 0.0720321i
\(997\) −1487.60 −1.49207 −0.746037 0.665904i \(-0.768046\pi\)
−0.746037 + 0.665904i \(0.768046\pi\)
\(998\) 543.434i 0.544523i
\(999\) 264.259 264.259i 0.264524 0.264524i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.3.c.a.187.8 44
269.82 odd 4 inner 538.3.c.a.351.8 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.3.c.a.187.8 44 1.1 even 1 trivial
538.3.c.a.351.8 yes 44 269.82 odd 4 inner