Properties

Label 531.2.i.a.262.4
Level $531$
Weight $2$
Character 531.262
Analytic conductor $4.240$
Analytic rank $0$
Dimension $112$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [531,2,Mod(19,531)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("531.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(531, base_ring=CyclotomicField(58)) chi = DirichletCharacter(H, H._module([0, 38])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 531 = 3^{2} \cdot 59 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 531.i (of order \(29\), degree \(28\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [112,26] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.24005634733\)
Analytic rank: \(0\)
Dimension: \(112\)
Relative dimension: \(4\) over \(\Q(\zeta_{29})\)
Twist minimal: no (minimal twist has level 59)
Sato-Tate group: $\mathrm{SU}(2)[C_{29}]$

Embedding invariants

Embedding label 262.4
Character \(\chi\) \(=\) 531.262
Dual form 531.2.i.a.379.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.19893 - 1.67159i) q^{2} +(1.50605 - 5.42431i) q^{4} +(-0.330311 + 0.312887i) q^{5} +(-0.362135 - 0.426338i) q^{7} +(-3.71073 - 9.31322i) q^{8} +(-0.203314 + 1.24016i) q^{10} +(-1.66508 + 1.00184i) q^{11} +(-0.146364 + 0.215870i) q^{13} +(-1.50897 - 0.332149i) q^{14} +(-14.0801 - 8.47172i) q^{16} +(3.05473 - 3.59631i) q^{17} +(4.22025 + 1.95250i) q^{19} +(1.19973 + 2.26293i) q^{20} +(-1.98672 + 4.98630i) q^{22} +(3.34811 - 1.12811i) q^{23} +(-0.259488 + 4.78597i) q^{25} +(0.0390017 + 0.719343i) q^{26} +(-2.85798 + 1.32224i) q^{28} +(4.87493 + 3.70583i) q^{29} +(0.386926 - 0.179011i) q^{31} +(-25.1895 + 2.73952i) q^{32} +(0.705614 - 13.0143i) q^{34} +(0.253012 + 0.0275168i) q^{35} +(-3.25905 + 8.17960i) q^{37} +(12.5438 - 2.76110i) q^{38} +(4.13968 + 1.91522i) q^{40} +(-3.15602 - 1.06339i) q^{41} +(3.43733 + 2.06817i) q^{43} +(2.92661 + 10.5407i) q^{44} +(5.47654 - 8.07730i) q^{46} +(-1.40614 - 1.33196i) q^{47} +(1.08185 - 6.59900i) q^{49} +(7.42956 + 10.9578i) q^{50} +(0.950515 + 1.11903i) q^{52} +(1.36486 + 8.32531i) q^{53} +(0.236529 - 0.851900i) q^{55} +(-2.62679 + 4.95466i) q^{56} +16.9142 q^{58} +(-6.86593 - 3.44368i) q^{59} +(-0.900340 + 0.684420i) q^{61} +(0.551592 - 1.04041i) q^{62} +(-26.9511 + 25.5294i) q^{64} +(-0.0191975 - 0.117099i) q^{65} +(-1.70447 - 4.27791i) q^{67} +(-14.9069 - 21.9860i) q^{68} +(0.602354 - 0.362424i) q^{70} +(1.83446 + 1.73769i) q^{71} +(-10.5528 - 2.32285i) q^{73} +(6.50647 + 23.4342i) q^{74} +(16.9469 - 19.9514i) q^{76} +(1.03011 + 0.347083i) q^{77} +(1.15299 + 2.17477i) q^{79} +(7.30150 - 1.60718i) q^{80} +(-8.71741 + 2.93724i) q^{82} +(8.28172 + 0.900691i) q^{83} +(0.116227 + 2.14369i) q^{85} +(11.0156 - 1.19802i) q^{86} +(15.5090 + 11.7897i) q^{88} +(10.7195 + 8.14876i) q^{89} +(0.145037 - 0.0157737i) q^{91} +(-1.07679 - 19.8602i) q^{92} +(-5.31849 - 0.578420i) q^{94} +(-2.00491 + 0.675531i) q^{95} +(2.50354 - 0.551071i) q^{97} +(-8.65188 - 16.3192i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 112 q + 26 q^{2} - 30 q^{4} + 25 q^{5} - 23 q^{7} + 8 q^{8} - 3 q^{10} + 15 q^{11} - 23 q^{13} - 13 q^{14} - 8 q^{16} + 10 q^{17} - 15 q^{19} - 7 q^{20} - q^{22} - 3 q^{23} - 5 q^{25} - 5 q^{26} + 29 q^{28}+ \cdots - 31 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/531\mathbb{Z}\right)^\times\).

\(n\) \(119\) \(415\)
\(\chi(n)\) \(1\) \(e\left(\frac{23}{29}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.19893 1.67159i 1.55488 1.18199i 0.647205 0.762316i \(-0.275938\pi\)
0.907675 0.419673i \(-0.137855\pi\)
\(3\) 0 0
\(4\) 1.50605 5.42431i 0.753025 2.71215i
\(5\) −0.330311 + 0.312887i −0.147719 + 0.139927i −0.757991 0.652265i \(-0.773819\pi\)
0.610272 + 0.792192i \(0.291060\pi\)
\(6\) 0 0
\(7\) −0.362135 0.426338i −0.136874 0.161141i 0.689454 0.724329i \(-0.257850\pi\)
−0.826328 + 0.563189i \(0.809574\pi\)
\(8\) −3.71073 9.31322i −1.31194 3.29272i
\(9\) 0 0
\(10\) −0.203314 + 1.24016i −0.0642935 + 0.392173i
\(11\) −1.66508 + 1.00184i −0.502039 + 0.302067i −0.743954 0.668230i \(-0.767052\pi\)
0.241915 + 0.970297i \(0.422224\pi\)
\(12\) 0 0
\(13\) −0.146364 + 0.215870i −0.0405940 + 0.0598716i −0.847444 0.530884i \(-0.821860\pi\)
0.806850 + 0.590756i \(0.201170\pi\)
\(14\) −1.50897 0.332149i −0.403289 0.0887706i
\(15\) 0 0
\(16\) −14.0801 8.47172i −3.52003 2.11793i
\(17\) 3.05473 3.59631i 0.740882 0.872233i −0.254614 0.967043i \(-0.581948\pi\)
0.995495 + 0.0948096i \(0.0302242\pi\)
\(18\) 0 0
\(19\) 4.22025 + 1.95250i 0.968193 + 0.447934i 0.839266 0.543721i \(-0.182985\pi\)
0.128926 + 0.991654i \(0.458847\pi\)
\(20\) 1.19973 + 2.26293i 0.268268 + 0.506007i
\(21\) 0 0
\(22\) −1.98672 + 4.98630i −0.423571 + 1.06308i
\(23\) 3.34811 1.12811i 0.698130 0.235227i 0.0522141 0.998636i \(-0.483372\pi\)
0.645916 + 0.763408i \(0.276476\pi\)
\(24\) 0 0
\(25\) −0.259488 + 4.78597i −0.0518975 + 0.957193i
