Properties

Label 538.3.c.a.187.1
Level $538$
Weight $3$
Character 538.187
Analytic conductor $14.659$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [538,3,Mod(187,538)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("538.187"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(538, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 538.c (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.6594382226\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 187.1
Character \(\chi\) \(=\) 538.187
Dual form 538.3.c.a.351.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{2} +(-3.89974 - 3.89974i) q^{3} +2.00000i q^{4} -6.52679 q^{5} -7.79948i q^{6} +(-0.905272 + 0.905272i) q^{7} +(-2.00000 + 2.00000i) q^{8} +21.4159i q^{9} +(-6.52679 - 6.52679i) q^{10} +15.4536i q^{11} +(7.79948 - 7.79948i) q^{12} -12.6290i q^{13} -1.81054 q^{14} +(25.4528 + 25.4528i) q^{15} -4.00000 q^{16} +(-6.26998 - 6.26998i) q^{17} +(-21.4159 + 21.4159i) q^{18} +(6.97194 - 6.97194i) q^{19} -13.0536i q^{20} +7.06065 q^{21} +(-15.4536 + 15.4536i) q^{22} -16.3343 q^{23} +15.5990 q^{24} +17.5990 q^{25} +(12.6290 - 12.6290i) q^{26} +(48.4188 - 48.4188i) q^{27} +(-1.81054 - 1.81054i) q^{28} +(7.27465 - 7.27465i) q^{29} +50.9055i q^{30} +(15.4185 - 15.4185i) q^{31} +(-4.00000 - 4.00000i) q^{32} +(60.2649 - 60.2649i) q^{33} -12.5400i q^{34} +(5.90852 - 5.90852i) q^{35} -42.8318 q^{36} +54.6130 q^{37} +13.9439 q^{38} +(-49.2498 + 49.2498i) q^{39} +(13.0536 - 13.0536i) q^{40} +53.6271 q^{41} +(7.06065 + 7.06065i) q^{42} -47.0638i q^{43} -30.9072 q^{44} -139.777i q^{45} +(-16.3343 - 16.3343i) q^{46} -30.3411 q^{47} +(15.5990 + 15.5990i) q^{48} +47.3610i q^{49} +(17.5990 + 17.5990i) q^{50} +48.9025i q^{51} +25.2580 q^{52} -44.1715 q^{53} +96.8376 q^{54} -100.862i q^{55} -3.62109i q^{56} -54.3775 q^{57} +14.5493 q^{58} +(24.8127 - 24.8127i) q^{59} +(-50.9055 + 50.9055i) q^{60} +26.4546 q^{61} +30.8370 q^{62} +(-19.3872 - 19.3872i) q^{63} -8.00000i q^{64} +82.4268i q^{65} +120.530 q^{66} +124.062 q^{67} +(12.5400 - 12.5400i) q^{68} +(63.6993 + 63.6993i) q^{69} +11.8170 q^{70} +(-9.09848 + 9.09848i) q^{71} +(-42.8318 - 42.8318i) q^{72} +115.086i q^{73} +(54.6130 + 54.6130i) q^{74} +(-68.6314 - 68.6314i) q^{75} +(13.9439 + 13.9439i) q^{76} +(-13.9897 - 13.9897i) q^{77} -98.4996 q^{78} -40.7905i q^{79} +26.1072 q^{80} -184.898 q^{81} +(53.6271 + 53.6271i) q^{82} +(11.4648 - 11.4648i) q^{83} +14.1213i q^{84} +(40.9228 + 40.9228i) q^{85} +(47.0638 - 47.0638i) q^{86} -56.7384 q^{87} +(-30.9072 - 30.9072i) q^{88} +127.857i q^{89} +(139.777 - 139.777i) q^{90} +(11.4327 + 11.4327i) q^{91} -32.6685i q^{92} -120.256 q^{93} +(-30.3411 - 30.3411i) q^{94} +(-45.5044 + 45.5044i) q^{95} +31.1979i q^{96} -53.6789i q^{97} +(-47.3610 + 47.3610i) q^{98} -330.952 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 44 q^{2} + 2 q^{3} + 4 q^{7} - 88 q^{8} - 4 q^{12} + 8 q^{14} + 38 q^{15} - 176 q^{16} - 120 q^{18} + 18 q^{19} - 16 q^{21} + 68 q^{23} - 8 q^{24} + 196 q^{25} + 16 q^{26} - 22 q^{27} + 8 q^{28}+ \cdots - 188 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/538\mathbb{Z}\right)^\times\).

\(n\) \(271\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.00000i 0.500000 + 0.500000i
\(3\) −3.89974 3.89974i −1.29991 1.29991i −0.928446 0.371466i \(-0.878855\pi\)
−0.371466 0.928446i \(-0.621145\pi\)
\(4\) 2.00000i 0.500000i
\(5\) −6.52679 −1.30536 −0.652679 0.757635i \(-0.726355\pi\)
−0.652679 + 0.757635i \(0.726355\pi\)
\(6\) 7.79948i 1.29991i
\(7\) −0.905272 + 0.905272i −0.129325 + 0.129325i −0.768806 0.639482i \(-0.779149\pi\)
0.639482 + 0.768806i \(0.279149\pi\)
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) 21.4159i 2.37955i
\(10\) −6.52679 6.52679i −0.652679 0.652679i
\(11\) 15.4536i 1.40487i 0.711748 + 0.702435i \(0.247904\pi\)
−0.711748 + 0.702435i \(0.752096\pi\)
\(12\) 7.79948 7.79948i 0.649956 0.649956i
\(13\) 12.6290i 0.971461i −0.874109 0.485731i \(-0.838554\pi\)
0.874109 0.485731i \(-0.161446\pi\)
\(14\) −1.81054 −0.129325
\(15\) 25.4528 + 25.4528i 1.69685 + 1.69685i
\(16\) −4.00000 −0.250000
\(17\) −6.26998 6.26998i −0.368822 0.368822i 0.498225 0.867048i \(-0.333985\pi\)
−0.867048 + 0.498225i \(0.833985\pi\)
\(18\) −21.4159 + 21.4159i −1.18977 + 1.18977i
\(19\) 6.97194 6.97194i 0.366944 0.366944i −0.499417 0.866362i \(-0.666453\pi\)
0.866362 + 0.499417i \(0.166453\pi\)
\(20\) 13.0536i 0.652679i
\(21\) 7.06065 0.336221
\(22\) −15.4536 + 15.4536i −0.702435 + 0.702435i
\(23\) −16.3343 −0.710185 −0.355092 0.934831i \(-0.615551\pi\)
−0.355092 + 0.934831i \(0.615551\pi\)
\(24\) 15.5990 0.649956
\(25\) 17.5990 0.703960
\(26\) 12.6290 12.6290i 0.485731 0.485731i
\(27\) 48.4188 48.4188i 1.79329 1.79329i
\(28\) −1.81054 1.81054i −0.0646623 0.0646623i
\(29\) 7.27465 7.27465i 0.250850 0.250850i −0.570469 0.821319i \(-0.693239\pi\)
0.821319 + 0.570469i \(0.193239\pi\)
\(30\) 50.9055i 1.69685i
\(31\) 15.4185 15.4185i 0.497372 0.497372i −0.413247 0.910619i \(-0.635605\pi\)
0.910619 + 0.413247i \(0.135605\pi\)
\(32\) −4.00000 4.00000i −0.125000 0.125000i
\(33\) 60.2649 60.2649i 1.82621 1.82621i
\(34\) 12.5400i 0.368822i
\(35\) 5.90852 5.90852i 0.168815 0.168815i
\(36\) −42.8318 −1.18977
\(37\) 54.6130 1.47603 0.738014 0.674786i \(-0.235764\pi\)
0.738014 + 0.674786i \(0.235764\pi\)
\(38\) 13.9439 0.366944
\(39\) −49.2498 + 49.2498i −1.26282 + 1.26282i
\(40\) 13.0536 13.0536i 0.326340 0.326340i
\(41\) 53.6271 1.30798 0.653989 0.756504i \(-0.273094\pi\)
0.653989 + 0.756504i \(0.273094\pi\)
\(42\) 7.06065 + 7.06065i 0.168111 + 0.168111i
\(43\) 47.0638i 1.09451i −0.836967 0.547253i \(-0.815673\pi\)
0.836967 0.547253i \(-0.184327\pi\)
\(44\) −30.9072 −0.702435
\(45\) 139.777i 3.10616i
\(46\) −16.3343 16.3343i −0.355092 0.355092i
\(47\) −30.3411 −0.645555 −0.322778 0.946475i \(-0.604617\pi\)
−0.322778 + 0.946475i \(0.604617\pi\)
\(48\) 15.5990 + 15.5990i 0.324978 + 0.324978i
\(49\) 47.3610i 0.966550i
\(50\) 17.5990 + 17.5990i 0.351980 + 0.351980i
\(51\) 48.9025i 0.958873i
\(52\) 25.2580 0.485731
\(53\) −44.1715 −0.833424 −0.416712 0.909039i \(-0.636818\pi\)
−0.416712 + 0.909039i \(0.636818\pi\)
\(54\) 96.8376 1.79329
\(55\) 100.862i 1.83386i
\(56\) 3.62109i 0.0646623i
\(57\) −54.3775 −0.953991
\(58\) 14.5493 0.250850
\(59\) 24.8127 24.8127i 0.420555 0.420555i −0.464840 0.885395i \(-0.653888\pi\)
0.885395 + 0.464840i \(0.153888\pi\)
\(60\) −50.9055 + 50.9055i −0.848426 + 0.848426i
\(61\) 26.4546 0.433681 0.216841 0.976207i \(-0.430425\pi\)
0.216841 + 0.976207i \(0.430425\pi\)
\(62\) 30.8370 0.497372
\(63\) −19.3872 19.3872i −0.307734 0.307734i
