Properties

Label 5328.2.h.g.2737.1
Level $5328$
Weight $2$
Character 5328.2737
Analytic conductor $42.544$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5328,2,Mod(2737,5328)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5328, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5328.2737"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5328 = 2^{4} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5328.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-4,0,0,0,-8,0,0,0,0,0,0,0,0,0,0,0,0,0,-8,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(41)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.5442941969\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 6x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 444)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2737.1
Root \(-2.28825i\) of defining polynomial
Character \(\chi\) \(=\) 5328.2737
Dual form 5328.2.h.g.2737.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.70246i q^{5} -3.23607 q^{7} -6.47214 q^{11} -1.74806i q^{13} -6.53089i q^{17} -4.57649i q^{19} -7.19859i q^{23} -8.70820 q^{25} -4.78282i q^{29} -6.32456i q^{31} +11.9814i q^{35} +(2.23607 + 5.65685i) q^{37} -2.00000 q^{41} +2.82843i q^{43} +4.00000 q^{47} +3.47214 q^{49} +6.94427 q^{53} +23.9628i q^{55} -0.874032i q^{59} -5.65685i q^{61} -6.47214 q^{65} -5.70820 q^{67} +8.94427 q^{71} -1.23607 q^{73} +20.9443 q^{77} +15.8902i q^{79} +10.4721 q^{83} -24.1803 q^{85} -7.19859i q^{89} +5.65685i q^{91} -16.9443 q^{95} +5.24419i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{7} - 8 q^{11} - 8 q^{25} - 8 q^{41} + 16 q^{47} - 4 q^{49} - 8 q^{53} - 8 q^{65} + 4 q^{67} + 4 q^{73} + 48 q^{77} + 24 q^{83} - 52 q^{85} - 32 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5328\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1333\) \(1999\) \(2369\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.70246i 1.65579i −0.560883 0.827895i \(-0.689538\pi\)
0.560883 0.827895i \(-0.310462\pi\)
\(6\) 0 0
\(7\) −3.23607 −1.22312 −0.611559 0.791199i \(-0.709457\pi\)
−0.611559 + 0.791199i \(0.709457\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −6.47214 −1.95142 −0.975711 0.219061i \(-0.929701\pi\)
−0.975711 + 0.219061i \(0.929701\pi\)
\(12\) 0 0
\(13\) 1.74806i 0.484826i −0.970173 0.242413i \(-0.922061\pi\)
0.970173 0.242413i \(-0.0779389\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.53089i 1.58397i −0.610539 0.791986i \(-0.709047\pi\)
0.610539 0.791986i \(-0.290953\pi\)
\(18\) 0 0
\(19\) 4.57649i 1.04992i −0.851127 0.524960i \(-0.824080\pi\)
0.851127 0.524960i \(-0.175920\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 7.19859i 1.50101i −0.660865 0.750505i \(-0.729811\pi\)
0.660865 0.750505i \(-0.270189\pi\)
\(24\) 0 0
\(25\) −8.70820 −1.74164
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.78282i 0.888148i −0.895990 0.444074i \(-0.853533\pi\)
0.895990 0.444074i \(-0.146467\pi\)
\(30\) 0 0
\(31\) 6.32456i 1.13592i −0.823055 0.567962i \(-0.807732\pi\)
0.823055 0.567962i \(-0.192268\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 11.9814i 2.02523i
\(36\) 0 0
\(37\) 2.23607 + 5.65685i 0.367607 + 0.929981i
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) 2.82843i 0.431331i 0.976467 + 0.215666i \(0.0691921\pi\)
−0.976467 + 0.215666i \(0.930808\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.00000 0.583460 0.291730 0.956501i \(-0.405769\pi\)
0.291730 + 0.956501i \(0.405769\pi\)
\(48\) 0 0
\(49\) 3.47214 0.496019
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.94427 0.953869 0.476935 0.878939i \(-0.341748\pi\)
0.476935 + 0.878939i \(0.341748\pi\)
\(54\) 0 0
\(55\) 23.9628i 3.23115i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.874032i 0.113789i −0.998380 0.0568946i \(-0.981880\pi\)
0.998380 0.0568946i \(-0.0181199\pi\)
\(60\) 0 0
\(61\) 5.65685i 0.724286i −0.932123 0.362143i \(-0.882045\pi\)
0.932123 0.362143i \(-0.117955\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −6.47214 −0.802770
\(66\) 0 0
\(67\) −5.70820 −0.697368 −0.348684 0.937240i \(-0.613371\pi\)