\(26\) 0.0390017 + 0.719343i 0.00764885 + 0.141075i
\(27\) 0 0
\(28\) −2.85798 + 1.32224i −0.540107 + 0.249880i
\(29\) 4.87493 + 3.70583i 0.905252 + 0.688155i 0.950468 0.310823i \(-0.100605\pi\)
−0.0452161 + 0.998977i \(0.514398\pi\)
\(30\) 0 0
\(31\) 0.386926 0.179011i 0.0694940 0.0321514i −0.384834 0.922986i \(-0.625741\pi\)
0.454328 + 0.890834i \(0.349879\pi\)
\(32\) −25.1895 + 2.73952i −4.45291 + 0.484283i
\(33\) 0 0
\(34\) 0.705614 13.0143i 0.121012 2.23193i
\(35\) 0.253012 + 0.0275168i 0.0427669 + 0.00465118i
\(36\) 0 0
\(37\) −3.25905 + 8.17960i −0.535785 + 1.34472i 0.373147 + 0.927772i \(0.378279\pi\)
−0.908931 + 0.416946i \(0.863100\pi\)
\(38\) 12.5438 2.76110i 2.03488 0.447910i
\(39\) 0 0
\(40\) 4.13968 + 1.91522i 0.654540 + 0.302823i
\(41\) −3.15602 1.06339i −0.492887 0.166073i 0.0618719 0.998084i \(-0.480293\pi\)
−0.554759 + 0.832011i \(0.687190\pi\)
\(42\) 0 0
\(43\) 3.43733 + 2.06817i 0.524188 + 0.315393i 0.752938 0.658092i \(-0.228636\pi\)
−0.228750 + 0.973485i \(0.573464\pi\)
\(44\) 2.92661 + 10.5407i 0.441204 + 1.58907i
\(45\) 0 0
\(46\) 5.47654 8.07730i 0.807472 1.19093i
\(47\) −1.40614 1.33196i −0.205106 0.194287i 0.578251 0.815859i \(-0.303736\pi\)
−0.783357 + 0.621572i \(0.786494\pi\)
\(48\) 0 0
\(49\) 1.08185 6.59900i 0.154550 0.942715i
\(50\) 7.42956 + 10.9578i 1.05070 + 1.54966i
\(51\) 0 0
\(52\) 0.950515 + 1.11903i 0.131813 + 0.155182i
\(53\) 1.36486 + 8.32531i 0.187479 + 1.14357i 0.898034 + 0.439927i \(0.144996\pi\)
−0.710555 + 0.703642i \(0.751556\pi\)
\(54\) 0 0
\(55\) 0.236529 0.851900i 0.0318936 0.114870i
\(56\) −2.62679 + 4.95466i −0.351020 + 0.662094i
\(57\) 0 0
\(58\) 16.9142 2.22095
\(59\) −6.86593 3.44368i −0.893868 0.448329i
\(60\) 0 0
\(61\) −0.900340 + 0.684420i −0.115277 + 0.0876310i −0.661224 0.750188i \(-0.729963\pi\)
0.545948 + 0.837819i \(0.316170\pi\)
\(62\) 0.551592 1.04041i 0.0700523 0.132133i
\(63\) 0 0
\(64\) −26.9511 + 25.5294i −3.36889 + 3.19118i
\(65\) −0.0191975 0.117099i −0.00238116 0.0145244i
\(66\) 0 0
\(67\) −1.70447 4.27791i −0.208235 0.522630i 0.787349 0.616508i \(-0.211453\pi\)
−0.995584 + 0.0938778i \(0.970074\pi\)
\(68\) −14.9069 21.9860i −1.80773 2.66620i
\(69\) 0 0
\(70\) 0.602354 0.362424i 0.0719951 0.0433180i
\(71\) 1.83446 + 1.73769i 0.217710 + 0.206226i 0.788780 0.614675i \(-0.210713\pi\)
−0.571070 + 0.820901i \(0.693472\pi\)
\(72\) 0 0
\(73\) −10.5528 2.32285i −1.23511 0.271869i −0.451021 0.892513i \(-0.648940\pi\)
−0.784092 + 0.620644i \(0.786871\pi\)
\(74\) 6.50647 + 23.4342i 0.756361 + 2.72417i
\(75\) 0 0
\(76\) 16.9469 19.9514i 1.94394 2.28858i
\(77\) 1.03011 + 0.347083i 0.117391 + 0.0395538i
\(78\) 0 0
\(79\) 1.15299 + 2.17477i 0.129721 + 0.244680i 0.939861 0.341556i \(-0.110954\pi\)
−0.810140 + 0.586236i \(0.800609\pi\)
\(80\) 7.30150 1.60718i 0.816333 0.179688i
\(81\) 0 0
\(82\) −8.71741 + 2.93724i −0.962677 + 0.324364i
\(83\) 8.28172 + 0.900691i 0.909037 + 0.0988637i 0.550676 0.834719i \(-0.314370\pi\)
0.358361 + 0.933583i \(0.383336\pi\)
\(84\) 0 0
\(85\) 0.116227 + 2.14369i 0.0126066 + 0.232515i
\(86\) 11.0156 1.19802i 1.18784 0.129185i
\(87\) 0 0
\(88\) 15.5090 + 11.7897i 1.65327 + 1.25678i
\(89\) 10.7195 + 8.14876i 1.13627 + 0.863766i 0.992058 0.125781i \(-0.0401437\pi\)
0.144207 + 0.989548i \(0.453937\pi\)
\(90\) 0 0
\(91\) 0.145037 0.0157737i 0.0152040 0.00165353i
\(92\) −1.07679 19.8602i −0.112263 2.07057i
\(93\) 0 0
\(94\) −5.31849 0.578420i −0.548560 0.0596595i
\(95\) −2.00491 + 0.675531i −0.205699 + 0.0693081i
\(96\) 0 0
\(97\) 2.50354 0.551071i 0.254196 0.0559528i −0.0860442 0.996291i \(-0.527423\pi\)
0.340240 + 0.940339i \(0.389492\pi\)
\(98\) −8.65188 16.3192i −0.873971 1.64848i
\(99\) 0 0
\(100\) 25.5697 + 8.61545i 2.55697 + 0.861545i
\(101\) 8.69776 10.2398i 0.865460 1.01890i −0.134150 0.990961i \(-0.542830\pi\)
0.999610 0.0279367i \(-0.00889369\pi\)
\(102\) 0 0
\(103\) −2.91301 10.4917i −0.287028 1.03378i −0.956689 0.291113i \(-0.905974\pi\)
0.669661 0.742667i \(-0.266439\pi\)
\(104\) 2.55356 + 0.562081i 0.250397 + 0.0551166i
\(105\) 0 0
\(106\) 16.9177 + 16.0253i 1.64319 + 1.55651i
\(107\) −12.5150 + 7.53003i −1.20987 + 0.727955i −0.970060 0.242864i \(-0.921913\pi\)
−0.239811 + 0.970820i \(0.577085\pi\)
\(108\) 0 0
\(109\) 4.90864 + 7.23970i 0.470163 + 0.693438i 0.986650 0.162857i \(-0.0520709\pi\)
−0.516487 + 0.856295i \(0.672761\pi\)
\(110\) −0.903912 2.26865i −0.0861847 0.216307i
\(111\) 0 0
\(112\) 1.48708 + 9.07079i 0.140516 + 0.857109i
\(113\) −7.28399 + 6.89976i −0.685220 + 0.649075i −0.948915 0.315531i \(-0.897817\pi\)
0.263695 + 0.964606i \(0.415059\pi\)
\(114\) 0 0
\(115\) −0.752947 + 1.42021i −0.0702127 + 0.132435i
\(116\) 27.4434 20.8619i 2.54806 1.93698i
\(117\) 0 0
\(118\) −20.8541 + 3.90456i −1.91978 + 0.359444i
\(119\) −2.63947 −0.241960
\(120\) 0 0
\(121\) −3.38370 + 6.38234i −0.307609 + 0.580213i
\(122\) −0.835719 + 3.00999i −0.0756625 + 0.272512i
\(123\) 0 0