\(64\) 8.00000i 0.125000i
\(65\) 82.4268i 1.26810i
\(66\) 120.530 1.82621
\(67\) 124.062 1.85167 0.925835 0.377927i \(-0.123363\pi\)
0.925835 + 0.377927i \(0.123363\pi\)
\(68\) 12.5400 12.5400i 0.184411 0.184411i
\(69\) 63.6993 + 63.6993i 0.923178 + 0.923178i
\(70\) 11.8170 0.168815
\(71\) −9.09848 + 9.09848i −0.128148 + 0.128148i −0.768272 0.640124i \(-0.778883\pi\)
0.640124 + 0.768272i \(0.278883\pi\)
\(72\) −42.8318 42.8318i −0.594887 0.594887i
\(73\) 115.086i 1.57652i 0.615343 + 0.788259i \(0.289017\pi\)
−0.615343 + 0.788259i \(0.710983\pi\)
\(74\) 54.6130 + 54.6130i 0.738014 + 0.738014i
\(75\) −68.6314 68.6314i −0.915086 0.915086i
\(76\) 13.9439 + 13.9439i 0.183472 + 0.183472i
\(77\) −13.9897 13.9897i −0.181684 0.181684i
\(78\) −98.4996 −1.26282
\(79\) 40.7905i 0.516336i −0.966100 0.258168i \(-0.916881\pi\)
0.966100 0.258168i \(-0.0831188\pi\)
\(80\) 26.1072 0.326340
\(81\) −184.898 −2.28269
\(82\) 53.6271 + 53.6271i 0.653989 + 0.653989i
\(83\) 11.4648 11.4648i 0.138131 0.138131i −0.634661 0.772791i \(-0.718860\pi\)
0.772791 + 0.634661i \(0.218860\pi\)
\(84\) 14.1213i 0.168111i
\(85\) 40.9228 + 40.9228i 0.481445 + 0.481445i
\(86\) 47.0638 47.0638i 0.547253 0.547253i
\(87\) −56.7384 −0.652166
\(88\) −30.9072 30.9072i −0.351218 0.351218i
\(89\) 127.857i 1.43659i 0.695738 + 0.718295i \(0.255077\pi\)
−0.695738 + 0.718295i \(0.744923\pi\)
\(90\) 139.777 139.777i 1.55308 1.55308i
\(91\) 11.4327 + 11.4327i 0.125634 + 0.125634i
\(92\) 32.6685i 0.355092i
\(93\) −120.256 −1.29308
\(94\) −30.3411 30.3411i −0.322778 0.322778i
\(95\) −45.5044 + 45.5044i −0.478994 + 0.478994i
\(96\) 31.1979i 0.324978i
\(97\) 53.6789i 0.553391i −0.960958 0.276695i \(-0.910761\pi\)
0.960958 0.276695i \(-0.0892393\pi\)
\(98\) −47.3610 + 47.3610i −0.483275 + 0.483275i
\(99\) −330.952 −3.34295
\(100\) 35.1980i 0.351980i
\(101\) 93.6070 + 93.6070i 0.926802 + 0.926802i 0.997498 0.0706962i \(-0.0225221\pi\)
−0.0706962 + 0.997498i \(0.522522\pi\)
\(102\) −48.9025 + 48.9025i −0.479437 + 0.479437i
\(103\) 138.512i 1.34478i −0.740197 0.672390i \(-0.765268\pi\)
0.740197 0.672390i \(-0.234732\pi\)
\(104\) 25.2580 + 25.2580i 0.242865 + 0.242865i
\(105\) −46.0834 −0.438889
\(106\) −44.1715 44.1715i −0.416712 0.416712i
\(107\) 3.88684 3.88684i 0.0363256 0.0363256i −0.688711 0.725036i \(-0.741823\pi\)
0.725036 + 0.688711i \(0.241823\pi\)
\(108\) 96.8376 + 96.8376i 0.896645 + 0.896645i
\(109\) −70.6901 + 70.6901i −0.648533 + 0.648533i −0.952639 0.304105i \(-0.901643\pi\)
0.304105 + 0.952639i \(0.401643\pi\)
\(110\) 100.862 100.862i 0.916930 0.916930i
\(111\) −212.976 212.976i −1.91871 1.91871i
\(112\) 3.62109 3.62109i 0.0323311 0.0323311i
\(113\) 92.2740 92.2740i 0.816584 0.816584i −0.169027 0.985611i \(-0.554063\pi\)
0.985611 + 0.169027i \(0.0540626\pi\)
\(114\) −54.3775 54.3775i −0.476996 0.476996i
\(115\) 106.610 0.927045
\(116\) 14.5493 + 14.5493i 0.125425 + 0.125425i
\(117\) 270.462 2.31164
\(118\) 49.6255 0.420555
\(119\) 11.3521 0.0953955
\(120\) −101.811 −0.848426
\(121\) −117.813 −0.973661
\(122\) 26.4546 + 26.4546i 0.216841 + 0.216841i
\(123\) −209.132 209.132i −1.70026 1.70026i
\(124\) 30.8370 + 30.8370i 0.248686 + 0.248686i
\(125\) 48.3048 0.386439
\(126\) 38.7745i 0.307734i
\(127\) 111.655i 0.879176i 0.898200 + 0.439588i \(0.144876\pi\)
−0.898200 + 0.439588i \(0.855124\pi\)
\(128\) 8.00000 8.00000i 0.0625000 0.0625000i
\(129\) −183.536 + 183.536i −1.42276 + 1.42276i
\(130\) −82.4268 + 82.4268i −0.634052 + 0.634052i
\(131\) 110.923 0.846738 0.423369 0.905957i \(-0.360847\pi\)
0.423369 + 0.905957i \(0.360847\pi\)
\(132\) 120.530 + 120.530i 0.913105 + 0.913105i
\(133\) 12.6230i 0.0949099i
\(134\) 124.062 + 124.062i 0.925835 + 0.925835i
\(135\) −316.019 + 316.019i −2.34088 + 2.34088i
\(136\) 25.0799 0.184411
\(137\) 58.1590 58.1590i 0.424518 0.424518i −0.462238 0.886756i \(-0.652953\pi\)
0.886756 + 0.462238i \(0.152953\pi\)
\(138\) 127.399i 0.923178i
\(139\) −79.6194 79.6194i −0.572801 0.572801i 0.360109 0.932910i \(-0.382739\pi\)
−0.932910 + 0.360109i \(0.882739\pi\)
\(140\) 11.8170 + 11.8170i 0.0844074 + 0.0844074i
\(141\) 118.322 + 118.322i 0.839165 + 0.839165i
\(142\) −18.1970 −0.128148
\(143\) 195.163 1.36478
\(144\) 85.6637i 0.594887i
\(145\) −47.4801 + 47.4801i −0.327449 + 0.327449i
\(146\) −115.086 + 115.086i −0.788259 + 0.788259i
\(147\) 184.695 184.695i 1.25643 1.25643i
\(148\) 109.226i 0.738014i
\(149\) 214.603i 1.44029i 0.693823 + 0.720145i \(0.255925\pi\)
−0.693823 + 0.720145i \(0.744075\pi\)
\(150\) 137.263i 0.915086i
\(151\) 173.292i 1.14763i 0.818986 + 0.573813i \(0.194536\pi\)
−0.818986 + 0.573813i \(0.805464\pi\)
\(152\) 27.8878i 0.183472i
\(153\) 134.277 134.277i 0.877629 0.877629i
\(154\) 27.9794i 0.181684i
\(155\) −100.633 + 100.633i −0.649248 + 0.649248i
\(156\) −98.4996 98.4996i −0.631408 0.631408i
\(157\) −156.060 156.060i −0.994013 0.994013i 0.00596899 0.999982i \(-0.498100\pi\)
−0.999982 + 0.00596899i \(0.998100\pi\)
\(158\) 40.7905 40.7905i 0.258168 0.258168i
\(159\) 172.257 + 172.257i 1.08338 + 1.08338i
\(160\) 26.1072 + 26.1072i 0.163170 + 0.163170i
\(161\) 14.7869 14.7869i 0.0918444 0.0918444i
\(162\) −184.898 184.898i −1.14135 1.14135i
\(163\) 52.8516 52.8516i 0.324243 0.324243i −0.526149 0.850392i \(-0.676365\pi\)
0.850392 + 0.526149i \(0.176365\pi\)
\(164\) 107.254i 0.653989i
\(165\) −393.336 + 393.336i −2.38386 + 2.38386i
\(166\) 22.9297 0.138131
\(167\) −53.6813 53.6813i −0.321445 0.321445i 0.527876 0.849321i \(-0.322988\pi\)
−0.849321 + 0.527876i \(0.822988\pi\)
\(168\) −14.1213 + 14.1213i −0.0840553 + 0.0840553i
\(169\) 9.50839 0.0562627
\(170\) 81.8456i 0.481445i
\(171\) 149.311 + 149.311i 0.873161 + 0.873161i
\(172\) 94.1276 0.547253
\(173\) −46.2648 −0.267427 −0.133713 0.991020i \(-0.542690\pi\)
−0.133713 + 0.991020i \(0.542690\pi\)
\(174\) −56.7384 56.7384i −0.326083 0.326083i
\(175\) −15.9319 + 15.9319i −0.0910393 + 0.0910393i
\(176\) 61.8143i 0.351218i
\(177\) −193.526 −1.09337
\(178\) −127.857 + 127.857i −0.718295 + 0.718295i
\(179\) 83.7868 + 83.7868i 0.468083 + 0.468083i 0.901293 0.433210i \(-0.142619\pi\)
−0.433210 + 0.901293i \(0.642619\pi\)
\(180\) 279.554 1.55308
\(181\) 142.813 142.813i 0.789025 0.789025i −0.192310 0.981334i \(-0.561598\pi\)
0.981334 + 0.192310i \(0.0615978\pi\)
\(182\) 22.8654i 0.125634i
\(183\) −103.166 103.166i −0.563748 0.563748i
\(184\) 32.6685 32.6685i 0.177546 0.177546i
\(185\) −356.448 −1.92674
\(186\) −120.256 120.256i −0.646540 0.646540i
\(187\) 96.8935 96.8935i 0.518147 0.518147i
\(188\) 60.6822i 0.322778i
\(189\) 87.6644i 0.463833i
\(190\) −91.0088 −0.478994