−0.348684 + 0.937240i \(0.613371\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.94427 1.06149 0.530745 0.847532i \(-0.321912\pi\)
0.530745 + 0.847532i \(0.321912\pi\)
\(72\) 0 0
\(73\) −1.23607 −0.144671 −0.0723354 0.997380i \(-0.523045\pi\)
−0.0723354 + 0.997380i \(0.523045\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 20.9443 2.38682
\(78\) 0 0
\(79\) 15.8902i 1.78779i 0.448279 + 0.893894i \(0.352037\pi\)
−0.448279 + 0.893894i \(0.647963\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 10.4721 1.14947 0.574733 0.818341i \(-0.305106\pi\)
0.574733 + 0.818341i \(0.305106\pi\)
\(84\) 0 0
\(85\) −24.1803 −2.62273
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.19859i 0.763049i −0.924359 0.381524i \(-0.875399\pi\)
0.924359 0.381524i \(-0.124601\pi\)
\(90\) 0 0
\(91\) 5.65685i 0.592999i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −16.9443 −1.73845
\(96\) 0 0
\(97\) 5.24419i 0.532467i 0.963909 + 0.266234i \(0.0857792\pi\)
−0.963909 + 0.266234i \(0.914221\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −17.4164 −1.73300 −0.866499 0.499179i \(-0.833635\pi\)
−0.866499 + 0.499179i \(0.833635\pi\)
\(102\) 0 0
\(103\) 8.07262i 0.795419i −0.917511 0.397709i \(-0.869805\pi\)
0.917511 0.397709i \(-0.130195\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.47214 −0.625685 −0.312842 0.949805i \(-0.601281\pi\)
−0.312842 + 0.949805i \(0.601281\pi\)
\(108\) 0 0
\(109\) 5.24419i 0.502303i −0.967948 0.251151i \(-0.919191\pi\)
0.967948 0.251151i \(-0.0808092\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 11.1074i 1.04489i 0.852672 + 0.522447i \(0.174981\pi\)
−0.852672 + 0.522447i \(0.825019\pi\)
\(114\) 0 0
\(115\) −26.6525 −2.48536
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 21.1344i 1.93739i
\(120\) 0 0
\(121\) 30.8885 2.80805
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 13.7295i 1.22800i
\(126\) 0 0
\(127\) −12.0000 −1.06483 −0.532414 0.846484i \(-0.678715\pi\)
−0.532414 + 0.846484i \(0.678715\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 15.6839i 1.37031i −0.728399 0.685153i \(-0.759735\pi\)
0.728399 0.685153i \(-0.240265\pi\)
\(132\) 0 0
\(133\) 14.8098i 1.28418i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −8.47214 −0.723823 −0.361912 0.932212i \(-0.617876\pi\)
−0.361912 + 0.932212i \(0.617876\pi\)
\(138\) 0 0
\(139\) 5.70820 0.484164 0.242082 0.970256i \(-0.422170\pi\)
0.242082 + 0.970256i \(0.422170\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 11.3137i 0.946100i
\(144\) 0 0
\(145\) −17.7082 −1.47059
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0.472136 0.0386789 0.0193394 0.999813i \(-0.493844\pi\)
0.0193394 + 0.999813i \(0.493844\pi\)
\(150\) 0 0
\(151\) 3.05573 0.248672 0.124336 0.992240i \(-0.460320\pi\)
0.124336 + 0.992240i \(0.460320\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −23.4164 −1.88085
\(156\) 0 0
\(157\) 1.81966 0.145225 0.0726123 0.997360i \(-0.476866\pi\)
0.0726123 + 0.997360i \(0.476866\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 23.2951i 1.83591i
\(162\) 0 0
\(163\) 23.2951i 1.82461i −0.409506 0.912307i \(-0.634299\pi\)
0.409506 0.912307i \(-0.365701\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.0270i 0.775914i 0.921678 + 0.387957i \(0.126819\pi\)
−0.921678 + 0.387957i \(0.873181\pi\)
\(168\) 0 0
\(169\) 9.94427 0.764944
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −20.4721 −1.55647 −0.778234 0.627975i \(-0.783884\pi\)
−0.778234 + 0.627975i \(0.783884\pi\)
\(174\) 0 0
\(175\) 28.1803 2.13023
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 8.94665i 0.668704i −0.942448 0.334352i \(-0.891483\pi\)
0.942448 0.334352i \(-0.108517\pi\)
\(180\) 0 0
\(181\) 2.76393 0.205441 0.102721 0.994710i \(-0.467245\pi\)
0.102721 + 0.994710i \(0.467245\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 20.9443 8.27895i 1.53985 0.608681i
\(186\) 0 0
\(187\) 42.2688i 3.09100i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 10.0270i 0.725529i 0.931881 + 0.362765i \(0.118167\pi\)
−0.931881 + 0.362765i \(0.881833\pi\)
\(192\) 0 0