\(124\) −0.388281 2.36841i −0.0348686 0.212689i
\(125\) −2.88448 3.39587i −0.257996 0.303736i
\(126\) 0 0
\(127\) −9.87131 14.5591i −0.875937 1.29191i −0.955473 0.295078i \(-0.904654\pi\)
0.0795362 0.996832i \(-0.474656\pi\)
\(128\) −8.39056 + 51.1801i −0.741627 + 4.52373i
\(129\) 0 0
\(130\) −0.237956 0.225404i −0.0208701 0.0197692i
\(131\) 0.103723 0.152980i 0.00906230 0.0133659i −0.823131 0.567852i \(-0.807775\pi\)
0.832193 + 0.554486i \(0.187085\pi\)
\(132\) 0 0
\(133\) −0.695876 2.50632i −0.0603401 0.217325i
\(134\) −10.8989 6.55766i −0.941523 0.566495i
\(135\) 0 0
\(136\) −44.8285 15.1045i −3.84401 1.29520i
\(137\) −11.0931 5.13221i −0.947748 0.438475i −0.115765 0.993277i \(-0.536932\pi\)
−0.831982 + 0.554802i \(0.812794\pi\)
\(138\) 0 0
\(139\) −19.0817 + 4.20020i −1.61849 + 0.356257i −0.929589 0.368598i \(-0.879838\pi\)
−0.688902 + 0.724855i \(0.741907\pi\)
\(140\) 0.530309 1.33097i 0.0448193 0.112488i
\(141\) 0 0
\(142\) 6.93856 + 0.754614i 0.582271 + 0.0633258i
\(143\) 0.0274385 0.506074i 0.00229452 0.0423200i
\(144\) 0 0
\(145\) −2.76975 + 0.301228i −0.230015 + 0.0250156i
\(146\) −27.0878 + 12.5321i −2.24180 + 1.03717i
\(147\) 0 0
\(148\) 39.4604 + 29.9970i 3.24362 + 2.46574i
\(149\) 4.77405 2.20871i 0.391106 0.180945i −0.214474 0.976730i \(-0.568804\pi\)
0.605579 + 0.795785i \(0.292941\pi\)
\(150\) 0 0
\(151\) −0.295991 5.45922i −0.0240874 0.444265i −0.985556 0.169350i \(-0.945833\pi\)
0.961469 0.274915i \(-0.0886497\pi\)
\(152\) 2.52383 46.5493i 0.204710 3.77565i
\(153\) 0 0
\(154\) 2.84531 0.958697i 0.229282 0.0772540i
\(155\) −0.0717957 + 0.180194i −0.00576677 + 0.0144735i
\(156\) 0 0
\(157\) −3.99154 7.52885i −0.318560 0.600867i 0.671583 0.740929i \(-0.265615\pi\)
−0.990143 + 0.140062i \(0.955270\pi\)
\(158\) 6.17065 + 2.85485i 0.490910 + 0.227119i
\(159\) 0 0
\(160\) 7.46319 8.78635i 0.590017 0.694622i
\(161\) −1.69342 1.01890i −0.133461 0.0803005i
\(162\) 0 0
\(163\) 4.77394 + 1.05082i 0.373924 + 0.0823069i 0.397957 0.917404i \(-0.369719\pi\)
−0.0240324 + 0.999711i \(0.507651\pi\)
\(164\) −10.5213 + 15.5177i −0.821572 + 1.21173i
\(165\) 0 0
\(166\) 19.7165 11.8630i 1.53030 0.920750i
\(167\) −2.13245 + 13.0074i −0.165014 + 1.00654i 0.766343 + 0.642432i \(0.222074\pi\)
−0.931357 + 0.364108i \(0.881374\pi\)
\(168\) 0 0
\(169\) 4.78662 + 12.0135i 0.368201 + 0.924116i
\(170\) 3.83893 + 4.51954i 0.294432 + 0.346633i
\(171\) 0 0
\(172\) 16.3952 15.5303i 1.25012 1.18418i
\(173\) 3.68273 13.2640i 0.279993 1.00844i −0.681094 0.732196i \(-0.738495\pi\)
0.961087 0.276247i \(-0.0890908\pi\)
\(174\) 0 0
\(175\) 2.13441 1.62253i 0.161346 0.122652i
\(176\) 31.9318 2.40695
\(177\) 0 0
\(178\) 37.1928 2.78772
\(179\) 3.76889 2.86504i 0.281700 0.214143i −0.454777 0.890605i \(-0.650281\pi\)
0.736477 + 0.676462i \(0.236488\pi\)
\(180\) 0 0
\(181\) −5.11465 + 18.4213i −0.380169 + 1.36925i 0.487942 + 0.872876i \(0.337748\pi\)
−0.868111 + 0.496370i \(0.834666\pi\)
\(182\) 0.292559 0.277127i 0.0216859 0.0205420i
\(183\) 0 0
\(184\) −22.9303 26.9956i −1.69044 1.99014i
\(185\) −1.48279 3.72153i −0.109017 0.273612i
\(186\) 0 0
\(187\) −1.48343 + 9.04849i −0.108479 + 0.661691i
\(188\) −9.34268 + 5.62131i −0.681385 + 0.409976i
\(189\) 0 0
\(190\) −3.27944 + 4.83682i −0.237916 + 0.350900i
\(191\) −18.1216 3.98886i −1.31123 0.288624i −0.496285 0.868160i \(-0.665303\pi\)
−0.814947 + 0.579536i \(0.803234\pi\)
\(192\) 0 0
\(193\) 2.66195 + 1.60164i 0.191611 + 0.115289i 0.608127 0.793840i \(-0.291921\pi\)
−0.416516 + 0.909129i \(0.636749\pi\)
\(194\) 4.58396 5.39665i 0.329109 0.387457i
\(195\) 0 0
\(196\) −34.1657 15.8067i −2.44041 1.12905i
\(197\) −3.01537 5.68760i −0.214837 0.405225i 0.752548 0.658538i \(-0.228825\pi\)
−0.967384 + 0.253313i \(0.918480\pi\)
\(198\) 0 0
\(199\) 4.71187 11.8259i 0.334016 0.838316i −0.662030 0.749477i \(-0.730305\pi\)
0.996046 0.0888392i \(-0.0283157\pi\)
\(200\) 45.5356 15.3427i 3.21986 1.08490i
\(201\) 0 0
\(202\) 2.00910 37.0557i 0.141360 2.60723i
\(203\) −0.185447 3.42037i −0.0130158 0.240063i
\(204\) 0 0
\(205\) 1.37519 0.636229i 0.0960471 0.0444361i
\(206\) −23.9433 18.2012i −1.66821 1.26814i
\(207\) 0 0
\(208\) 3.88961 1.79952i 0.269696 0.124775i
\(209\) −8.98314 + 0.976975i −0.621377 + 0.0675788i
\(210\) 0 0
\(211\) 1.38963 25.6302i 0.0956662 1.76446i −0.419864 0.907587i \(-0.637922\pi\)
0.515530 0.856872i \(-0.327595\pi\)
\(212\) 47.2146 + 5.13489i 3.24271 + 0.352666i
\(213\) 0 0
\(214\) −14.9326 + 37.4779i −1.02077 + 2.56194i
\(215\) −1.78249 + 0.392356i −0.121565 + 0.0267584i
\(216\) 0 0
\(217\) −0.216439 0.100135i −0.0146928 0.00679762i
\(218\) 22.8956 + 7.71441i 1.55068 + 0.522486i
\(219\) 0 0
\(220\) −4.26474 2.56601i −0.287529 0.173000i
\(221\) 0.329234 + 1.18579i 0.0221467 + 0.0797652i
\(222\) 0 0
\(223\) −11.8028 + 17.4078i −0.790372 + 1.16571i 0.192478 + 0.981301i \(0.438348\pi\)
−0.982849 + 0.184410i \(0.940963\pi\)