\(191\) 267.738i 1.40177i −0.713274 0.700885i \(-0.752789\pi\)
0.713274 0.700885i \(-0.247211\pi\)
\(192\) −31.1979 + 31.1979i −0.162489 + 0.162489i
\(193\) 84.3735 84.3735i 0.437168 0.437168i −0.453890 0.891058i \(-0.649964\pi\)
0.891058 + 0.453890i \(0.149964\pi\)
\(194\) 53.6789 53.6789i 0.276695 0.276695i
\(195\) 321.443 321.443i 1.64843 1.64843i
\(196\) −94.7219 −0.483275
\(197\) 259.612 259.612i 1.31783 1.31783i 0.402338 0.915491i \(-0.368198\pi\)
0.915491 0.402338i \(-0.131802\pi\)
\(198\) −330.952 330.952i −1.67148 1.67148i
\(199\) 81.2115i 0.408098i 0.978961 + 0.204049i \(0.0654102\pi\)
−0.978961 + 0.204049i \(0.934590\pi\)
\(200\) −35.1980 + 35.1980i −0.175990 + 0.175990i
\(201\) −483.809 483.809i −2.40701 2.40701i
\(202\) 187.214i 0.926802i
\(203\) 13.1711i 0.0648821i
\(204\) −97.8050 −0.479437
\(205\) −350.013 −1.70738
\(206\) 138.512 138.512i 0.672390 0.672390i
\(207\) 349.813i 1.68992i
\(208\) 50.5160i 0.242865i
\(209\) 107.741 + 107.741i 0.515509 + 0.515509i
\(210\) −46.0834 46.0834i −0.219445 0.219445i
\(211\) 402.369i 1.90696i −0.301456 0.953480i \(-0.597473\pi\)
0.301456 0.953480i \(-0.402527\pi\)
\(212\) 88.3429i 0.416712i
\(213\) 70.9634 0.333161
\(214\) 7.77369 0.0363256
\(215\) 307.175i 1.42872i
\(216\) 193.675i 0.896645i
\(217\) 27.9159i 0.128645i
\(218\) −141.380 −0.648533
\(219\) 448.805 448.805i 2.04934 2.04934i
\(220\) 201.724 0.916930
\(221\) −79.1835 + 79.1835i −0.358296 + 0.358296i
\(222\) 425.953i 1.91871i
\(223\) −259.449 + 259.449i −1.16345 + 1.16345i −0.179734 + 0.983715i \(0.557524\pi\)
−0.983715 + 0.179734i \(0.942476\pi\)
\(224\) 7.24218 0.0323311
\(225\) 376.898i 1.67510i
\(226\) 184.548 0.816584
\(227\) −215.701 + 215.701i −0.950225 + 0.950225i −0.998819 0.0485937i \(-0.984526\pi\)
0.0485937 + 0.998819i \(0.484526\pi\)
\(228\) 108.755i 0.476996i
\(229\) 151.547 + 151.547i 0.661776 + 0.661776i 0.955798 0.294023i \(-0.0949941\pi\)
−0.294023 + 0.955798i \(0.594994\pi\)
\(230\) 106.610 + 106.610i 0.463523 + 0.463523i
\(231\) 109.112i 0.472347i
\(232\) 29.0986i 0.125425i
\(233\) 349.895i 1.50170i 0.660475 + 0.750848i \(0.270355\pi\)
−0.660475 + 0.750848i \(0.729645\pi\)
\(234\) 270.462 + 270.462i 1.15582 + 1.15582i
\(235\) 198.030 0.842680
\(236\) 49.6255 + 49.6255i 0.210277 + 0.210277i
\(237\) −159.072 + 159.072i −0.671192 + 0.671192i
\(238\) 11.3521 + 11.3521i 0.0476978 + 0.0476978i
\(239\) 273.894 1.14600 0.573000 0.819555i \(-0.305780\pi\)
0.573000 + 0.819555i \(0.305780\pi\)
\(240\) −101.811 101.811i −0.424213 0.424213i
\(241\) 253.168 253.168i 1.05049 1.05049i 0.0518357 0.998656i \(-0.483493\pi\)
0.998656 0.0518357i \(-0.0165072\pi\)
\(242\) −117.813 117.813i −0.486831 0.486831i
\(243\) 285.285 + 285.285i 1.17401 + 1.17401i
\(244\) 52.9091i 0.216841i
\(245\) 309.115i 1.26169i
\(246\) 418.263i 1.70026i
\(247\) −88.0487 88.0487i −0.356472 0.356472i
\(248\) 61.6741i 0.248686i
\(249\) −89.4197 −0.359115
\(250\) 48.3048 + 48.3048i 0.193219 + 0.193219i
\(251\) −255.977 255.977i −1.01983 1.01983i −0.999799 0.0200305i \(-0.993624\pi\)
−0.0200305 0.999799i \(-0.506376\pi\)
\(252\) 38.7745 38.7745i 0.153867 0.153867i
\(253\) 252.423i 0.997718i
\(254\) −111.655 + 111.655i −0.439588 + 0.439588i
\(255\) 319.177i 1.25167i
\(256\) 16.0000 0.0625000
\(257\) −306.383 306.383i −1.19215 1.19215i −0.976462 0.215692i \(-0.930799\pi\)
−0.215692 0.976462i \(-0.569201\pi\)
\(258\) −367.073 −1.42276
\(259\) −49.4396 + 49.4396i −0.190887 + 0.190887i
\(260\) −164.854 −0.634052
\(261\) 155.793 + 155.793i 0.596909 + 0.596909i
\(262\) 110.923 + 110.923i 0.423369 + 0.423369i
\(263\) −379.430 −1.44270 −0.721350 0.692571i \(-0.756478\pi\)
−0.721350 + 0.692571i \(0.756478\pi\)
\(264\) 241.060i 0.913105i
\(265\) 288.298 1.08792
\(266\) −12.6230 + 12.6230i −0.0474549 + 0.0474549i
\(267\) 498.607 498.607i 1.86744 1.86744i
\(268\) 248.124i 0.925835i
\(269\) 46.4159 + 264.965i 0.172550 + 0.985001i
\(270\) −632.039 −2.34088
\(271\) −112.559 112.559i −0.415346 0.415346i 0.468250 0.883596i \(-0.344885\pi\)
−0.883596 + 0.468250i \(0.844885\pi\)
\(272\) 25.0799 + 25.0799i 0.0922055 + 0.0922055i
\(273\) 89.1689i 0.326626i
\(274\) 116.318 0.424518
\(275\) 271.967i 0.988972i
\(276\) −127.399 + 127.399i −0.461589 + 0.461589i
\(277\) 117.612 117.612i 0.424591 0.424591i −0.462190 0.886781i \(-0.652936\pi\)
0.886781 + 0.462190i \(0.152936\pi\)
\(278\) 159.239i 0.572801i
\(279\) 330.202 + 330.202i 1.18352 + 1.18352i
\(280\) 23.6341i 0.0844074i
\(281\) −214.416 + 214.416i −0.763046 + 0.763046i −0.976872 0.213825i \(-0.931408\pi\)
0.213825 + 0.976872i \(0.431408\pi\)
\(282\) 236.645i 0.839165i
\(283\) 273.475 0.966341 0.483171 0.875526i \(-0.339485\pi\)
0.483171 + 0.875526i \(0.339485\pi\)
\(284\) −18.1970 18.1970i −0.0640738 0.0640738i
\(285\) 354.911 1.24530
\(286\) 195.163 + 195.163i 0.682389 + 0.682389i
\(287\) −48.5471 + 48.5471i −0.169154 + 0.169154i
\(288\) 85.6637 85.6637i 0.297443 0.297443i
\(289\) 210.375i 0.727941i
\(290\) −94.9602 −0.327449
\(291\) −209.334 + 209.334i −0.719359 + 0.719359i
\(292\) −230.172 −0.788259
\(293\) 473.642 1.61652 0.808262 0.588822i \(-0.200408\pi\)
0.808262 + 0.588822i \(0.200408\pi\)
\(294\) 369.391 1.25643
\(295\) −161.947 + 161.947i −0.548975 + 0.548975i
\(296\) −109.226 + 109.226i −0.369007 + 0.369007i
\(297\) 748.244 + 748.244i 2.51934 + 2.51934i
\(298\) −214.603 + 214.603i −0.720145 + 0.720145i
\(299\) 206.285i 0.689917i
\(300\) 137.263 137.263i 0.457543 0.457543i
\(301\) 42.6055 + 42.6055i 0.141547 + 0.141547i
\(302\) −173.292 + 173.292i −0.573813 + 0.573813i
\(303\) 730.085i 2.40952i
\(304\) −27.8878 + 27.8878i −0.0917361 + 0.0917361i
\(305\) −172.663 −0.566110
\(306\) 268.555 0.877629
\(307\) 190.785 0.621451 0.310725 0.950500i \(-0.399428\pi\)
0.310725 + 0.950500i \(0.399428\pi\)
\(308\) 27.9794 27.9794i 0.0908421 0.0908421i
\(309\) −540.162 + 540.162i −1.74810 + 1.74810i
\(310\) −201.267 −0.649248
\(311\) −90.1837 90.1837i −0.289980 0.289980i 0.547092 0.837072i \(-0.315735\pi\)
−0.837072 + 0.547092i \(0.815735\pi\)
\(312\) 196.999i 0.631408i
\(313\) 248.677 0.794496 0.397248 0.917711i \(-0.369965\pi\)
0.397248 + 0.917711i \(0.369965\pi\)
\(314\) 312.120i 0.994013i
\(315\) 126.536 + 126.536i 0.401703 + 0.401703i
\(316\) 81.5811 0.258168
\(317\) 126.242 + 126.242i 0.398238 + 0.398238i 0.877611 0.479373i \(-0.159136\pi\)
−0.479373 + 0.877611i \(0.659136\pi\)
\(318\) 344.514i 1.08338i
\(319\) 112.419 + 112.419i 0.352412 + 0.352412i
\(320\) 52.2143i 0.163170i
\(321\) −30.3154 −0.0944403
\(322\) 29.5739 0.0918444
\(323\) −87.4278 −0.270674
\(324\) 369.796i 1.14135i