\(193\) 11.3137i 0.814379i 0.913344 + 0.407189i \(0.133491\pi\)
−0.913344 + 0.407189i \(0.866509\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −9.41641 −0.670891 −0.335446 0.942060i \(-0.608887\pi\)
−0.335446 + 0.942060i \(0.608887\pi\)
\(198\) 0 0
\(199\) 2.82843i 0.200502i −0.994962 0.100251i \(-0.968035\pi\)
0.994962 0.100251i \(-0.0319646\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 15.4775i 1.08631i
\(204\) 0 0
\(205\) 7.40492i 0.517182i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 29.6197i 2.04884i
\(210\) 0 0
\(211\) 17.8885 1.23150 0.615749 0.787942i \(-0.288854\pi\)
0.615749 + 0.787942i \(0.288854\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 10.4721 0.714194
\(216\) 0 0
\(217\) 20.4667i 1.38937i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −11.4164 −0.767951
\(222\) 0 0
\(223\) 20.9443 1.40253 0.701266 0.712900i \(-0.252618\pi\)
0.701266 + 0.712900i \(0.252618\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 8.94665i 0.593810i −0.954907 0.296905i \(-0.904046\pi\)
0.954907 0.296905i \(-0.0959545\pi\)
\(228\) 0 0
\(229\) 8.47214 0.559855 0.279927 0.960021i \(-0.409690\pi\)
0.279927 + 0.960021i \(0.409690\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7.52786 0.493167 0.246583 0.969122i \(-0.420692\pi\)
0.246583 + 0.969122i \(0.420692\pi\)
\(234\) 0 0
\(235\) 14.8098i 0.966087i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4.11512i 0.266185i 0.991104 + 0.133093i \(0.0424907\pi\)
−0.991104 + 0.133093i \(0.957509\pi\)
\(240\) 0 0
\(241\) 22.2148i 1.43098i −0.698624 0.715489i \(-0.746204\pi\)
0.698624 0.715489i \(-0.253796\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 12.8554i 0.821304i
\(246\) 0 0
\(247\) −8.00000 −0.509028
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 16.7642i 1.05815i −0.848575 0.529074i \(-0.822539\pi\)
0.848575 0.529074i \(-0.177461\pi\)
\(252\) 0 0
\(253\) 46.5902i 2.92910i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.78593i 0.423294i −0.977346 0.211647i \(-0.932117\pi\)
0.977346 0.211647i \(-0.0678828\pi\)
\(258\) 0 0
\(259\) −7.23607 18.3060i −0.449627 1.13748i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.583592 0.0359858 0.0179929 0.999838i \(-0.494272\pi\)
0.0179929 + 0.999838i \(0.494272\pi\)
\(264\) 0 0
\(265\) 25.7109i 1.57941i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.88854 0.237089 0.118544 0.992949i \(-0.462177\pi\)
0.118544 + 0.992949i \(0.462177\pi\)
\(270\) 0 0
\(271\) 24.1803 1.46885 0.734426 0.678689i \(-0.237452\pi\)
0.734426 + 0.678689i \(0.237452\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 56.3607 3.39868
\(276\) 0 0
\(277\) 10.9010i 0.654980i 0.944855 + 0.327490i \(0.106203\pi\)
−0.944855 + 0.327490i \(0.893797\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 11.5200i 0.687228i 0.939111 + 0.343614i \(0.111651\pi\)
−0.939111 + 0.343614i \(0.888349\pi\)
\(282\) 0 0
\(283\) 18.0509i 1.07302i −0.843895 0.536508i \(-0.819743\pi\)
0.843895 0.536508i \(-0.180257\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6.47214 0.382038
\(288\) 0 0
\(289\) −25.6525 −1.50897
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 26.0000 1.51894 0.759468 0.650545i \(-0.225459\pi\)
0.759468 + 0.650545i \(0.225459\pi\)
\(294\) 0 0
\(295\) −3.23607 −0.188411
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −12.5836 −0.727728
\(300\) 0 0
\(301\) 9.15298i 0.527569i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −20.9443 −1.19927
\(306\) 0 0
\(307\) 3.05573 0.174400 0.0871998 0.996191i \(-0.472208\pi\)
0.0871998 + 0.996191i \(0.472208\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 9.35931i 0.530718i 0.964150 + 0.265359i \(0.0854905\pi\)
−0.964150 + 0.265359i \(0.914510\pi\)
\(312\) 0 0
\(313\) 20.4667i 1.15685i −0.815737 0.578423i \(-0.803668\pi\)
0.815737 0.578423i \(-0.196332\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 14.9443 0.839354 0.419677 0.907674i \(-0.362143\pi\)
0.419677 + 0.907674i \(0.362143\pi\)
\(318\) 0 0
\(319\) 30.9551i 1.73315i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −29.8885 −1.66304
\(324\) 0 0