\(224\) 10.2899 + 9.74715i 0.687526 + 0.651259i
\(225\) 0 0
\(226\) −4.48346 + 27.3479i −0.298236 + 1.81916i
\(227\) 0.391450 + 0.577346i 0.0259815 + 0.0383198i 0.840458 0.541877i \(-0.182286\pi\)
−0.814476 + 0.580197i \(0.802976\pi\)
\(228\) 0 0
\(229\) 5.80508 + 6.83426i 0.383610 + 0.451621i 0.919748 0.392510i \(-0.128393\pi\)
−0.536138 + 0.844131i \(0.680117\pi\)
\(230\) 0.718320 + 4.38156i 0.0473646 + 0.288911i
\(231\) 0 0
\(232\) 16.4236 59.1526i 1.07826 3.88356i
\(233\) −5.33325 + 10.0596i −0.349393 + 0.659025i −0.994462 0.105099i \(-0.966484\pi\)
0.645069 + 0.764125i \(0.276829\pi\)
\(234\) 0 0
\(235\) 0.881215 0.0574842
\(236\) −29.0200 + 32.0566i −1.88904 + 2.08670i
\(237\) 0 0
\(238\) −5.80401 + 4.41209i −0.376218 + 0.285993i
\(239\) 3.17436 5.98747i 0.205332 0.387298i −0.759363 0.650668i \(-0.774489\pi\)
0.964695 + 0.263370i \(0.0848340\pi\)
\(240\) 0 0
\(241\) −8.73229 + 8.27166i −0.562496 + 0.532825i −0.915247 0.402893i \(-0.868005\pi\)
0.352751 + 0.935717i \(0.385246\pi\)
\(242\) 3.22809 + 19.6905i 0.207510 + 1.26575i
\(243\) 0 0
\(244\) 2.35655 + 5.91449i 0.150863 + 0.378636i
\(245\) 1.70739 + 2.51822i 0.109081 + 0.160883i
\(246\) 0 0
\(247\) −1.03918 + 0.625252i −0.0661213 + 0.0397839i
\(248\) −3.10295 2.93927i −0.197037 0.186644i
\(249\) 0 0
\(250\) −12.0193 2.64564i −0.760166 0.167325i
\(251\) −2.39913 8.64089i −0.151432 0.545408i −0.999870 0.0161139i \(-0.994871\pi\)
0.848438 0.529294i \(-0.177543\pi\)
\(252\) 0 0
\(253\) −4.44468 + 5.23268i −0.279434 + 0.328976i
\(254\) −46.0431 15.5137i −2.88900 0.973418i
\(255\) 0 0
\(256\) 32.3243 + 60.9700i 2.02027 + 3.81063i
\(257\) −10.7130 + 2.35810i −0.668255 + 0.147094i −0.536126 0.844138i \(-0.680113\pi\)
−0.132130 + 0.991232i \(0.542182\pi\)
\(258\) 0 0
\(259\) 4.66749 1.57266i 0.290024 0.0977203i
\(260\) −0.664096 0.0722248i −0.0411855 0.00447919i
\(261\) 0 0
\(262\) −0.0276391 0.509773i −0.00170755 0.0314939i
\(263\) 17.2455 1.87556i 1.06340 0.115652i 0.440345 0.897829i \(-0.354856\pi\)
0.623056 + 0.782177i \(0.285891\pi\)
\(264\) 0 0
\(265\) −3.05571 2.32289i −0.187711 0.142694i
\(266\) −5.71971 4.34801i −0.350698 0.266594i
\(267\) 0 0
\(268\) −25.7717 + 2.80284i −1.57426 + 0.171211i
\(269\) 1.17735 + 21.7149i 0.0717843 + 1.32398i 0.783445 + 0.621461i \(0.213460\pi\)
−0.711661 + 0.702523i \(0.752057\pi\)
\(270\) 0 0
\(271\) 20.6243 + 2.24302i 1.25283 + 0.136254i 0.710372 0.703826i \(-0.248527\pi\)
0.542462 + 0.840080i \(0.317492\pi\)
\(272\) −73.4779 + 24.7576i −4.45525 + 1.50115i
\(273\) 0 0
\(274\) −32.9719 + 7.25767i −1.99191 + 0.438452i
\(275\) −4.36272 8.22897i −0.263082 0.496225i
\(276\) 0 0
\(277\) 3.61404 + 1.21771i 0.217147 + 0.0731652i 0.425772 0.904830i \(-0.360002\pi\)
−0.208626 + 0.977996i \(0.566899\pi\)
\(278\) −34.9384 + 41.1327i −2.09547 + 2.46697i
\(279\) 0 0
\(280\) −0.682590 2.45847i −0.0407926 0.146922i
\(281\) −12.8386 2.82598i −0.765885 0.168584i −0.185187 0.982703i \(-0.559289\pi\)
−0.580698 + 0.814119i \(0.697220\pi\)
\(282\) 0 0
\(283\) −6.42058 6.08189i −0.381664 0.361531i 0.472685 0.881232i \(-0.343285\pi\)
−0.854348 + 0.519701i \(0.826044\pi\)
\(284\) 12.1886 7.33362i 0.723259 0.435170i
\(285\) 0 0
\(286\) −0.785610 1.15869i −0.0464541 0.0685146i
\(287\) 0.689541 + 1.73062i 0.0407023 + 0.102155i
\(288\) 0 0
\(289\) −0.851755 5.19548i −0.0501033 0.305616i
\(290\) −5.58696 + 5.29225i −0.328077 + 0.310771i
\(291\) 0 0
\(292\) −28.4929 + 53.7434i −1.66742 + 3.14509i
\(293\) 9.26205 7.04083i 0.541095 0.411329i −0.298608 0.954376i \(-0.596522\pi\)
0.839703 + 0.543046i \(0.182729\pi\)
\(294\) 0 0
\(295\) 3.34538 1.01078i 0.194775 0.0588496i
\(296\) 88.2719 5.13070
\(297\) 0 0
\(298\) 6.80577 12.8370i 0.394248 0.743630i
\(299\) −0.246517 + 0.887872i −0.0142564 + 0.0513470i
\(300\) 0 0
\(301\) −0.363036 2.21442i −0.0209250 0.127637i
\(302\) −9.77642 11.5097i −0.562570 0.662308i
\(303\) 0 0
\(304\) −42.8806 63.2442i −2.45937 3.62730i
\(305\) 0.0832456 0.507776i 0.00476663 0.0290752i
\(306\) 0 0
\(307\) 6.56327 + 6.21706i 0.374586 + 0.354827i 0.851714 0.524007i \(-0.175564\pi\)
−0.477128 + 0.878834i \(0.658322\pi\)
\(308\) 3.43407 5.06488i 0.195675 0.288598i
\(309\) 0 0
\(310\) 0.143335 + 0.516246i 0.00814088 + 0.0293208i
\(311\) −3.65309 2.19799i −0.207148 0.124637i 0.408200 0.912893i \(-0.366157\pi\)
−0.615348 + 0.788256i \(0.710984\pi\)
\(312\) 0 0
\(313\) −9.74534 3.28359i −0.550839 0.185599i 0.0300992 0.999547i \(-0.490418\pi\)
−0.580938 + 0.813948i \(0.697314\pi\)
\(314\) −21.3622 9.88322i −1.20554 0.557743i
\(315\) 0 0
\(316\) 13.5331 2.97885i 0.761294 0.167573i
\(317\) −9.25431 + 23.2266i −0.519774 + 1.30453i 0.401586 + 0.915821i \(0.368459\pi\)
−0.921359 + 0.388712i \(0.872920\pi\)
\(318\) 0 0
\(319\) −11.8298 1.28657i −0.662341 0.0720339i
\(320\) 0.914410 16.8653i 0.0511171 0.942799i
\(321\) 0 0
\(322\) −5.42690 + 0.590211i −0.302429 + 0.0328912i
\(323\) 19.9135 9.21298i 1.10802 0.512624i