\(325\) 222.258i 0.683870i
\(326\) 105.703 0.324243
\(327\) 551.346 1.68607
\(328\) −107.254 + 107.254i −0.326994 + 0.326994i
\(329\) 27.4669 27.4669i 0.0834861 0.0834861i
\(330\) −786.673 −2.38386
\(331\) 584.868 1.76697 0.883487 0.468456i \(-0.155190\pi\)
0.883487 + 0.468456i \(0.155190\pi\)
\(332\) 22.9297 + 22.9297i 0.0690653 + 0.0690653i
\(333\) 1169.59i 3.51228i
\(334\) 107.363i 0.321445i
\(335\) −809.726 −2.41709
\(336\) −28.2426 −0.0840553
\(337\) −387.839 + 387.839i −1.15086 + 1.15086i −0.164475 + 0.986381i \(0.552593\pi\)
−0.986381 + 0.164475i \(0.947407\pi\)
\(338\) 9.50839 + 9.50839i 0.0281313 + 0.0281313i
\(339\) −719.689 −2.12298
\(340\) −81.8456 + 81.8456i −0.240722 + 0.240722i
\(341\) 238.271 + 238.271i 0.698743 + 0.698743i
\(342\) 298.621i 0.873161i
\(343\) −87.2329 87.2329i −0.254323 0.254323i
\(344\) 94.1276 + 94.1276i 0.273627 + 0.273627i
\(345\) −415.752 415.752i −1.20508 1.20508i
\(346\) −46.2648 46.2648i −0.133713 0.133713i
\(347\) 304.297 0.876936 0.438468 0.898747i \(-0.355521\pi\)
0.438468 + 0.898747i \(0.355521\pi\)
\(348\) 113.477i 0.326083i
\(349\) −307.304 −0.880528 −0.440264 0.897868i \(-0.645115\pi\)
−0.440264 + 0.897868i \(0.645115\pi\)
\(350\) −31.8637 −0.0910393
\(351\) −611.481 611.481i −1.74211 1.74211i
\(352\) 61.8143 61.8143i 0.175609 0.175609i
\(353\) 567.201i 1.60680i 0.595438 + 0.803401i \(0.296978\pi\)
−0.595438 + 0.803401i \(0.703022\pi\)
\(354\) −193.526 193.526i −0.546685 0.546685i
\(355\) 59.3839 59.3839i 0.167278 0.167278i
\(356\) −255.713 −0.718295
\(357\) −44.2701 44.2701i −0.124006 0.124006i
\(358\) 167.574i 0.468083i
\(359\) 377.586 377.586i 1.05177 1.05177i 0.0531874 0.998585i \(-0.483062\pi\)
0.998585 0.0531874i \(-0.0169381\pi\)
\(360\) 279.554 + 279.554i 0.776540 + 0.776540i
\(361\) 263.784i 0.730704i
\(362\) 285.627 0.789025
\(363\) 459.440 + 459.440i 1.26567 + 1.26567i
\(364\) −22.8654 + 22.8654i −0.0628169 + 0.0628169i
\(365\) 751.141i 2.05792i
\(366\) 206.332i 0.563748i
\(367\) 430.806 430.806i 1.17386 1.17386i 0.192576 0.981282i \(-0.438316\pi\)
0.981282 0.192576i \(-0.0616843\pi\)
\(368\) 65.3370 0.177546
\(369\) 1148.47i 3.11239i
\(370\) −356.448 356.448i −0.963372 0.963372i
\(371\) 39.9872 39.9872i 0.107782 0.107782i
\(372\) 240.513i 0.646540i
\(373\) 334.180 + 334.180i 0.895926 + 0.895926i 0.995073 0.0991469i \(-0.0316114\pi\)
−0.0991469 + 0.995073i \(0.531611\pi\)
\(374\) 193.787 0.518147
\(375\) −188.376 188.376i −0.502337 0.502337i
\(376\) 60.6822 60.6822i 0.161389 0.161389i
\(377\) −91.8715 91.8715i −0.243691 0.243691i
\(378\) −87.6644 + 87.6644i −0.231916 + 0.231916i
\(379\) −463.927 + 463.927i −1.22408 + 1.22408i −0.257913 + 0.966168i \(0.583035\pi\)
−0.966168 + 0.257913i \(0.916965\pi\)
\(380\) −91.0088 91.0088i −0.239497 0.239497i
\(381\) 435.427 435.427i 1.14285 1.14285i
\(382\) 267.738 267.738i 0.700885 0.700885i
\(383\) −15.9896 15.9896i −0.0417483 0.0417483i 0.685924 0.727673i \(-0.259398\pi\)
−0.727673 + 0.685924i \(0.759398\pi\)
\(384\) −62.3958 −0.162489
\(385\) 91.3078 + 91.3078i 0.237163 + 0.237163i
\(386\) 168.747 0.437168
\(387\) 1007.91 2.60443
\(388\) 107.358 0.276695
\(389\) −599.214 −1.54040 −0.770198 0.637804i \(-0.779843\pi\)
−0.770198 + 0.637804i \(0.779843\pi\)
\(390\) 642.886 1.64843
\(391\) 102.415 + 102.415i 0.261932 + 0.261932i
\(392\) −94.7219 94.7219i −0.241638 0.241638i
\(393\) −432.570 432.570i −1.10069 1.10069i
\(394\) 519.225 1.31783
\(395\) 266.231i 0.674003i
\(396\) 661.905i 1.67148i
\(397\) 127.683 127.683i 0.321621 0.321621i −0.527768 0.849389i \(-0.676971\pi\)
0.849389 + 0.527768i \(0.176971\pi\)
\(398\) −81.2115 + 81.2115i −0.204049 + 0.204049i
\(399\) 49.2264 49.2264i 0.123375 0.123375i
\(400\) −70.3960 −0.175990
\(401\) 429.679 + 429.679i 1.07152 + 1.07152i 0.997237 + 0.0742824i \(0.0236666\pi\)
0.0742824 + 0.997237i \(0.476333\pi\)
\(402\) 967.618i 2.40701i
\(403\) −194.721 194.721i −0.483177 0.483177i
\(404\) −187.214 + 187.214i −0.463401 + 0.463401i
\(405\) 1206.79 2.97973
\(406\) −13.1711 + 13.1711i −0.0324411 + 0.0324411i
\(407\) 843.966i 2.07363i
\(408\) −97.8050 97.8050i −0.239718 0.239718i
\(409\) −388.988 388.988i −0.951070 0.951070i 0.0477878 0.998858i \(-0.484783\pi\)
−0.998858 + 0.0477878i \(0.984783\pi\)
\(410\) −350.013 350.013i −0.853689 0.853689i
\(411\) −453.609 −1.10367
\(412\) 277.025 0.672390
\(413\) 44.9245i 0.108776i
\(414\) 349.813 349.813i 0.844959 0.844959i
\(415\) −74.8286 + 74.8286i −0.180310 + 0.180310i
\(416\) −50.5160 + 50.5160i −0.121433 + 0.121433i
\(417\) 620.989i 1.48918i
\(418\) 215.483i 0.515509i
\(419\) 194.897i 0.465149i −0.972579 0.232574i \(-0.925285\pi\)
0.972579 0.232574i \(-0.0747149\pi\)
\(420\) 92.1667i 0.219445i
\(421\) 557.136i 1.32336i −0.749785 0.661682i \(-0.769843\pi\)
0.749785 0.661682i \(-0.230157\pi\)
\(422\) 402.369 402.369i 0.953480 0.953480i
\(423\) 649.782i 1.53613i
\(424\) 88.3429 88.3429i 0.208356 0.208356i
\(425\) −110.345 110.345i −0.259636 0.259636i
\(426\) 70.9634 + 70.9634i 0.166581 + 0.166581i
\(427\) −23.9486 + 23.9486i −0.0560857 + 0.0560857i
\(428\) 7.77369 + 7.77369i 0.0181628 + 0.0181628i
\(429\) −761.085 761.085i −1.77409 1.77409i
\(430\) −307.175 + 307.175i −0.714361 + 0.714361i
\(431\) −367.049 367.049i −0.851622 0.851622i 0.138711 0.990333i \(-0.455704\pi\)
−0.990333 + 0.138711i \(0.955704\pi\)
\(432\) −193.675 + 193.675i −0.448322 + 0.448322i
\(433\) 18.8613i 0.0435597i −0.999763 0.0217798i \(-0.993067\pi\)
0.999763 0.0217798i \(-0.00693329\pi\)
\(434\) −27.9159 + 27.9159i −0.0643224 + 0.0643224i
\(435\) 370.320 0.851310
\(436\) −141.380 141.380i −0.324267 0.324267i
\(437\) −113.881 + 113.881i −0.260598 + 0.260598i
\(438\) 897.610 2.04934
\(439\) 432.350i 0.984852i −0.870354 0.492426i \(-0.836110\pi\)
0.870354 0.492426i \(-0.163890\pi\)
\(440\) 201.724 + 201.724i 0.458465 + 0.458465i
\(441\) −1014.28 −2.29995
\(442\) −158.367 −0.358296
\(443\) 402.242 + 402.242i 0.907995 + 0.907995i 0.996110 0.0881153i \(-0.0280844\pi\)
−0.0881153 + 0.996110i \(0.528084\pi\)
\(444\) 425.953 425.953i 0.959353 0.959353i
\(445\) 834.493i 1.87527i
\(446\) −518.898 −1.16345
\(447\) 836.897 836.897i 1.87225 1.87225i
\(448\) 7.24218 + 7.24218i 0.0161656 + 0.0161656i
\(449\) 842.474 1.87633 0.938167 0.346183i \(-0.112522\pi\)
0.938167 + 0.346183i \(0.112522\pi\)
\(450\) −376.898 + 376.898i −0.837552 + 0.837552i
\(451\) 828.730i 1.83754i
\(452\) 184.548 + 184.548i 0.408292 + 0.408292i
\(453\) 675.792 675.792i 1.49181 1.49181i
\(454\) −431.402 −0.950225
\(455\) −74.6187 74.6187i −0.163997 0.163997i
\(456\) 108.755 108.755i 0.238498 0.238498i