\(325\) 15.2225i 0.844392i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −12.9443 −0.713641
\(330\) 0 0
\(331\) 5.91189i 0.324947i −0.986713 0.162474i \(-0.948053\pi\)
0.986713 0.162474i \(-0.0519472\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 21.1344i 1.15470i
\(336\) 0 0
\(337\) −4.47214 −0.243613 −0.121806 0.992554i \(-0.538869\pi\)
−0.121806 + 0.992554i \(0.538869\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 40.9334i 2.21667i
\(342\) 0 0
\(343\) 11.4164 0.616428
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.20943i 0.118609i 0.998240 + 0.0593043i \(0.0188882\pi\)
−0.998240 + 0.0593043i \(0.981112\pi\)
\(348\) 0 0
\(349\) 30.1803 1.61552 0.807758 0.589514i \(-0.200681\pi\)
0.807758 + 0.589514i \(0.200681\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.20943i 0.117596i −0.998270 0.0587982i \(-0.981273\pi\)
0.998270 0.0587982i \(-0.0187268\pi\)
\(354\) 0 0
\(355\) 33.1158i 1.75760i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −9.88854 −0.521897 −0.260949 0.965353i \(-0.584035\pi\)
−0.260949 + 0.965353i \(0.584035\pi\)
\(360\) 0 0
\(361\) −1.94427 −0.102330
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4.57649i 0.239544i
\(366\) 0 0
\(367\) 12.0000 0.626395 0.313197 0.949688i \(-0.398600\pi\)
0.313197 + 0.949688i \(0.398600\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −22.4721 −1.16670
\(372\) 0 0
\(373\) 16.6525 0.862233 0.431116 0.902296i \(-0.358120\pi\)
0.431116 + 0.902296i \(0.358120\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −8.36068 −0.430597
\(378\) 0 0
\(379\) −36.1803 −1.85846 −0.929230 0.369503i \(-0.879528\pi\)
−0.929230 + 0.369503i \(0.879528\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 26.1723i 1.33734i −0.743559 0.668670i \(-0.766864\pi\)
0.743559 0.668670i \(-0.233136\pi\)
\(384\) 0 0
\(385\) 77.5453i 3.95208i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 18.5123i 0.938611i 0.883036 + 0.469305i \(0.155496\pi\)
−0.883036 + 0.469305i \(0.844504\pi\)
\(390\) 0 0
\(391\) −47.0132 −2.37756
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 58.8328 2.96020
\(396\) 0 0
\(397\) −14.7639 −0.740981 −0.370490 0.928836i \(-0.620810\pi\)
−0.370490 + 0.928836i \(0.620810\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 29.1583i 1.45610i 0.685526 + 0.728048i \(0.259572\pi\)
−0.685526 + 0.728048i \(0.740428\pi\)
\(402\) 0 0
\(403\) −11.0557 −0.550725
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −14.4721 36.6119i −0.717357 1.81479i
\(408\) 0 0
\(409\) 12.2364i 0.605053i 0.953141 + 0.302527i \(0.0978302\pi\)
−0.953141 + 0.302527i \(0.902170\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.82843i 0.139178i
\(414\) 0 0
\(415\) 38.7727i 1.90327i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) 0 0
\(421\) 14.3972i 0.701675i 0.936436 + 0.350838i \(0.114103\pi\)
−0.936436 + 0.350838i \(0.885897\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 56.8723i 2.75871i
\(426\) 0 0
\(427\) 18.3060i 0.885888i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 16.3516i 0.787627i 0.919190 + 0.393814i \(0.128844\pi\)
−0.919190 + 0.393814i \(0.871156\pi\)
\(432\) 0 0
\(433\) 26.1803 1.25815 0.629073 0.777346i \(-0.283434\pi\)
0.629073 + 0.777346i \(0.283434\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −32.9443 −1.57594
\(438\) 0 0
\(439\) 21.9597i 1.04808i 0.851694 + 0.524040i \(0.175576\pi\)
−0.851694 + 0.524040i \(0.824424\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −8.58359 −0.407819 −0.203909 0.978990i \(-0.565365\pi\)
−0.203909 + 0.978990i \(0.565365\pi\)
\(444\) 0 0
\(445\) −26.6525 −1.26345
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 11.7751i 0.555700i −0.960624 0.277850i \(-0.910378\pi\)
0.960624 0.277850i \(-0.0896219\pi\)
\(450\) 0 0
\(451\) 12.9443 0.609522
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 20.9443 0.981883
\(456\) 0 0
\(457\) 12.2364i 0.572397i 0.958170 + 0.286198i \(0.0923917\pi\)
−0.958170 + 0.286198i \(0.907608\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 21.5958i 1.00581i −0.864340 0.502907i \(-0.832264\pi\)