\(324\) 0 0
\(325\) −0.995168 0.756507i −0.0552020 0.0419635i
\(326\) 12.2541 5.66936i 0.678693 0.313997i
\(327\) 0 0
\(328\) 1.80757 + 33.3386i 0.0998062 + 1.84082i
\(329\) −0.0586556 + 1.08184i −0.00323379 + 0.0596437i
\(330\) 0 0
\(331\) 3.83599 1.29250i 0.210845 0.0710420i −0.211897 0.977292i \(-0.567964\pi\)
0.422742 + 0.906250i \(0.361068\pi\)
\(332\) 17.3583 43.5661i 0.952661 2.39100i
\(333\) 0 0
\(334\) 17.0538 + 32.1669i 0.933142 + 1.76009i
\(335\) 1.90151 + 0.879731i 0.103890 + 0.0480649i
\(336\) 0 0
\(337\) 10.4610 12.3157i 0.569849 0.670878i −0.399452 0.916754i \(-0.630800\pi\)
0.969301 + 0.245876i \(0.0790755\pi\)
\(338\) 30.6070 + 18.4156i 1.66480 + 1.00168i
\(339\) 0 0
\(340\) 11.8030 + 2.59805i 0.640110 + 0.140899i
\(341\) −0.464921 + 0.685707i −0.0251769 + 0.0371331i
\(342\) 0 0
\(343\) −6.56034 + 3.94722i −0.354225 + 0.213130i
\(344\) 6.50635 39.6870i 0.350799 2.13978i
\(345\) 0 0
\(346\) −14.0738 35.3226i −0.756613 1.89896i
\(347\) 2.52185 + 2.96896i 0.135380 + 0.159382i 0.825675 0.564147i \(-0.190795\pi\)
−0.690294 + 0.723529i \(0.742519\pi\)
\(348\) 0 0
\(349\) 4.15856 3.93920i 0.222603 0.210860i −0.568268 0.822843i \(-0.692386\pi\)
0.790871 + 0.611983i \(0.209628\pi\)
\(350\) 1.98121 7.13569i 0.105900 0.381419i
\(351\) 0 0
\(352\) 39.1978 29.7974i 2.08925 1.58821i
\(353\) 8.94551 0.476121 0.238061 0.971250i \(-0.423488\pi\)
0.238061 + 0.971250i \(0.423488\pi\)
\(354\) 0 0
\(355\) −1.14964 −0.0610167
\(356\) 60.3455 45.8734i 3.19830 2.43129i
\(357\) 0 0
\(358\) 3.49839 12.6001i 0.184895 0.665933i
\(359\) −14.8703 + 14.0859i −0.784826 + 0.743426i −0.970997 0.239091i \(-0.923151\pi\)
0.186171 + 0.982517i \(0.440392\pi\)
\(360\) 0 0
\(361\) 1.69796 + 1.99899i 0.0893661 + 0.105210i
\(362\) 19.5460 + 49.0568i 1.02732 + 2.57837i
\(363\) 0 0
\(364\) 0.132872 0.810480i 0.00696436 0.0424807i
\(365\) 4.21250 2.53458i 0.220492 0.132666i
\(366\) 0 0
\(367\) 17.7943 26.2447i 0.928857 1.36996i −0.000190189 1.00000i \(-0.500061\pi\)
0.929047 0.369961i \(-0.120629\pi\)
\(368\) −56.6989 12.4804i −2.95563 0.650584i
\(369\) 0 0
\(370\) −9.48140 5.70477i −0.492915 0.296577i
\(371\) 3.05513 3.59677i 0.158614 0.186735i
\(372\) 0 0
\(373\) 16.4416 + 7.60669i 0.851314 + 0.393860i 0.796501 0.604637i \(-0.206682\pi\)
0.0548126 + 0.998497i \(0.482544\pi\)
\(374\) 11.8634 + 22.3767i 0.613440 + 1.15707i
\(375\) 0 0
\(376\) −7.18707 + 18.0382i −0.370645 + 0.930249i
\(377\) −1.51349 + 0.509954i −0.0779487 + 0.0262640i
\(378\) 0 0
\(379\) 0.733744 13.5331i 0.0376899 0.695149i −0.917243 0.398328i \(-0.869591\pi\)
0.954933 0.296821i \(-0.0959266\pi\)
\(380\) 0.644798 + 11.8926i 0.0330775 + 0.610078i
\(381\) 0 0
\(382\) −46.5159 + 21.5205i −2.37996 + 1.10109i
\(383\) −22.4018 17.0294i −1.14468 0.870161i −0.151695 0.988427i \(-0.548473\pi\)
−0.992982 + 0.118266i \(0.962266\pi\)
\(384\) 0 0
\(385\) −0.448852 + 0.207661i −0.0228756 + 0.0105834i
\(386\) 8.53072 0.927771i 0.434202 0.0472223i
\(387\) 0 0
\(388\) 0.781283 14.4099i 0.0396636 0.731553i
\(389\) −28.5137 3.10105i −1.44570 0.157230i −0.648626 0.761108i \(-0.724656\pi\)
−0.797077 + 0.603878i \(0.793621\pi\)
\(390\) 0 0
\(391\) 6.17056 15.4869i 0.312059 0.783208i
\(392\) −65.4724 + 14.4116i −3.30686 + 0.727894i
\(393\) 0 0
\(394\) −16.1379 7.46619i −0.813016 0.376141i
\(395\) −1.06130 0.357594i −0.0533998 0.0179925i
\(396\) 0 0
\(397\) 15.5055 + 9.32933i 0.778197 + 0.468226i 0.848432 0.529305i \(-0.177547\pi\)
−0.0702345 + 0.997531i \(0.522375\pi\)
\(398\) −9.40692 33.8807i −0.471526 1.69828i
\(399\) 0 0
\(400\) 44.1990 65.1887i 2.20995 3.25943i
\(401\) 14.0940 + 13.3505i 0.703821 + 0.666694i 0.953417 0.301656i \(-0.0975393\pi\)
−0.249596 + 0.968350i \(0.580298\pi\)
\(402\) 0 0
\(403\) −0.0179888 + 0.109727i −0.000896084 + 0.00546587i
\(404\) −42.4445 62.6010i −2.11169 3.11451i
\(405\) 0 0
\(406\) −6.12523 7.21118i −0.303990 0.357885i
\(407\) −2.76811 16.8847i −0.137210 0.836944i
\(408\) 0 0
\(409\) 2.52893 9.10840i 0.125048 0.450381i −0.874342 0.485310i \(-0.838707\pi\)
0.999390 + 0.0349289i \(0.0111205\pi\)
\(410\) 1.96043 3.69776i 0.0968188 0.182620i
\(411\) 0 0
\(412\) −61.2975 −3.01991
\(413\) 1.01822 + 4.17428i 0.0501033 + 0.205403i
\(414\) 0 0
\(415\) −3.01735 + 2.29373i −0.148116 + 0.112595i
\(416\) 3.09544 5.83862i 0.151767 0.286262i
\(417\) 0 0
\(418\) −18.1202 + 17.1644i −0.886289 + 0.839537i
\(419\) −2.41565 14.7348i −0.118012 0.719842i −0.977855 0.209283i \(-0.932887\pi\)
0.859843 0.510559i \(-0.170561\pi\)
\(420\) 0 0
\(421\) 14.2104 + 35.6655i 0.692575 + 1.73823i 0.674366 + 0.738397i \(0.264417\pi\)
0.0182089 + 0.999834i \(0.494204\pi\)
\(422\) −39.7874 58.6821i −1.93682 2.85660i
\(423\) 0 0
\(424\) 72.4708 43.6042i 3.51949 2.11761i
\(425\) 16.4192 + 15.5530i 0.796446 + 0.754434i
\(426\) 0 0
\(427\) 0.617838 + 0.135996i 0.0298993 + 0.00658133i
\(428\) 21.9969 + 79.2258i 1.06326 + 3.82952i
\(429\) 0 0