\(457\) 321.109i 0.702646i 0.936254 + 0.351323i \(0.114268\pi\)
−0.936254 + 0.351323i \(0.885732\pi\)
\(458\) 303.093i 0.661776i
\(459\) −607.170 −1.32281
\(460\) 213.220i 0.463523i
\(461\) 101.857 101.857i 0.220948 0.220948i −0.587949 0.808898i \(-0.700065\pi\)
0.808898 + 0.587949i \(0.200065\pi\)
\(462\) −109.112 + 109.112i −0.236174 + 0.236174i
\(463\) −114.254 + 114.254i −0.246770 + 0.246770i −0.819644 0.572874i \(-0.805829\pi\)
0.572874 + 0.819644i \(0.305829\pi\)
\(464\) −29.0986 + 29.0986i −0.0627125 + 0.0627125i
\(465\) 784.888 1.68793
\(466\) −349.895 + 349.895i −0.750848 + 0.750848i
\(467\) −186.494 186.494i −0.399346 0.399346i 0.478657 0.878002i \(-0.341124\pi\)
−0.878002 + 0.478657i \(0.841124\pi\)
\(468\) 540.923i 1.15582i
\(469\) −112.310 + 112.310i −0.239467 + 0.239467i
\(470\) 198.030 + 198.030i 0.421340 + 0.421340i
\(471\) 1217.19i 2.58426i
\(472\) 99.2509i 0.210277i
\(473\) 727.304 1.53764
\(474\) −318.145 −0.671192
\(475\) 122.699 122.699i 0.258314 0.258314i
\(476\) 22.7041i 0.0476978i
\(477\) 945.972i 1.98317i
\(478\) 273.894 + 273.894i 0.573000 + 0.573000i
\(479\) 6.26608 + 6.26608i 0.0130816 + 0.0130816i 0.713617 0.700536i \(-0.247056\pi\)
−0.700536 + 0.713617i \(0.747056\pi\)
\(480\) 203.622i 0.424213i
\(481\) 689.708i 1.43390i
\(482\) 506.337 1.05049
\(483\) −115.330 −0.238779
\(484\) 235.626i 0.486831i
\(485\) 350.351i 0.722373i
\(486\) 570.570i 1.17401i
\(487\) 271.941 0.558401 0.279200 0.960233i \(-0.409931\pi\)
0.279200 + 0.960233i \(0.409931\pi\)
\(488\) −52.9091 + 52.9091i −0.108420 + 0.108420i
\(489\) −412.215 −0.842976
\(490\) 309.115 309.115i 0.630847 0.630847i
\(491\) 470.437i 0.958121i −0.877782 0.479060i \(-0.840978\pi\)
0.877782 0.479060i \(-0.159022\pi\)
\(492\) 418.263 418.263i 0.850128 0.850128i
\(493\) −91.2237 −0.185038
\(494\) 176.097i 0.356472i
\(495\) 2160.06 4.36375
\(496\) −61.6741 + 61.6741i −0.124343 + 0.124343i
\(497\) 16.4732i 0.0331453i
\(498\) −89.4197 89.4197i −0.179558 0.179558i
\(499\) 83.5111 + 83.5111i 0.167357 + 0.167357i 0.785817 0.618460i \(-0.212243\pi\)
−0.618460 + 0.785817i \(0.712243\pi\)
\(500\) 96.6097i 0.193219i
\(501\) 418.686i 0.835701i
\(502\) 511.955i 1.01983i
\(503\) 86.9474 + 86.9474i 0.172858 + 0.172858i 0.788234 0.615376i \(-0.210996\pi\)
−0.615376 + 0.788234i \(0.710996\pi\)
\(504\) 77.5489 0.153867
\(505\) −610.953 610.953i −1.20981 1.20981i
\(506\) 252.423 252.423i 0.498859 0.498859i
\(507\) −37.0802 37.0802i −0.0731366 0.0731366i
\(508\) −223.311 −0.439588
\(509\) −463.621 463.621i −0.910847 0.910847i 0.0854915 0.996339i \(-0.472754\pi\)
−0.996339 + 0.0854915i \(0.972754\pi\)
\(510\) 319.177 319.177i 0.625836 0.625836i
\(511\) −104.184 104.184i −0.203883 0.203883i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) 675.147i 1.31608i
\(514\) 612.767i 1.19215i
\(515\) 904.041i 1.75542i
\(516\) −367.073 367.073i −0.711381 0.711381i
\(517\) 468.878i 0.906921i
\(518\) −98.8793 −0.190887
\(519\) 180.421 + 180.421i 0.347631 + 0.347631i
\(520\) −164.854 164.854i −0.317026 0.317026i
\(521\) 47.2548 47.2548i 0.0907001 0.0907001i −0.660301 0.751001i \(-0.729571\pi\)
0.751001 + 0.660301i \(0.229571\pi\)
\(522\) 311.587i 0.596909i
\(523\) −283.189 + 283.189i −0.541470 + 0.541470i −0.923960 0.382489i \(-0.875067\pi\)
0.382489 + 0.923960i \(0.375067\pi\)
\(524\) 221.845i 0.423369i
\(525\) 124.260 0.236686
\(526\) −379.430 379.430i −0.721350 0.721350i
\(527\) −193.348 −0.366883
\(528\) −241.060 + 241.060i −0.456552 + 0.456552i
\(529\) −262.192 −0.495637
\(530\) 288.298 + 288.298i 0.543958 + 0.543958i
\(531\) 531.387 + 531.387i 1.00073 + 1.00073i
\(532\) −25.2460 −0.0474549
\(533\) 677.256i 1.27065i
\(534\) 997.214 1.86744
\(535\) −25.3686 + 25.3686i −0.0474180 + 0.0474180i
\(536\) −248.124 + 248.124i −0.462918 + 0.462918i
\(537\) 653.493i 1.21693i
\(538\) −218.549 + 311.381i −0.406226 + 0.578775i
\(539\) −731.896 −1.35788
\(540\) −632.039 632.039i −1.17044 1.17044i
\(541\) 163.006 + 163.006i 0.301305 + 0.301305i 0.841524 0.540220i \(-0.181659\pi\)
−0.540220 + 0.841524i \(0.681659\pi\)
\(542\) 225.118i 0.415346i
\(543\) −1113.87 −2.05133
\(544\) 50.1598i 0.0922055i
\(545\) 461.380 461.380i 0.846568 0.846568i
\(546\) 89.1689 89.1689i 0.163313 0.163313i
\(547\) 165.860i 0.303218i −0.988441 0.151609i \(-0.951555\pi\)
0.988441 0.151609i \(-0.0484454\pi\)
\(548\) 116.318 + 116.318i 0.212259 + 0.212259i
\(549\) 566.549i 1.03196i
\(550\) −271.967 + 271.967i −0.494486 + 0.494486i
\(551\) 101.437i 0.184096i
\(552\) −254.797 −0.461589
\(553\) 36.9265 + 36.9265i 0.0667749 + 0.0667749i
\(554\) 235.224 0.424591
\(555\) 1390.05 + 1390.05i 2.50460 + 2.50460i
\(556\) 159.239 159.239i 0.286401 0.286401i
\(557\) −358.595 + 358.595i −0.643797 + 0.643797i −0.951487 0.307690i \(-0.900444\pi\)
0.307690 + 0.951487i \(0.400444\pi\)
\(558\) 660.404i 1.18352i
\(559\) −594.368 −1.06327
\(560\) −23.6341 + 23.6341i −0.0422037 + 0.0422037i
\(561\) −755.719 −1.34709
\(562\) −428.832 −0.763046
\(563\) −657.191 −1.16730 −0.583651 0.812005i \(-0.698376\pi\)
−0.583651 + 0.812005i \(0.698376\pi\)
\(564\) −236.645 + 236.645i −0.419583 + 0.419583i
\(565\) −602.253 + 602.253i −1.06593 + 1.06593i
\(566\) 273.475 + 273.475i 0.483171 + 0.483171i
\(567\) 167.383 167.383i 0.295208 0.295208i
\(568\) 36.3939i 0.0640738i
\(569\) −62.8867 + 62.8867i −0.110521 + 0.110521i −0.760205 0.649683i \(-0.774901\pi\)
0.649683 + 0.760205i \(0.274901\pi\)
\(570\) 354.911 + 354.911i 0.622650 + 0.622650i
\(571\) 559.497 559.497i 0.979854 0.979854i −0.0199470 0.999801i \(-0.506350\pi\)
0.999801 + 0.0199470i \(0.00634974\pi\)
\(572\) 390.326i 0.682389i
\(573\) −1044.11 + 1044.11i −1.82218 + 1.82218i
\(574\) −97.0942 −0.169154
\(575\) −287.466 −0.499941
\(576\) 171.327 0.297443
\(577\) 208.070 208.070i 0.360607 0.360607i −0.503429 0.864036i \(-0.667929\pi\)
0.864036 + 0.503429i \(0.167929\pi\)
\(578\) 210.375 210.375i 0.363970 0.363970i
\(579\) −658.069 −1.13656
\(580\) −94.9602 94.9602i −0.163724 0.163724i
\(581\) 20.7576i 0.0357274i
\(582\) −418.667 −0.719359
\(583\) 682.607i 1.17085i
\(584\) −230.172 230.172i −0.394130 0.394130i
\(585\) −1765.25 −3.01751
\(586\) 473.642 + 473.642i 0.808262 + 0.808262i
\(587\) 746.743i 1.27213i 0.771634 + 0.636067i \(0.219440\pi\)
−0.771634 + 0.636067i \(0.780560\pi\)
\(588\) 369.391 + 369.391i 0.628216 + 0.628216i
\(589\) 214.994i 0.365016i
\(590\) −323.895 −0.548975
\(591\) −2024.84 −3.42613
\(592\) −218.452 −0.369007
\(593\) 281.034i 0.473919i 0.971520 + 0.236959i \(0.0761508\pi\)
−0.971520 + 0.236959i \(0.923849\pi\)
\(594\) 1496.49i 2.51934i
\(595\) −74.0926 −0.124525