0.864340 0.502907i \(-0.167736\pi\)
\(462\) 0 0
\(463\) 25.4558i 1.18303i −0.806293 0.591517i \(-0.798529\pi\)
0.806293 0.591517i \(-0.201471\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 13.1105i 0.606681i 0.952882 + 0.303340i \(0.0981019\pi\)
−0.952882 + 0.303340i \(0.901898\pi\)
\(468\) 0 0
\(469\) 18.4721 0.852964
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 18.3060i 0.841709i
\(474\) 0 0
\(475\) 39.8530i 1.82858i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 7.35621i 0.336114i 0.985777 + 0.168057i \(0.0537492\pi\)
−0.985777 + 0.168057i \(0.946251\pi\)
\(480\) 0 0
\(481\) 9.88854 3.90879i 0.450879 0.178225i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 19.4164 0.881654
\(486\) 0 0
\(487\) 22.8825i 1.03690i 0.855107 + 0.518452i \(0.173491\pi\)
−0.855107 + 0.518452i \(0.826509\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 8.58359 0.387372 0.193686 0.981064i \(-0.437956\pi\)
0.193686 + 0.981064i \(0.437956\pi\)
\(492\) 0 0
\(493\) −31.2361 −1.40680
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −28.9443 −1.29833
\(498\) 0 0
\(499\) 21.1344i 0.946105i −0.881034 0.473053i \(-0.843152\pi\)
0.881034 0.473053i \(-0.156848\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 13.9358i 0.621367i 0.950513 + 0.310683i \(0.100558\pi\)
−0.950513 + 0.310683i \(0.899442\pi\)
\(504\) 0 0
\(505\) 64.4835i 2.86948i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −26.9443 −1.19428 −0.597142 0.802136i \(-0.703697\pi\)
−0.597142 + 0.802136i \(0.703697\pi\)
\(510\) 0 0
\(511\) 4.00000 0.176950
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −29.8885 −1.31705
\(516\) 0 0
\(517\) −25.8885 −1.13858
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 41.4164 1.81449 0.907243 0.420607i \(-0.138183\pi\)
0.907243 + 0.420607i \(0.138183\pi\)
\(522\) 0 0
\(523\) 0.667701i 0.0291965i 0.999893 + 0.0145983i \(0.00464694\pi\)
−0.999893 + 0.0145983i \(0.995353\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −41.3050 −1.79927
\(528\) 0 0
\(529\) −28.8197 −1.25303
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.49613i 0.151434i
\(534\) 0 0
\(535\) 23.9628i 1.03600i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −22.4721 −0.967943
\(540\) 0 0
\(541\) 20.0540i 0.862190i −0.902307 0.431095i \(-0.858127\pi\)
0.902307 0.431095i \(-0.141873\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −19.4164 −0.831708
\(546\) 0 0
\(547\) 18.9737i 0.811255i 0.914038 + 0.405628i \(0.132947\pi\)
−0.914038 + 0.405628i \(0.867053\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −21.8885 −0.932483
\(552\) 0 0
\(553\) 51.4218i 2.18668i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 29.1583i 1.23548i −0.786384 0.617738i \(-0.788049\pi\)
0.786384 0.617738i \(-0.211951\pi\)
\(558\) 0 0
\(559\) 4.94427 0.209120
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 14.1908i 0.598073i −0.954242 0.299036i \(-0.903335\pi\)
0.954242 0.299036i \(-0.0966652\pi\)
\(564\) 0 0
\(565\) 41.1246 1.73013
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 4.52778i 0.189815i −0.995486 0.0949073i \(-0.969745\pi\)
0.995486 0.0949073i \(-0.0302555\pi\)
\(570\) 0 0
\(571\) −10.2918 −0.430698 −0.215349 0.976537i \(-0.569089\pi\)
−0.215349 + 0.976537i \(0.569089\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 62.6868i 2.61422i
\(576\) 0 0
\(577\) 34.4512i 1.43422i −0.696959 0.717111i \(-0.745464\pi\)
0.696959 0.717111i \(-0.254536\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −33.8885 −1.40593
\(582\) 0 0
\(583\) −44.9443 −1.86140
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 39.3916i 1.62587i −0.582356 0.812934i \(-0.697869\pi\)
0.582356 0.812934i \(-0.302131\pi\)
\(588\) 0 0
\(589\) −28.9443 −1.19263
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −35.8885 −1.47377 −0.736883 0.676020i \(-0.763703\pi\)
−0.736883 + 0.676020i \(0.763703\pi\)
\(594\) 0 0
\(595\) 78.2492 3.20791
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −5.52786 −0.225862 −0.112931 0.993603i \(-0.536024\pi\)
−0.112931 + 0.993603i \(0.536024\pi\)
\(600\) 0 0