\(430\) −3.26372 + 3.84235i −0.157391 + 0.185294i
\(431\) 20.7188 + 6.98099i 0.997991 + 0.336262i 0.770446 0.637505i \(-0.220034\pi\)
0.227545 + 0.973768i \(0.426930\pi\)
\(432\) 0 0
\(433\) −6.69581 12.6296i −0.321780 0.606942i 0.668868 0.743381i \(-0.266779\pi\)
−0.990648 + 0.136439i \(0.956434\pi\)
\(434\) −0.643318 + 0.141605i −0.0308803 + 0.00679726i
\(435\) 0 0
\(436\) 46.6630 15.7226i 2.23475 0.752976i
\(437\) 16.3325 + 1.77627i 0.781291 + 0.0849705i
\(438\) 0 0
\(439\) −1.01404 18.7028i −0.0483974 0.892637i −0.917434 0.397889i \(-0.869743\pi\)
0.869036 0.494748i \(-0.164740\pi\)
\(440\) −8.81163 + 0.958322i −0.420078 + 0.0456862i
\(441\) 0 0
\(442\) 2.70612 + 2.05714i 0.128717 + 0.0978481i
\(443\) −14.2390 10.8242i −0.676517 0.514275i 0.209570 0.977794i \(-0.432794\pi\)
−0.886087 + 0.463519i \(0.846587\pi\)
\(444\) 0 0
\(445\) −6.09041 + 0.662372i −0.288713 + 0.0313994i
\(446\) 3.14509 + 58.0079i 0.148925 + 2.74675i
\(447\) 0 0
\(448\) 20.6441 + 2.24518i 0.975341 + 0.106075i
\(449\) 17.6640 5.95170i 0.833616 0.280878i 0.130050 0.991507i \(-0.458486\pi\)
0.703567 + 0.710629i \(0.251590\pi\)
\(450\) 0 0
\(451\) 6.32035 1.39122i 0.297614 0.0655098i
\(452\) 26.4564 + 49.9020i 1.24440 + 2.34719i
\(453\) 0 0
\(454\) 1.82586 + 0.615202i 0.0856917 + 0.0288729i
\(455\) −0.0429719 + 0.0505904i −0.00201455 + 0.00237171i
\(456\) 0 0
\(457\) 9.32995 + 33.6034i 0.436437 + 1.57190i 0.775631 + 0.631187i \(0.217432\pi\)
−0.339194 + 0.940716i \(0.610154\pi\)
\(458\) 24.1890 + 5.32441i 1.13028 + 0.248793i
\(459\) 0 0
\(460\) 6.56967 + 6.22312i 0.306312 + 0.290154i
\(461\) 28.8377 17.3511i 1.34310 0.808119i 0.351347 0.936245i \(-0.385724\pi\)
0.991758 + 0.128126i \(0.0408962\pi\)
\(462\) 0 0
\(463\) −12.5141 18.4569i −0.581578 0.857764i 0.417116 0.908853i \(-0.363041\pi\)
−0.998694 + 0.0510897i \(0.983731\pi\)
\(464\) −37.2448 93.4775i −1.72905 4.33958i
\(465\) 0 0
\(466\) 5.08799 + 31.0353i 0.235696 + 1.43768i
\(467\) 11.3029 10.7067i 0.523038 0.495448i −0.380013 0.924981i \(-0.624081\pi\)
0.903051 + 0.429533i \(0.141322\pi\)
\(468\) 0 0
\(469\) −1.20658 + 2.27586i −0.0557149 + 0.105089i
\(470\) 1.93773 1.47303i 0.0893810 0.0679457i
\(471\) 0 0
\(472\) −6.59418 + 76.7225i −0.303522 + 3.53144i
\(473\) −7.79540 −0.358433
\(474\) 0 0
\(475\) −10.4397 + 19.6913i −0.479006 + 0.903501i
\(476\) −3.97517 + 14.3173i −0.182202 + 0.656231i
\(477\) 0 0
\(478\) −3.02837 18.4723i −0.138515 0.844902i
\(479\) 6.25544 + 7.36447i 0.285818 + 0.336491i 0.886269 0.463170i \(-0.153288\pi\)
−0.600451 + 0.799662i \(0.705012\pi\)
\(480\) 0 0
\(481\) −1.28873 1.90073i −0.0587608 0.0866657i
\(482\) −5.37492 + 32.7856i −0.244821 + 1.49334i
\(483\) 0 0
\(484\) 29.5237 + 27.9664i 1.34199 + 1.27120i
\(485\) −0.654524 + 0.965350i −0.0297204 + 0.0438343i
\(486\) 0 0
\(487\) 4.15232 + 14.9553i 0.188159 + 0.677689i 0.996085 + 0.0884041i \(0.0281767\pi\)
−0.807925 + 0.589285i \(0.799410\pi\)
\(488\) 9.71507 + 5.84536i 0.439781 + 0.264607i
\(489\) 0 0
\(490\) 7.96386 + 2.68334i 0.359771 + 0.121221i
\(491\) −18.9172 8.75202i −0.853721 0.394973i −0.0563121 0.998413i \(-0.517934\pi\)
−0.797408 + 0.603440i \(0.793796\pi\)
\(492\) 0 0
\(493\) 28.2189 6.21145i 1.27092 0.279750i
\(494\) −1.23992 + 3.11196i −0.0557866 + 0.140014i
\(495\) 0 0
\(496\) −6.96450 0.757435i −0.312715 0.0340098i
\(497\) 0.0765227 1.41138i 0.00343251 0.0633090i
\(498\) 0 0
\(499\) −4.27293 + 0.464710i −0.191283 + 0.0208033i −0.203259 0.979125i \(-0.565153\pi\)
0.0119761 + 0.999928i \(0.496188\pi\)
\(500\) −22.7644 + 10.5320i −1.01806 + 0.471003i
\(501\) 0 0
\(502\) −19.7195 14.9904i −0.880125 0.669053i
\(503\) 38.1484 17.6493i 1.70095 0.786944i 0.703893 0.710306i \(-0.251444\pi\)
0.997059 0.0766376i \(-0.0244184\pi\)
\(504\) 0 0
\(505\) 0.330935 + 6.10373i 0.0147264 + 0.271612i
\(506\) −1.02668 + 18.9360i −0.0456414 + 0.841806i
\(507\) 0 0
\(508\) −93.8396 + 31.6183i −4.16346 + 1.40283i
\(509\) −1.99509 + 5.00731i −0.0884310 + 0.221945i −0.966540 0.256515i \(-0.917426\pi\)
0.878109 + 0.478460i \(0.158805\pi\)
\(510\) 0 0
\(511\) 2.83122 + 5.34025i 0.125246 + 0.236239i
\(512\) 78.8556 + 36.4825i 3.48496 + 1.61231i
\(513\) 0 0
\(514\) −19.6153 + 23.0929i −0.865193 + 1.01858i
\(515\) 4.24492 + 2.55408i 0.187054 + 0.112546i
\(516\) 0 0
\(517\) 3.67574 + 0.809092i 0.161659 + 0.0355838i
\(518\) 7.63466 11.2603i 0.335448 0.494748i
\(519\) 0 0
\(520\) −1.01934 + 0.613314i −0.0447009 + 0.0268956i
\(521\) 1.21887 7.43479i 0.0533997 0.325724i −0.946595 0.322426i \(-0.895502\pi\)
0.999995 0.00329846i \(-0.00104993\pi\)
\(522\) 0 0
\(523\) −3.55951 8.93369i −0.155646 0.390643i 0.830388 0.557186i \(-0.188119\pi\)
−0.986034 + 0.166543i \(0.946740\pi\)
\(524\) −0.673596 0.793019i −0.0294262 0.0346432i
\(525\) 0 0
\(526\) 34.7865 32.9515i 1.51676 1.43675i
\(527\) 0.538177 1.93834i 0.0234434 0.0844353i
\(528\) 0 0
\(529\) −8.37291 + 6.36492i −0.364039 + 0.276736i