\(596\) −429.207 −0.720145
\(597\) 316.704 316.704i 0.530492 0.530492i
\(598\) −206.285 + 206.285i −0.344959 + 0.344959i
\(599\) 245.727 0.410229 0.205115 0.978738i \(-0.434243\pi\)
0.205115 + 0.978738i \(0.434243\pi\)
\(600\) 274.526 0.457543
\(601\) −538.142 538.142i −0.895411 0.895411i 0.0996146 0.995026i \(-0.468239\pi\)
−0.995026 + 0.0996146i \(0.968239\pi\)
\(602\) 85.2110i 0.141547i
\(603\) 2656.90i 4.40614i
\(604\) −346.583 −0.573813
\(605\) 768.941 1.27098
\(606\) 730.085 730.085i 1.20476 1.20476i
\(607\) −437.437 437.437i −0.720654 0.720654i 0.248085 0.968738i \(-0.420199\pi\)
−0.968738 + 0.248085i \(0.920199\pi\)
\(608\) −55.7755 −0.0917361
\(609\) 51.3637 51.3637i 0.0843411 0.0843411i
\(610\) −172.663 172.663i −0.283055 0.283055i
\(611\) 383.178i 0.627132i
\(612\) 268.555 + 268.555i 0.438815 + 0.438815i
\(613\) −303.946 303.946i −0.495834 0.495834i 0.414304 0.910138i \(-0.364025\pi\)
−0.910138 + 0.414304i \(0.864025\pi\)
\(614\) 190.785 + 190.785i 0.310725 + 0.310725i
\(615\) 1364.96 + 1364.96i 2.21944 + 2.21944i
\(616\) 55.9588 0.0908421
\(617\) 498.398i 0.807777i 0.914808 + 0.403888i \(0.132342\pi\)
−0.914808 + 0.403888i \(0.867658\pi\)
\(618\) −1080.32 −1.74810
\(619\) 89.7201 0.144944 0.0724718 0.997370i \(-0.476911\pi\)
0.0724718 + 0.997370i \(0.476911\pi\)
\(620\) −201.267 201.267i −0.324624 0.324624i
\(621\) −790.885 + 790.885i −1.27357 + 1.27357i
\(622\) 180.367i 0.289980i
\(623\) −115.745 115.745i −0.185786 0.185786i
\(624\) 196.999 196.999i 0.315704 0.315704i
\(625\) −755.250 −1.20840
\(626\) 248.677 + 248.677i 0.397248 + 0.397248i
\(627\) 840.327i 1.34023i
\(628\) 312.120 312.120i 0.497007 0.497007i
\(629\) −342.422 342.422i −0.544391 0.544391i
\(630\) 253.073i 0.401703i
\(631\) −337.884 −0.535475 −0.267737 0.963492i \(-0.586276\pi\)
−0.267737 + 0.963492i \(0.586276\pi\)
\(632\) 81.5811 + 81.5811i 0.129084 + 0.129084i
\(633\) −1569.13 + 1569.13i −2.47888 + 2.47888i
\(634\) 252.483i 0.398238i
\(635\) 728.751i 1.14764i
\(636\) −344.514 + 344.514i −0.541689 + 0.541689i
\(637\) 598.122 0.938966
\(638\) 224.839i 0.352412i
\(639\) −194.852 194.852i −0.304933 0.304933i
\(640\) −52.2143 + 52.2143i −0.0815849 + 0.0815849i
\(641\) 656.279i 1.02384i 0.859034 + 0.511918i \(0.171065\pi\)
−0.859034 + 0.511918i \(0.828935\pi\)
\(642\) −30.3154 30.3154i −0.0472202 0.0472202i
\(643\) 792.811 1.23299 0.616494 0.787360i \(-0.288552\pi\)
0.616494 + 0.787360i \(0.288552\pi\)
\(644\) 29.5739 + 29.5739i 0.0459222 + 0.0459222i
\(645\) 1197.90 1197.90i 1.85721 1.85721i
\(646\) −87.4278 87.4278i −0.135337 0.135337i
\(647\) 112.270 112.270i 0.173525 0.173525i −0.615001 0.788526i \(-0.710845\pi\)
0.788526 + 0.615001i \(0.210845\pi\)
\(648\) 369.796 369.796i 0.570673 0.570673i
\(649\) 383.445 + 383.445i 0.590825 + 0.590825i
\(650\) 222.258 222.258i 0.341935 0.341935i
\(651\) 108.865 108.865i 0.167227 0.167227i
\(652\) 105.703 + 105.703i 0.162122 + 0.162122i
\(653\) −25.8733 −0.0396223 −0.0198111 0.999804i \(-0.506306\pi\)
−0.0198111 + 0.999804i \(0.506306\pi\)
\(654\) 551.346 + 551.346i 0.843037 + 0.843037i
\(655\) −723.969 −1.10530
\(656\) −214.508 −0.326994
\(657\) −2464.67 −3.75140
\(658\) 54.9339 0.0834861
\(659\) −276.514 −0.419597 −0.209798 0.977745i \(-0.567281\pi\)
−0.209798 + 0.977745i \(0.567281\pi\)
\(660\) −786.673 786.673i −1.19193 1.19193i
\(661\) 883.854 + 883.854i 1.33715 + 1.33715i 0.898811 + 0.438336i \(0.144432\pi\)
0.438336 + 0.898811i \(0.355568\pi\)
\(662\) 584.868 + 584.868i 0.883487 + 0.883487i
\(663\) 617.590 0.931508
\(664\) 45.8593i 0.0690653i
\(665\) 82.3877i 0.123891i
\(666\) −1169.59 + 1169.59i −1.75614 + 1.75614i
\(667\) −118.826 + 118.826i −0.178150 + 0.178150i
\(668\) 107.363 107.363i 0.160722 0.160722i
\(669\) 2023.57 3.02477
\(670\) −809.726 809.726i −1.20855 1.20855i
\(671\) 408.818i 0.609266i
\(672\) −28.2426 28.2426i −0.0420277 0.0420277i
\(673\) −142.265 + 142.265i −0.211390 + 0.211390i −0.804858 0.593468i \(-0.797758\pi\)
0.593468 + 0.804858i \(0.297758\pi\)
\(674\) −775.677 −1.15086
\(675\) 852.122 852.122i 1.26240 1.26240i
\(676\) 19.0168i 0.0281313i
\(677\) −444.539 444.539i −0.656631 0.656631i 0.297950 0.954581i \(-0.403697\pi\)
−0.954581 + 0.297950i \(0.903697\pi\)
\(678\) −719.689 719.689i −1.06149 1.06149i
\(679\) 48.5940 + 48.5940i 0.0715670 + 0.0715670i
\(680\) −163.691 −0.240722
\(681\) 1682.36 2.47042
\(682\) 476.543i 0.698743i
\(683\) 320.153 320.153i 0.468745 0.468745i −0.432763 0.901508i \(-0.642461\pi\)
0.901508 + 0.432763i \(0.142461\pi\)
\(684\) −298.621 + 298.621i −0.436581 + 0.436581i
\(685\) −379.591 + 379.591i −0.554148 + 0.554148i
\(686\) 174.466i 0.254323i
\(687\) 1181.98i 1.72050i
\(688\) 188.255i 0.273627i
\(689\) 557.841i 0.809639i
\(690\) 831.504i 1.20508i
\(691\) 452.233 452.233i 0.654462 0.654462i −0.299602 0.954064i \(-0.596854\pi\)
0.954064 + 0.299602i \(0.0968539\pi\)
\(692\) 92.5296i 0.133713i
\(693\) 299.602 299.602i 0.432326 0.432326i
\(694\) 304.297 + 304.297i 0.438468 + 0.438468i
\(695\) 519.659 + 519.659i 0.747711 + 0.747711i
\(696\) 113.477 113.477i 0.163042 0.163042i
\(697\) −336.240 336.240i −0.482411 0.482411i
\(698\) −307.304 307.304i −0.440264 0.440264i
\(699\) 1364.50 1364.50i 1.95207 1.95207i
\(700\) −31.8637 31.8637i −0.0455196 0.0455196i
\(701\) 353.765 353.765i 0.504657 0.504657i −0.408225 0.912882i \(-0.633852\pi\)
0.912882 + 0.408225i \(0.133852\pi\)
\(702\) 1222.96i 1.74211i
\(703\) 380.759 380.759i 0.541620 0.541620i
\(704\) 123.629 0.175609
\(705\) −772.265 772.265i −1.09541 1.09541i
\(706\) −567.201 + 567.201i −0.803401 + 0.803401i
\(707\) −169.480 −0.239716
\(708\) 387.053i 0.546685i
\(709\) −451.390 451.390i −0.636657 0.636657i 0.313072 0.949729i \(-0.398642\pi\)
−0.949729 + 0.313072i \(0.898642\pi\)
\(710\) 118.768 0.167278
\(711\) 873.567 1.22865
\(712\) −255.713 255.713i −0.359148 0.359148i
\(713\) −251.850 + 251.850i −0.353226 + 0.353226i
\(714\) 88.5402i 0.124006i
\(715\) −1273.79 −1.78152
\(716\) −167.574 + 167.574i −0.234041 + 0.234041i
\(717\) −1068.11 1068.11i −1.48970 1.48970i
\(718\) 755.172 1.05177
\(719\) 106.012 106.012i 0.147443 0.147443i −0.629532 0.776975i \(-0.716753\pi\)
0.776975 + 0.629532i \(0.216753\pi\)
\(720\) 559.109i 0.776540i
\(721\) 125.391 + 125.391i 0.173913 + 0.173913i
\(722\) −263.784 + 263.784i −0.365352 + 0.365352i
\(723\) −1974.58 −2.73109
\(724\) 285.627 + 285.627i 0.394512 + 0.394512i
\(725\) 128.026 128.026i 0.176588 0.176588i
\(726\) 918.880i 1.26567i
\(727\) 221.291i 0.304389i 0.988351 + 0.152194i \(0.0486340\pi\)
−0.988351 + 0.152194i \(0.951366\pi\)