\(601\) 26.7639 1.09172 0.545862 0.837875i \(-0.316202\pi\)
0.545862 + 0.837875i \(0.316202\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 114.364i 4.64954i
\(606\) 0 0
\(607\) 18.5610i 0.753368i −0.926342 0.376684i \(-0.877064\pi\)
0.926342 0.376684i \(-0.122936\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6.99226i 0.282876i
\(612\) 0 0
\(613\) −46.7214 −1.88706 −0.943529 0.331290i \(-0.892516\pi\)
−0.943529 + 0.331290i \(0.892516\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −0.111456 −0.00448706 −0.00224353 0.999997i \(-0.500714\pi\)
−0.00224353 + 0.999997i \(0.500714\pi\)
\(618\) 0 0
\(619\) 28.0000 1.12542 0.562708 0.826656i \(-0.309760\pi\)
0.562708 + 0.826656i \(0.309760\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 23.2951i 0.933299i
\(624\) 0 0
\(625\) 7.29180 0.291672
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 36.9443 14.6035i 1.47306 0.582280i
\(630\) 0 0
\(631\) 19.3863i 0.771758i −0.922549 0.385879i \(-0.873898\pi\)
0.922549 0.385879i \(-0.126102\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 44.4295i 1.76313i
\(636\) 0 0
\(637\) 6.06952i 0.240483i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 33.4164 1.31987 0.659934 0.751323i \(-0.270584\pi\)
0.659934 + 0.751323i \(0.270584\pi\)
\(642\) 0 0
\(643\) 38.5176i 1.51899i −0.650515 0.759493i \(-0.725447\pi\)
0.650515 0.759493i \(-0.274553\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 32.6544i 1.28378i 0.766797 + 0.641889i \(0.221849\pi\)
−0.766797 + 0.641889i \(0.778151\pi\)
\(648\) 0 0
\(649\) 5.65685i 0.222051i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 14.3485i 0.561499i −0.959781 0.280749i \(-0.909417\pi\)
0.959781 0.280749i \(-0.0905830\pi\)
\(654\) 0 0
\(655\) −58.0689 −2.26894
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 30.4721 1.18703 0.593513 0.804824i \(-0.297741\pi\)
0.593513 + 0.804824i \(0.297741\pi\)
\(660\) 0 0
\(661\) 36.6119i 1.42404i −0.702160 0.712020i \(-0.747781\pi\)
0.702160 0.712020i \(-0.252219\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 54.8328 2.12633
\(666\) 0 0
\(667\) −34.4296 −1.33312
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 36.6119i 1.41339i
\(672\) 0 0
\(673\) 15.7082 0.605507 0.302753 0.953069i \(-0.402094\pi\)
0.302753 + 0.953069i \(0.402094\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 14.9443 0.574355 0.287178 0.957877i \(-0.407283\pi\)
0.287178 + 0.957877i \(0.407283\pi\)
\(678\) 0 0
\(679\) 16.9706i 0.651270i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 26.9976i 1.03303i −0.856277 0.516517i \(-0.827228\pi\)
0.856277 0.516517i \(-0.172772\pi\)
\(684\) 0 0
\(685\) 31.3677i 1.19850i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 12.1390i 0.462460i
\(690\) 0 0
\(691\) −10.6525 −0.405239 −0.202620 0.979258i \(-0.564946\pi\)
−0.202620 + 0.979258i \(0.564946\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 21.1344i 0.801673i
\(696\) 0 0
\(697\) 13.0618i 0.494750i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 38.8214i 1.46626i 0.680087 + 0.733131i \(0.261942\pi\)
−0.680087 + 0.733131i \(0.738058\pi\)
\(702\) 0 0
\(703\) 25.8885 10.2333i 0.976405 0.385958i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 56.3607 2.11966
\(708\) 0 0
\(709\) 23.0401i 0.865288i −0.901565 0.432644i \(-0.857581\pi\)
0.901565 0.432644i \(-0.142419\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −45.5279 −1.70503
\(714\) 0 0
\(715\) 41.8885 1.56654
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 12.5836 0.469289 0.234644 0.972081i \(-0.424607\pi\)
0.234644 + 0.972081i \(0.424607\pi\)
\(720\) 0 0
\(721\) 26.1235i 0.972892i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 41.6498i 1.54683i
\(726\) 0 0
\(727\) 7.65996i 0.284092i −0.989860 0.142046i \(-0.954632\pi\)
0.989860 0.142046i \(-0.0453681\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 18.4721 0.683217
\(732\) 0 0
\(733\) 14.9443 0.551979 0.275990 0.961161i \(-0.410994\pi\)
0.275990 + 0.961161i \(0.410994\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 36.9443 1.36086
\(738\) 0 0
\(739\) −16.9443 −0.623305 −0.311653 0.950196i \(-0.600882\pi\)
