Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [538,3,Mod(187,538)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(538, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("538.187");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 538 = 2 \cdot 269 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 538.c (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(14.6594382226\) |
Analytic rank: | \(0\) |
Dimension: | \(44\) |
Relative dimension: | \(22\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
187.1 | 1.00000 | + | 1.00000i | −3.89974 | − | 3.89974i | 2.00000i | −6.52679 | − | 7.79948i | −0.905272 | + | 0.905272i | −2.00000 | + | 2.00000i | 21.4159i | −6.52679 | − | 6.52679i | |||||||
187.2 | 1.00000 | + | 1.00000i | −3.11799 | − | 3.11799i | 2.00000i | −4.51105 | − | 6.23598i | 6.48641 | − | 6.48641i | −2.00000 | + | 2.00000i | 10.4437i | −4.51105 | − | 4.51105i | |||||||
187.3 | 1.00000 | + | 1.00000i | −2.92326 | − | 2.92326i | 2.00000i | 5.47933 | − | 5.84652i | −7.43471 | + | 7.43471i | −2.00000 | + | 2.00000i | 8.09090i | 5.47933 | + | 5.47933i | |||||||
187.4 | 1.00000 | + | 1.00000i | −2.74968 | − | 2.74968i | 2.00000i | 6.97749 | − | 5.49937i | 1.80329 | − | 1.80329i | −2.00000 | + | 2.00000i | 6.12153i | 6.97749 | + | 6.97749i | |||||||
187.5 | 1.00000 | + | 1.00000i | −2.64193 | − | 2.64193i | 2.00000i | −4.20274 | − | 5.28386i | −7.77918 | + | 7.77918i | −2.00000 | + | 2.00000i | 4.95961i | −4.20274 | − | 4.20274i | |||||||
187.6 | 1.00000 | + | 1.00000i | −2.63017 | − | 2.63017i | 2.00000i | 7.51373 | − | 5.26034i | 7.42431 | − | 7.42431i | −2.00000 | + | 2.00000i | 4.83558i | 7.51373 | + | 7.51373i | |||||||
187.7 | 1.00000 | + | 1.00000i | −2.30188 | − | 2.30188i | 2.00000i | −2.14972 | − | 4.60375i | 2.52965 | − | 2.52965i | −2.00000 | + | 2.00000i | 1.59726i | −2.14972 | − | 2.14972i | |||||||
187.8 | 1.00000 | + | 1.00000i | −1.45158 | − | 1.45158i | 2.00000i | 1.48345 | − | 2.90315i | −2.38989 | + | 2.38989i | −2.00000 | + | 2.00000i | − | 4.78586i | 1.48345 | + | 1.48345i | ||||||
187.9 | 1.00000 | + | 1.00000i | −0.447549 | − | 0.447549i | 2.00000i | 4.15921 | − | 0.895099i | −0.142659 | + | 0.142659i | −2.00000 | + | 2.00000i | − | 8.59940i | 4.15921 | + | 4.15921i | ||||||
187.10 | 1.00000 | + | 1.00000i | −0.382952 | − | 0.382952i | 2.00000i | −9.21654 | − | 0.765903i | 4.16457 | − | 4.16457i | −2.00000 | + | 2.00000i | − | 8.70670i | −9.21654 | − | 9.21654i | ||||||
187.11 | 1.00000 | + | 1.00000i | −0.283316 | − | 0.283316i | 2.00000i | −1.59047 | − | 0.566631i | 4.29967 | − | 4.29967i | −2.00000 | + | 2.00000i | − | 8.83946i | −1.59047 | − | 1.59047i | ||||||
187.12 | 1.00000 | + | 1.00000i | −0.209469 | − | 0.209469i | 2.00000i | −0.0245183 | − | 0.418938i | −4.25464 | + | 4.25464i | −2.00000 | + | 2.00000i | − | 8.91225i | −0.0245183 | − | 0.0245183i | ||||||
187.13 | 1.00000 | + | 1.00000i | 0.991340 | + | 0.991340i | 2.00000i | −6.41200 | 1.98268i | −6.33449 | + | 6.33449i | −2.00000 | + | 2.00000i | − | 7.03449i | −6.41200 | − | 6.41200i | |||||||
187.14 | 1.00000 | + | 1.00000i | 1.65205 | + | 1.65205i | 2.00000i | 6.81237 | 3.30411i | 5.20547 | − | 5.20547i | −2.00000 | + | 2.00000i | − | 3.54144i | 6.81237 | + | 6.81237i | |||||||
187.15 | 1.00000 | + | 1.00000i | 1.79446 | + | 1.79446i | 2.00000i | −4.75177 | 3.58893i | 9.51668 | − | 9.51668i | −2.00000 | + | 2.00000i | − | 2.55979i | −4.75177 | − | 4.75177i | |||||||
187.16 | 1.00000 | + | 1.00000i | 1.87375 | + | 1.87375i | 2.00000i | −6.42972 | 3.74750i | −4.44577 | + | 4.44577i | −2.00000 | + | 2.00000i | − | 1.97811i | −6.42972 | − | 6.42972i | |||||||
187.17 | 1.00000 | + | 1.00000i | 1.93508 | + | 1.93508i | 2.00000i | 9.46172 | 3.87015i | −8.10752 | + | 8.10752i | −2.00000 | + | 2.00000i | − | 1.51096i | 9.46172 | + | 9.46172i | |||||||
187.18 | 1.00000 | + | 1.00000i | 2.05500 | + | 2.05500i | 2.00000i | 2.94721 | 4.11001i | 4.83908 | − | 4.83908i | −2.00000 | + | 2.00000i | − | 0.553923i | 2.94721 | + | 2.94721i | |||||||
187.19 | 1.00000 | + | 1.00000i | 2.93671 | + | 2.93671i | 2.00000i | −5.34414 | 5.87341i | 2.19065 | − | 2.19065i | −2.00000 | + | 2.00000i | 8.24850i | −5.34414 | − | 5.34414i | ||||||||
187.20 | 1.00000 | + | 1.00000i | 3.20740 | + | 3.20740i | 2.00000i | −1.33372 | 6.41480i | −6.57572 | + | 6.57572i | −2.00000 | + | 2.00000i | 11.5748i | −1.33372 | − | 1.33372i | ||||||||
See all 44 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
269.c | odd | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 538.3.c.a | ✓ | 44 |
269.c | odd | 4 | 1 | inner | 538.3.c.a | ✓ | 44 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
538.3.c.a | ✓ | 44 | 1.a | even | 1 | 1 | trivial |
538.3.c.a | ✓ | 44 | 269.c | odd | 4 | 1 | inner |