\(728\) −45.7307 −0.0628169
\(729\) 560.991i 0.769535i
\(730\) 751.141 751.141i 1.02896 1.02896i
\(731\) −295.089 + 295.089i −0.403678 + 0.403678i
\(732\) 206.332 206.332i 0.281874 0.281874i
\(733\) 414.108 414.108i 0.564949 0.564949i −0.365760 0.930709i \(-0.619191\pi\)
0.930709 + 0.365760i \(0.119191\pi\)
\(734\) 861.612 1.17386
\(735\) −1205.47 + 1205.47i −1.64009 + 1.64009i
\(736\) 65.3370 + 65.3370i 0.0887731 + 0.0887731i
\(737\) 1917.20i 2.60136i
\(738\) −1148.47 + 1148.47i −1.55620 + 1.55620i
\(739\) −753.962 753.962i −1.02025 1.02025i −0.999791 0.0204550i \(-0.993489\pi\)
−0.0204550 0.999791i \(-0.506511\pi\)
\(740\) 712.895i 0.963372i
\(741\) 686.733i 0.926766i
\(742\) 79.9744 0.107782
\(743\) 908.110 1.22222 0.611110 0.791545i \(-0.290723\pi\)
0.611110 + 0.791545i \(0.290723\pi\)
\(744\) 240.513 240.513i 0.323270 0.323270i
\(745\) 1400.67i 1.88010i
\(746\) 668.361i 0.895926i
\(747\) 245.530 + 245.530i 0.328688 + 0.328688i
\(748\) 193.787 + 193.787i 0.259074 + 0.259074i
\(749\) 7.03730i 0.00939560i
\(750\) 376.753i 0.502337i
\(751\) 1098.76 1.46307 0.731535 0.681804i \(-0.238804\pi\)
0.731535 + 0.681804i \(0.238804\pi\)
\(752\) 121.364 0.161389
\(753\) 1996.49i 2.65138i
\(754\) 183.743i 0.243691i
\(755\) 1131.04i 1.49806i
\(756\) −175.329 −0.231916
\(757\) 965.094 965.094i 1.27489 1.27489i 0.331405 0.943489i \(-0.392477\pi\)
0.943489 0.331405i \(-0.107523\pi\)
\(758\) −927.854 −1.22408
\(759\) −984.382 + 984.382i −1.29695 + 1.29695i
\(760\) 182.018i 0.239497i
\(761\) 731.448 731.448i 0.961167 0.961167i −0.0381066 0.999274i \(-0.512133\pi\)
0.999274 + 0.0381066i \(0.0121326\pi\)
\(762\) 870.853 1.14285
\(763\) 127.988i 0.167743i
\(764\) 535.476 0.700885
\(765\) −876.399 + 876.399i −1.14562 + 1.14562i
\(766\) 31.9792i 0.0417483i
\(767\) −313.360 313.360i −0.408553 0.408553i
\(768\) −62.3958 62.3958i −0.0812445 0.0812445i
\(769\) 134.902i 0.175425i 0.996146 + 0.0877125i \(0.0279557\pi\)
−0.996146 + 0.0877125i \(0.972044\pi\)
\(770\) 182.616i 0.237163i
\(771\) 2389.63i 3.09939i
\(772\) 168.747 + 168.747i 0.218584 + 0.218584i
\(773\) 1131.91 1.46431 0.732156 0.681137i \(-0.238514\pi\)
0.732156 + 0.681137i \(0.238514\pi\)
\(774\) 1007.91 + 1007.91i 1.30221 + 1.30221i
\(775\) 271.350 271.350i 0.350130 0.350130i
\(776\) 107.358 + 107.358i 0.138348 + 0.138348i
\(777\) 385.603 0.496272
\(778\) −599.214 599.214i −0.770198 0.770198i
\(779\) 373.885 373.885i 0.479955 0.479955i
\(780\) 642.886 + 642.886i 0.824213 + 0.824213i
\(781\) −140.604 140.604i −0.180031 0.180031i
\(782\) 204.831i 0.261932i
\(783\) 704.460i 0.899693i
\(784\) 189.444i 0.241638i
\(785\) 1018.57 + 1018.57i 1.29754 + 1.29754i
\(786\) 865.139i 1.10069i
\(787\) 1123.63 1.42773 0.713867 0.700282i \(-0.246942\pi\)
0.713867 + 0.700282i \(0.246942\pi\)
\(788\) 519.225 + 519.225i 0.658915 + 0.658915i
\(789\) 1479.68 + 1479.68i 1.87538 + 1.87538i
\(790\) −266.231 + 266.231i −0.337002 + 0.337002i
\(791\) 167.066i 0.211209i
\(792\) 661.905 661.905i 0.835739 0.835739i
\(793\) 334.095i 0.421305i
\(794\) 255.367 0.321621
\(795\) −1124.29 1124.29i −1.41420 1.41420i
\(796\) −162.423 −0.204049
\(797\) 25.2801 25.2801i 0.0317191 0.0317191i −0.691069 0.722788i \(-0.742860\pi\)
0.722788 + 0.691069i \(0.242860\pi\)
\(798\) 98.4529 0.123375
\(799\) 190.238 + 190.238i 0.238095 + 0.238095i
\(800\) −70.3960 70.3960i −0.0879949 0.0879949i
\(801\) −2738.17 −3.41843
\(802\) 859.359i 1.07152i
\(803\) −1778.49 −2.21480
\(804\) 967.618 967.618i 1.20351 1.20351i
\(805\) −96.5113 + 96.5113i −0.119890 + 0.119890i
\(806\) 389.441i 0.483177i
\(807\) 852.285 1214.30i 1.05612 1.50471i
\(808\) −374.428 −0.463401
\(809\) −183.521 183.521i −0.226850 0.226850i 0.584526 0.811375i \(-0.301281\pi\)
−0.811375 + 0.584526i \(0.801281\pi\)
\(810\) 1206.79 + 1206.79i 1.48987 + 1.48987i
\(811\) 170.440i 0.210160i 0.994464 + 0.105080i \(0.0335098\pi\)
−0.994464 + 0.105080i \(0.966490\pi\)
\(812\) −26.3421 −0.0324411
\(813\) 877.899i 1.07983i
\(814\) −843.966 + 843.966i −1.03681 + 1.03681i
\(815\) −344.952 + 344.952i −0.423253 + 0.423253i
\(816\) 195.610i 0.239718i
\(817\) −328.126 328.126i −0.401623 0.401623i
\(818\) 777.975i 0.951070i
\(819\) −244.841 + 244.841i −0.298951 + 0.298951i
\(820\) 700.025i 0.853689i
\(821\) 1081.79 1.31765 0.658827 0.752294i \(-0.271053\pi\)
0.658827 + 0.752294i \(0.271053\pi\)
\(822\) −453.609 453.609i −0.551836 0.551836i
\(823\) −1049.92 −1.27572 −0.637862 0.770150i \(-0.720181\pi\)
−0.637862 + 0.770150i \(0.720181\pi\)
\(824\) 277.025 + 277.025i 0.336195 + 0.336195i
\(825\) 1060.60 1060.60i 1.28558 1.28558i
\(826\) −44.9245 + 44.9245i −0.0543881 + 0.0543881i
\(827\) 711.634i 0.860501i −0.902710 0.430251i \(-0.858425\pi\)
0.902710 0.430251i \(-0.141575\pi\)
\(828\) 699.626 0.844959
\(829\) 357.565 357.565i 0.431320 0.431320i −0.457757 0.889077i \(-0.651347\pi\)
0.889077 + 0.457757i \(0.151347\pi\)
\(830\) −149.657 −0.180310
\(831\) −917.311 −1.10386
\(832\) −101.032 −0.121433
\(833\) 296.952 296.952i 0.356485 0.356485i
\(834\) −620.989 + 620.989i −0.744591 + 0.744591i
\(835\) 350.367 + 350.367i 0.419601 + 0.419601i
\(836\) −215.483 + 215.483i −0.257755 + 0.257755i
\(837\) 1493.09i 1.78386i
\(838\) 194.897 194.897i 0.232574 0.232574i
\(839\) −1041.70 1041.70i −1.24159 1.24159i −0.959341 0.282251i \(-0.908919\pi\)
−0.282251 0.959341i \(-0.591081\pi\)
\(840\) 92.1667 92.1667i 0.109722 0.109722i
\(841\) 735.159i 0.874149i
\(842\) 557.136 557.136i 0.661682 0.661682i
\(843\) 1672.33 1.98379
\(844\) 804.737 0.953480
\(845\) −62.0593 −0.0734430
\(846\) 649.782 649.782i 0.768064 0.768064i
\(847\) 106.653 106.653i 0.125918 0.125918i
\(848\) 176.686 0.208356
\(849\) −1066.48 1066.48i −1.25616 1.25616i
\(850\) 220.690i 0.259636i
\(851\) −892.063 −1.04825
\(852\) 141.927i 0.166581i
\(853\) −133.701 133.701i −0.156742 0.156742i 0.624379 0.781121i \(-0.285352\pi\)
−0.781121 + 0.624379i \(0.785352\pi\)
\(854\) −47.8972 −0.0560857
\(855\) −974.519 974.519i −1.13979 1.13979i
\(856\) 15.5474i 0.0181628i
\(857\) −132.566 132.566i −0.154686 0.154686i 0.625521 0.780207i \(-0.284886\pi\)
−0.780207 + 0.625521i \(0.784886\pi\)
\(858\) 1522.17i 1.77409i
\(859\) −260.751 −0.303552 −0.151776 0.988415i \(-0.548499\pi\)
−0.151776 + 0.988415i \(0.548499\pi\)
\(860\) −614.351 −0.714361
\(861\) 378.642 0.439770
\(862\) 734.098i 0.851622i
\(863\) 301.521i 0.349387i −0.984623 0.174693i \(-0.944107\pi\)
0.984623 0.174693i \(-0.0558934\pi\)
\(864\) −387.351 −0.448322
\(865\) 301.961 0.349088
\(866\) 18.8613 18.8613i 0.0217798 0.0217798i
\(867\) −820.407 + 820.407i −0.946259 + 0.946259i
\(868\) −55.8318 −0.0643224