−0.311653 + 0.950196i \(0.600882\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −23.0557 −0.845833 −0.422916 0.906169i \(-0.638994\pi\)
−0.422916 + 0.906169i \(0.638994\pi\)
\(744\) 0 0
\(745\) 1.74806i 0.0640441i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 20.9443 0.765287
\(750\) 0 0
\(751\) −9.70820 −0.354257 −0.177129 0.984188i \(-0.556681\pi\)
−0.177129 + 0.984188i \(0.556681\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 11.3137i 0.411748i
\(756\) 0 0
\(757\) 8.23024i 0.299133i 0.988752 + 0.149567i \(0.0477878\pi\)
−0.988752 + 0.149567i \(0.952212\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −11.5279 −0.417885 −0.208942 0.977928i \(-0.567002\pi\)
−0.208942 + 0.977928i \(0.567002\pi\)
\(762\) 0 0
\(763\) 16.9706i 0.614376i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.52786 −0.0551680
\(768\) 0 0
\(769\) 26.6336i 0.960433i 0.877150 + 0.480217i \(0.159442\pi\)
−0.877150 + 0.480217i \(0.840558\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 34.3607 1.23587 0.617934 0.786230i \(-0.287970\pi\)
0.617934 + 0.786230i \(0.287970\pi\)
\(774\) 0 0
\(775\) 55.0755i 1.97837i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 9.15298i 0.327940i
\(780\) 0 0
\(781\) −57.8885 −2.07141
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 6.73722i 0.240462i
\(786\) 0 0
\(787\) 30.8328 1.09907 0.549536 0.835470i \(-0.314805\pi\)
0.549536 + 0.835470i \(0.314805\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 35.9442i 1.27803i
\(792\) 0 0
\(793\) −9.88854 −0.351152
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 43.8105i 1.55185i 0.630826 + 0.775924i \(0.282716\pi\)
−0.630826 + 0.775924i \(0.717284\pi\)
\(798\) 0 0
\(799\) 26.1235i 0.924185i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 8.00000 0.282314
\(804\) 0 0
\(805\) 86.2492 3.03989
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 52.0408i 1.82966i −0.403844 0.914828i \(-0.632326\pi\)
0.403844 0.914828i \(-0.367674\pi\)
\(810\) 0 0
\(811\) −42.6525 −1.49773 −0.748865 0.662722i \(-0.769401\pi\)
−0.748865 + 0.662722i \(0.769401\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −86.2492 −3.02118
\(816\) 0 0
\(817\) 12.9443 0.452863
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 19.5279 0.681527 0.340764 0.940149i \(-0.389314\pi\)
0.340764 + 0.940149i \(0.389314\pi\)
\(822\) 0 0
\(823\) 17.8885 0.623555 0.311778 0.950155i \(-0.399076\pi\)
0.311778 + 0.950155i \(0.399076\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 19.3376i 0.672435i −0.941784 0.336217i \(-0.890852\pi\)
0.941784 0.336217i \(-0.109148\pi\)
\(828\) 0 0
\(829\) 0.412662i 0.0143323i −0.999974 0.00716617i \(-0.997719\pi\)
0.999974 0.00716617i \(-0.00228108\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 22.6761i 0.785681i
\(834\) 0 0
\(835\) 37.1246 1.28475
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −33.3050 −1.14981 −0.574907 0.818219i \(-0.694962\pi\)
−0.574907 + 0.818219i \(0.694962\pi\)
\(840\) 0 0
\(841\) 6.12461 0.211194
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 36.8183i 1.26659i
\(846\) 0 0
\(847\) −99.9574 −3.43458
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 40.7214 16.0965i 1.39591 0.551782i
\(852\) 0 0
\(853\) 40.1081i 1.37327i −0.727001 0.686637i \(-0.759086\pi\)
0.727001 0.686637i \(-0.240914\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 6.37326i 0.217707i 0.994058 + 0.108853i \(0.0347179\pi\)
−0.994058 + 0.108853i \(0.965282\pi\)
\(858\) 0 0
\(859\) 28.9520i 0.987829i 0.869511 + 0.493914i \(0.164434\pi\)
−0.869511 + 0.493914i \(0.835566\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 8.36068 0.284601 0.142300 0.989824i \(-0.454550\pi\)
0.142300 + 0.989824i \(0.454550\pi\)
\(864\) 0 0
\(865\) 75.7972i 2.57718i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 102.844i 3.48873i
\(870\) 0 0
\(871\) 9.97831i 0.338102i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 44.4295i 1.50199i
\(876\) 0 0
\(877\) 14.7639 0.498543 0.249271 0.968434i \(-0.419809\pi\)