\(530\) −10.6022 −0.460530
\(531\) 0 0
\(532\) −14.6431 −0.634858
\(533\) 0.691479 0.525649i 0.0299513 0.0227684i
\(534\) 0 0
\(535\) 1.77779 6.40303i 0.0768607 0.276827i
\(536\) −33.5163 + 31.7483i −1.44768 + 1.37132i
\(537\) 0 0
\(538\) 38.8873 + 45.7817i 1.67655 + 1.97379i
\(539\) 4.80980 + 12.0717i 0.207173 + 0.519964i
\(540\) 0 0
\(541\) 3.90020 23.7902i 0.167683 1.02282i −0.760129 0.649772i \(-0.774864\pi\)
0.927812 0.373048i \(-0.121687\pi\)
\(542\) 49.1007 29.5429i 2.10906 1.26898i
\(543\) 0 0
\(544\) −67.0950 + 98.9577i −2.87667 + 4.24277i
\(545\) −3.88659 0.855502i −0.166483 0.0366457i
\(546\) 0 0
\(547\) 10.5455 + 6.34501i 0.450892 + 0.271293i 0.722835 0.691020i \(-0.242839\pi\)
−0.271943 + 0.962313i \(0.587666\pi\)
\(548\) −44.5455 + 52.4430i −1.90289 + 2.24025i
\(549\) 0 0
\(550\) −23.3487 10.8023i −0.995594 0.460611i
\(551\) 13.3378 + 25.1578i 0.568211 + 1.07176i
\(552\) 0 0
\(553\) 0.509648 1.27912i 0.0216724 0.0543937i
\(554\) 9.98253 3.36351i 0.424117 0.142902i
\(555\) 0 0
\(556\) −5.95485 + 109.831i −0.252542 + 4.65786i
\(557\) 0.276773 + 5.10478i 0.0117273 + 0.216297i 0.998523 + 0.0543278i \(0.0173016\pi\)
−0.986796 + 0.161969i \(0.948216\pi\)
\(558\) 0 0
\(559\) −0.949556 + 0.439312i −0.0401620 + 0.0185809i
\(560\) −3.32933 2.53089i −0.140690 0.106950i
\(561\) 0 0
\(562\) −32.9550 + 15.2466i −1.39012 + 0.643140i
\(563\) −33.5628 + 3.65018i −1.41450 + 0.153837i −0.783234 0.621727i \(-0.786431\pi\)
−0.631270 + 0.775563i \(0.717466\pi\)
\(564\) 0 0
\(565\) 0.247135 4.55813i 0.0103970 0.191762i
\(566\) −24.2848 2.64113i −1.02077 0.111015i
\(567\) 0 0
\(568\) 9.37634 23.5328i 0.393422 0.987416i
\(569\) −7.00852 + 1.54269i −0.293812 + 0.0646730i −0.359431 0.933172i \(-0.617029\pi\)
0.0656183 + 0.997845i \(0.479098\pi\)
\(570\) 0 0
\(571\) 34.0296 + 15.7438i 1.42409 + 0.658856i 0.972401 0.233318i \(-0.0749582\pi\)
0.451693 + 0.892174i \(0.350820\pi\)
\(572\) −2.70377 0.911008i −0.113050 0.0380911i
\(573\) 0 0
\(574\) 4.40913 + 2.65288i 0.184033 + 0.110729i
\(575\) 4.53031 + 16.3167i 0.188927 + 0.680453i
\(576\) 0 0
\(577\) −4.94090 + 7.28728i −0.205692 + 0.303373i −0.916517 0.399996i \(-0.869012\pi\)
0.710825 + 0.703369i \(0.248322\pi\)
\(578\) −10.5576 10.0007i −0.439140 0.415975i
\(579\) 0 0
\(580\) −2.53743 + 15.4776i −0.105361 + 0.642673i
\(581\) −2.61510 3.85698i −0.108493 0.160014i
\(582\) 0 0
\(583\) −10.6133 12.4949i −0.439556 0.517485i
\(584\) 17.5254 + 106.900i 0.725206 + 4.42356i
\(585\) 0 0
\(586\) 8.59728 30.9646i 0.355150 1.27914i
\(587\) 13.7524 25.9397i 0.567622 1.07065i −0.419056 0.907960i \(-0.637639\pi\)
0.986678 0.162687i \(-0.0520162\pi\)
\(588\) 0 0
\(589\) 1.98245 0.0816853
\(590\) 5.66666 7.81471i 0.233293 0.321726i
\(591\) 0 0
\(592\) 115.183 87.5600i 4.73400 3.59869i
\(593\) 11.9254 22.4937i 0.489718 0.923707i −0.508324 0.861166i \(-0.669735\pi\)
0.998042 0.0625409i \(-0.0199204\pi\)
\(594\) 0 0
\(595\) 0.871844 0.825855i 0.0357421 0.0338567i
\(596\) −4.79076 29.2224i −0.196237 1.19699i
\(597\) 0 0
\(598\) 0.942081 + 2.36444i 0.0385246 + 0.0966893i
\(599\) 17.6632 + 26.0512i 0.721698 + 1.06442i 0.994741 + 0.102423i \(0.0326595\pi\)
−0.273043 + 0.962002i \(0.588030\pi\)
\(600\) 0 0
\(601\) −2.99384 + 1.80133i −0.122121 + 0.0734778i −0.575304 0.817940i \(-0.695116\pi\)
0.453183 + 0.891418i \(0.350289\pi\)
\(602\) −4.49988 4.26251i −0.183401 0.173727i
\(603\) 0 0
\(604\) −30.0583 6.61633i −1.22305 0.269215i
\(605\) −0.879278 3.16687i −0.0357477 0.128752i
\(606\) 0 0
\(607\) −3.69432 + 4.34929i −0.149948 + 0.176532i −0.832008 0.554764i \(-0.812809\pi\)
0.682060 + 0.731296i \(0.261084\pi\)
\(608\) −111.655 37.6209i −4.52820 1.52573i
\(609\) 0 0
\(610\) −0.665739 1.25572i −0.0269550 0.0508425i
\(611\) 0.493338 0.108592i 0.0199583 0.00439316i
\(612\) 0 0
\(613\) 34.0157 11.4612i 1.37388 0.462915i 0.466984 0.884266i \(-0.345340\pi\)
0.906898 + 0.421351i \(0.138444\pi\)
\(614\) 24.8246 + 2.69983i 1.00184 + 0.108956i
\(615\) 0 0
\(616\) −0.589979 10.8815i −0.0237709 0.438429i
\(617\) −4.59512 + 0.499749i −0.184992 + 0.0201191i −0.200146 0.979766i \(-0.564142\pi\)
0.0151538 + 0.999885i \(0.495176\pi\)
\(618\) 0 0
\(619\) 28.5385 + 21.6944i 1.14706 + 0.871973i 0.993235 0.116125i \(-0.0370474\pi\)
0.153826 + 0.988098i \(0.450840\pi\)
\(620\) 0.869297 + 0.660822i 0.0349118 + 0.0265393i
\(621\) 0 0
\(622\) −11.7070 + 1.27322i −0.469409 + 0.0510513i
\(623\) −0.407781 7.52107i −0.0163374 0.301325i
\(624\) 0 0
\(625\) −21.8092 2.37189i −0.872368 0.0948757i
\(626\) −26.9181 + 9.06978i −1.07587 + 0.362501i
\(627\) 0 0
\(628\) −46.8502 + 10.3125i −1.86953 + 0.411514i
\(629\) 19.4609 + 36.7071i 0.775955 + 1.46361i
\(630\) 0 0
\(631\) −5.22943 1.76200i −0.208180 0.0701441i 0.213279 0.976991i \(-0.431586\pi\)
−0.421460 + 0.906847i \(0.638482\pi\)
\(632\) 15.9756 18.8080i 0.635477 0.748141i
\(633\) 0 0
\(634\) 18.4756 + 66.5430i 0.733759 + 2.64276i