\(869\) 630.360 0.725385
\(870\) 370.320 + 370.320i 0.425655 + 0.425655i
\(871\) 1566.78i 1.79883i
\(872\) 282.761i 0.324267i
\(873\) 1149.58 1.31682
\(874\) −227.763 −0.260598
\(875\) −43.7290 + 43.7290i −0.0499760 + 0.0499760i
\(876\) 897.610 + 897.610i 1.02467 + 1.02467i
\(877\) 107.153 0.122181 0.0610906 0.998132i \(-0.480542\pi\)
0.0610906 + 0.998132i \(0.480542\pi\)
\(878\) 432.350 432.350i 0.492426 0.492426i
\(879\) −1847.08 1847.08i −2.10134 2.10134i
\(880\) 403.449i 0.458465i
\(881\) 755.999 + 755.999i 0.858115 + 0.858115i 0.991116 0.133001i \(-0.0424614\pi\)
−0.133001 + 0.991116i \(0.542461\pi\)
\(882\) −1014.28 1014.28i −1.14998 1.14998i
\(883\) −321.307 321.307i −0.363881 0.363881i 0.501359 0.865240i \(-0.332834\pi\)
−0.865240 + 0.501359i \(0.832834\pi\)
\(884\) −158.367 158.367i −0.179148 0.179148i
\(885\) 1263.11 1.42724
\(886\) 804.484i 0.907995i
\(887\) 450.433 0.507817 0.253908 0.967228i \(-0.418284\pi\)
0.253908 + 0.967228i \(0.418284\pi\)
\(888\) 851.906 0.959353
\(889\) −101.078 101.078i −0.113699 0.113699i
\(890\) 834.493 834.493i 0.937633 0.937633i
\(891\) 2857.34i 3.20689i
\(892\) −518.898 518.898i −0.581725 0.581725i
\(893\) −211.536 + 211.536i −0.236883 + 0.236883i
\(894\) 1673.79 1.87225
\(895\) −546.859 546.859i −0.611016 0.611016i
\(896\) 14.4844i 0.0161656i
\(897\) 804.458 804.458i 0.896832 0.896832i
\(898\) 842.474 + 842.474i 0.938167 + 0.938167i
\(899\) 224.329i 0.249531i
\(900\) −753.797 −0.837552
\(901\) 276.954 + 276.954i 0.307385 + 0.307385i
\(902\) −828.730 + 828.730i −0.918769 + 0.918769i
\(903\) 332.301i 0.367996i
\(904\) 369.096i 0.408292i
\(905\) −932.114 + 932.114i −1.02996 + 1.02996i
\(906\) 1351.58 1.49181
\(907\) 1483.18i 1.63525i 0.575748 + 0.817627i \(0.304711\pi\)
−0.575748 + 0.817627i \(0.695289\pi\)
\(908\) −431.402 431.402i −0.475112 0.475112i
\(909\) −2004.68 + 2004.68i −2.20537 + 2.20537i
\(910\) 149.237i 0.163997i
\(911\) 72.0980 + 72.0980i 0.0791416 + 0.0791416i 0.745570 0.666428i \(-0.232178\pi\)
−0.666428 + 0.745570i \(0.732178\pi\)
\(912\) 217.510 0.238498
\(913\) 177.173 + 177.173i 0.194056 + 0.194056i
\(914\) −321.109 + 321.109i −0.351323 + 0.351323i
\(915\) 673.342 + 673.342i 0.735893 + 0.735893i
\(916\) −303.093 + 303.093i −0.330888 + 0.330888i
\(917\) −100.415 + 100.415i −0.109504 + 0.109504i
\(918\) −607.170 607.170i −0.661405 0.661405i
\(919\) −982.987 + 982.987i −1.06963 + 1.06963i −0.0722399 + 0.997387i \(0.523015\pi\)
−0.997387 + 0.0722399i \(0.976985\pi\)
\(920\) −213.220 + 213.220i −0.231761 + 0.231761i
\(921\) −744.013 744.013i −0.807832 0.807832i
\(922\) 203.714 0.220948
\(923\) 114.905 + 114.905i 0.124490 + 0.124490i
\(924\) −218.225 −0.236174
\(925\) 961.134 1.03906
\(926\) −228.509 −0.246770
\(927\) 2966.37 3.19997
\(928\) −58.1972 −0.0627125
\(929\) 533.172 + 533.172i 0.573921 + 0.573921i 0.933222 0.359301i \(-0.116985\pi\)
−0.359301 + 0.933222i \(0.616985\pi\)
\(930\) 784.888 + 784.888i 0.843966 + 0.843966i
\(931\) 330.198 + 330.198i 0.354670 + 0.354670i
\(932\) −699.790 −0.750848
\(933\) 703.386i 0.753897i
\(934\) 372.989i 0.399346i
\(935\) −632.404 + 632.404i −0.676368 + 0.676368i
\(936\) −540.923 + 540.923i −0.577909 + 0.577909i
\(937\) 168.993 168.993i 0.180355 0.180355i −0.611156 0.791511i \(-0.709295\pi\)
0.791511 + 0.611156i \(0.209295\pi\)
\(938\) −224.620 −0.239467
\(939\) −969.777 969.777i −1.03278 1.03278i
\(940\) 396.060i 0.421340i
\(941\) 212.690 + 212.690i 0.226026 + 0.226026i 0.811030 0.585004i \(-0.198907\pi\)
−0.585004 + 0.811030i \(0.698907\pi\)
\(942\) −1217.19 + 1217.19i −1.29213 + 1.29213i
\(943\) −875.958 −0.928906
\(944\) −99.2509 + 99.2509i −0.105139 + 0.105139i
\(945\) 572.167i 0.605468i
\(946\) 727.304 + 727.304i 0.768820 + 0.768820i
\(947\) −310.572 310.572i −0.327953 0.327953i 0.523855 0.851808i \(-0.324494\pi\)
−0.851808 + 0.523855i \(0.824494\pi\)
\(948\) −318.145 318.145i −0.335596 0.335596i
\(949\) 1453.42 1.53153
\(950\) 245.398 0.258314
\(951\) 984.618i 1.03535i
\(952\) −22.7041 + 22.7041i −0.0238489 + 0.0238489i
\(953\) 956.479 956.479i 1.00365 1.00365i 0.00365755 0.999993i \(-0.498836\pi\)
0.999993 0.00365755i \(-0.00116424\pi\)
\(954\) 945.972 945.972i 0.991585 0.991585i
\(955\) 1747.47i 1.82981i
\(956\) 547.788i 0.573000i
\(957\) 876.812i 0.916209i
\(958\) 12.5322i 0.0130816i
\(959\) 105.299i 0.109801i
\(960\) 203.622 203.622i 0.212106 0.212106i
\(961\) 485.538i 0.505243i
\(962\) 689.708 689.708i 0.716952 0.716952i
\(963\) 83.2403 + 83.2403i 0.0864386 + 0.0864386i
\(964\) 506.337 + 506.337i 0.525246 + 0.525246i
\(965\) −550.688 + 550.688i −0.570661 + 0.570661i
\(966\) −115.330 115.330i −0.119390 0.119390i
\(967\) 553.748 + 553.748i 0.572645 + 0.572645i 0.932867 0.360222i \(-0.117299\pi\)
−0.360222 + 0.932867i \(0.617299\pi\)
\(968\) 235.626 235.626i 0.243415 0.243415i
\(969\) 340.946 + 340.946i 0.351853 + 0.351853i
\(970\) −350.351 + 350.351i −0.361186 + 0.361186i
\(971\) 1615.95i 1.66421i 0.554618 + 0.832105i \(0.312864\pi\)
−0.554618 + 0.832105i \(0.687136\pi\)
\(972\) −570.570 + 570.570i −0.587006 + 0.587006i
\(973\) 144.154 0.148155
\(974\) 271.941 + 271.941i 0.279200 + 0.279200i
\(975\) −866.746 + 866.746i −0.888971 + 0.888971i
\(976\) −105.818 −0.108420
\(977\) 882.366i 0.903138i 0.892236 + 0.451569i \(0.149136\pi\)
−0.892236 + 0.451569i \(0.850864\pi\)
\(978\) −412.215 412.215i −0.421488 0.421488i
\(979\) −1975.84 −2.01822
\(980\) 618.230 0.630847
\(981\) −1513.89 1513.89i −1.54322 1.54322i
\(982\) 470.437 470.437i 0.479060 0.479060i
\(983\) 88.7858i 0.0903213i −0.998980 0.0451606i \(-0.985620\pi\)
0.998980 0.0451606i \(-0.0143800\pi\)
\(984\) 836.526 0.850128
\(985\) −1694.44 + 1694.44i −1.72024 + 1.72024i
\(986\) −91.2237 91.2237i −0.0925190 0.0925190i
\(987\) −214.228 −0.217049
\(988\) 176.097 176.097i 0.178236 0.178236i
\(989\) 768.752i 0.777302i
\(990\) 2160.06 + 2160.06i 2.18188 + 2.18188i
\(991\) 309.154 309.154i 0.311962 0.311962i −0.533708 0.845669i \(-0.679202\pi\)
0.845669 + 0.533708i \(0.179202\pi\)
\(992\) −123.348 −0.124343
\(993\) −2280.83 2280.83i −2.29691 2.29691i
\(994\) 16.4732 16.4732i 0.0165726 0.0165726i
\(995\) 530.051i 0.532714i
\(996\) 178.839i 0.179558i
\(997\) 115.397 0.115744 0.0578722 0.998324i \(-0.481568\pi\)
0.0578722 + 0.998324i \(0.481568\pi\)
\(998\) 167.022i 0.167357i
\(999\) 2644.30 2644.30i 2.64694 2.64694i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.3.c.a.187.1 44
269.82 odd 4 inner 538.3.c.a.351.1 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.3.c.a.187.1 44 1.1 even 1 trivial
538.3.c.a.351.1 yes 44 269.82 odd 4 inner