0.249271 + 0.968434i \(0.419809\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −43.5279 −1.46649 −0.733246 0.679964i \(-0.761995\pi\)
−0.733246 + 0.679964i \(0.761995\pi\)
\(882\) 0 0
\(883\) 15.0649i 0.506973i 0.967339 + 0.253487i \(0.0815774\pi\)
−0.967339 + 0.253487i \(0.918423\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −37.5279 −1.26006 −0.630031 0.776570i \(-0.716958\pi\)
−0.630031 + 0.776570i \(0.716958\pi\)
\(888\) 0 0
\(889\) 38.8328 1.30241
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 18.3060i 0.612586i
\(894\) 0 0
\(895\) −33.1246 −1.10723
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −30.2492 −1.00887
\(900\) 0 0
\(901\) 45.3523i 1.51090i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 10.2333i 0.340168i
\(906\) 0 0
\(907\) 11.1561i 0.370432i −0.982698 0.185216i \(-0.940702\pi\)
0.982698 0.185216i \(-0.0592984\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 35.7379i 1.18405i 0.805920 + 0.592025i \(0.201671\pi\)
−0.805920 + 0.592025i \(0.798329\pi\)
\(912\) 0 0
\(913\) −67.7771 −2.24309
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 50.7541i 1.67605i
\(918\) 0 0
\(919\) 42.0137i 1.38591i 0.720983 + 0.692953i \(0.243691\pi\)
−0.720983 + 0.692953i \(0.756309\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 15.6352i 0.514638i
\(924\) 0 0
\(925\) −19.4721 49.2610i −0.640240 1.61969i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −19.8885 −0.652522 −0.326261 0.945280i \(-0.605789\pi\)
−0.326261 + 0.945280i \(0.605789\pi\)
\(930\) 0 0
\(931\) 15.8902i 0.520780i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 156.498 5.11805
\(936\) 0 0
\(937\) 10.3607 0.338469 0.169234 0.985576i \(-0.445871\pi\)
0.169234 + 0.985576i \(0.445871\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 26.3607 0.859334 0.429667 0.902988i \(-0.358631\pi\)
0.429667 + 0.902988i \(0.358631\pi\)
\(942\) 0 0
\(943\) 14.3972i 0.468837i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 26.3299i 0.855606i −0.903872 0.427803i \(-0.859288\pi\)
0.903872 0.427803i \(-0.140712\pi\)
\(948\) 0 0
\(949\) 2.16073i 0.0701401i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −16.4721 −0.533585 −0.266792 0.963754i \(-0.585964\pi\)
−0.266792 + 0.963754i \(0.585964\pi\)
\(954\) 0 0
\(955\) 37.1246 1.20132
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 27.4164 0.885322
\(960\) 0 0
\(961\) −9.00000 −0.290323
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 41.8885 1.34844
\(966\) 0 0
\(967\) 0.667701i 0.0214718i −0.999942 0.0107359i \(-0.996583\pi\)
0.999942 0.0107359i \(-0.00341741\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 22.2492 0.714012 0.357006 0.934102i \(-0.383798\pi\)
0.357006 + 0.934102i \(0.383798\pi\)
\(972\) 0 0
\(973\) −18.4721 −0.592189
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 35.3252i 1.13015i 0.825038 + 0.565077i \(0.191154\pi\)
−0.825038 + 0.565077i \(0.808846\pi\)
\(978\) 0 0
\(979\) 46.5902i 1.48903i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 31.7771 1.01353 0.506766 0.862084i \(-0.330841\pi\)
0.506766 + 0.862084i \(0.330841\pi\)
\(984\) 0 0
\(985\) 34.8639i 1.11086i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 20.3607 0.647432
\(990\) 0 0
\(991\) 45.0972i 1.43256i 0.697813 + 0.716280i \(0.254157\pi\)
−0.697813 + 0.716280i \(0.745843\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −10.4721 −0.331989
\(996\) 0 0
\(997\) 8.32766i 0.263740i 0.991267 + 0.131870i \(0.0420981\pi\)
−0.991267 + 0.131870i \(0.957902\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5328.2.h.g.2737.1 4
3.2 odd 2 1776.2.h.f.961.4 4
4.3 odd 2 1332.2.e.e.73.1 4
12.11 even 2 444.2.e.a.73.4 yes 4
37.36 even 2 inner 5328.2.h.g.2737.4 4
111.110 odd 2 1776.2.h.f.961.1 4
148.147 odd 2 1332.2.e.e.73.4 4
444.443 even 2 444.2.e.a.73.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
444.2.e.a.73.1 4 444.443 even 2
444.2.e.a.73.4 yes 4 12.11 even 2
1332.2.e.e.73.1 4 4.3 odd 2
1332.2.e.e.73.4 4 148.147 odd 2
1776.2.h.f.961.1 4 111.110 odd 2
1776.2.h.f.961.4 4 3.2 odd 2
5328.2.h.g.2737.1 4 1.1 even 1 trivial
5328.2.h.g.2737.4 4 37.36 even 2 inner