\(635\) 7.81595 + 1.72042i 0.310166 + 0.0682728i
\(636\) 0 0
\(637\) 1.26618 + 1.19939i 0.0501680 + 0.0475217i
\(638\) −28.1635 + 16.9454i −1.11500 + 0.670876i
\(639\) 0 0
\(640\) −13.2421 19.5306i −0.523440 0.772016i
\(641\) 12.6621 + 31.7796i 0.500125 + 1.25522i 0.934974 + 0.354715i \(0.115422\pi\)
−0.434850 + 0.900503i \(0.643198\pi\)
\(642\) 0 0
\(643\) −6.94337 42.3527i −0.273820 1.67023i −0.662659 0.748922i \(-0.730572\pi\)
0.388839 0.921306i \(-0.372876\pi\)
\(644\) −8.07720 + 7.65113i −0.318286 + 0.301497i
\(645\) 0 0
\(646\) 28.3882 53.5459i 1.11692 2.10673i
\(647\) 19.9736 15.1835i 0.785242 0.596925i −0.133835 0.991004i \(-0.542729\pi\)
0.919077 + 0.394078i \(0.128936\pi\)
\(648\) 0 0
\(649\) 14.8823 1.14459i 0.584183 0.0449292i
\(650\) −3.45287 −0.135433
\(651\) 0 0
\(652\) 12.8898 24.3127i 0.504803 0.952160i
\(653\) 7.01168 25.2538i 0.274388 0.988257i −0.690009 0.723800i \(-0.742394\pi\)
0.964398 0.264457i \(-0.0851926\pi\)
\(654\) 0 0
\(655\) 0.0136046 + 0.0829843i 0.000531575 + 0.00324247i
\(656\) 35.4284 + 41.7095i 1.38325 + 1.62848i
\(657\) 0 0
\(658\) 1.67941 + 2.47694i 0.0654700 + 0.0965611i
\(659\) 1.20967 7.37866i 0.0471221 0.287432i −0.952744 0.303773i \(-0.901754\pi\)
0.999866 + 0.0163412i \(0.00520181\pi\)
\(660\) 0 0
\(661\) −32.4775 30.7643i −1.26323 1.19659i −0.970689 0.240340i \(-0.922741\pi\)
−0.292540 0.956253i \(-0.594500\pi\)
\(662\) 6.27457 9.25429i 0.243868 0.359678i
\(663\) 0 0
\(664\) −22.3428 80.4717i −0.867071 3.12291i
\(665\) 1.01405 + 0.610134i 0.0393232 + 0.0236600i
\(666\) 0 0
\(667\) 20.5024 + 6.90807i 0.793856 + 0.267481i
\(668\) 67.3443 + 31.1568i 2.60563 + 1.20549i
\(669\) 0 0
\(670\) 5.65183 1.24406i 0.218349 0.0480623i
\(671\) 0.813452 2.04161i 0.0314030 0.0788155i
\(672\) 0 0
\(673\) 0.342285 + 0.0372257i 0.0131941 + 0.00143495i 0.114714 0.993399i \(-0.463405\pi\)
−0.101520 + 0.994834i \(0.532370\pi\)
\(674\) 2.41640 44.5679i 0.0930763 1.71669i
\(675\) 0 0
\(676\) 72.3738 7.87113i 2.78361 0.302736i
\(677\) −17.6552 + 8.16815i −0.678544 + 0.313928i −0.728719 0.684813i \(-0.759884\pi\)
0.0501756 + 0.998740i \(0.484022\pi\)
\(678\) 0 0
\(679\) −1.14156 0.867792i −0.0438091 0.0333028i
\(680\) 19.5333 9.03708i 0.749069 0.346556i
\(681\) 0 0
\(682\) 0.123888 + 2.28498i 0.00474391 + 0.0874963i
\(683\) 0.744241 13.7267i 0.0284776 0.525239i −0.949141 0.314852i \(-0.898045\pi\)
0.977618 0.210386i \(-0.0674722\pi\)
\(684\) 0 0
\(685\) 5.26997 1.77566i 0.201355 0.0678445i
\(686\) −7.82762 + 19.6458i −0.298860 + 0.750082i
\(687\) 0 0
\(688\) −30.8770 58.2402i −1.17717 2.22039i
\(689\) −1.99695 0.923888i −0.0760778 0.0351973i
\(690\) 0 0
\(691\) −12.4402 + 14.6457i −0.473247 + 0.557149i −0.946051 0.324019i \(-0.894966\pi\)
0.472804 + 0.881168i \(0.343242\pi\)
\(692\) −66.4016 39.9525i −2.52421 1.51877i
\(693\) 0 0
\(694\) 10.5082 + 2.31304i 0.398888 + 0.0878018i
\(695\) 4.98871 7.35779i 0.189232 0.279097i
\(696\) 0 0
\(697\) −13.4651 + 8.10165i −0.510025 + 0.306872i
\(698\) 2.55969 15.6134i 0.0968857 0.590977i
\(699\) 0 0
\(700\) −5.58660 14.0213i −0.211153 0.529955i
\(701\) 4.90487 + 5.77446i 0.185254 + 0.218098i 0.846948 0.531676i \(-0.178438\pi\)
−0.661693 + 0.749775i \(0.730162\pi\)
\(702\) 0 0
\(703\) −29.7247 + 28.1567i −1.12109 + 1.06195i
\(704\) 19.2991 69.5092i 0.727364 2.61973i
\(705\) 0 0
\(706\) 19.6706 14.9532i 0.740311 0.562770i
\(707\) −7.51537 −0.282645
\(708\) 0 0
\(709\) 39.9384 1.49992 0.749960 0.661483i \(-0.230073\pi\)
0.749960 + 0.661483i \(0.230073\pi\)
\(710\) −2.52799 + 1.92173i −0.0948737 + 0.0721211i
\(711\) 0 0
\(712\) 36.1140 130.071i 1.35343 4.87461i
\(713\) 1.09353 1.03585i 0.0409530 0.0387927i
\(714\) 0 0
\(715\) 0.149281 + 0.175747i 0.00558278 + 0.00657255i
\(716\) −9.86470 24.7585i −0.368661 0.925269i
\(717\) 0 0
\(718\) −9.15303 + 55.8310i −0.341588 + 2.08359i
\(719\) −28.8259 + 17.3440i −1.07503 + 0.646822i −0.939012 0.343885i \(-0.888257\pi\)
−0.136014 + 0.990707i \(0.543429\pi\)
\(720\) 0 0
\(721\) −3.41811 + 5.04134i −0.127297 + 0.187749i
\(722\) 7.07517 + 1.55736i 0.263311 + 0.0579590i
\(723\) 0 0
\(724\) 92.2199 + 55.4869i 3.42733 + 2.06215i
\(725\) −19.0009 + 22.3696i −0.705677 + 0.830788i
\(726\) 0 0
\(727\) −16.3607 7.56925i −0.606784 0.280728i 0.0923415 0.995727i \(-0.470565\pi\)
−0.699125 + 0.714999i \(0.746427\pi\)
\(728\) −0.685096 1.29223i −0.0253914 0.0478932i
\(729\) 0 0
\(730\) 5.02624 12.6149i 0.186029 0.466899i
\(731\) 17.9379 6.04398i 0.663457 0.223545i
\(732\) 0 0
\(733\) 1.92477 35.5003i 0.0710929 1.31123i −0.717605 0.696451i \(-0.754761\pi\)
0.788698 0.614781i \(-0.210756\pi\)
\(734\) −4.74167 87.4550i −0.175018 3.22802i
\(735\) 0 0
\(736\) −81.2468 + 37.5888i −2.99480 + 1.38554i
\(737\) 7.12387 + 5.41543i 0.262411 + 0.199480i
\(738\) 0 0
\(739\) −28.5154 + 13.1926i −1.04895 + 0.485298i −0.867156 0.498037i \(-0.834054\pi\)
−0.181799 + 0.983336i \(0.558192\pi\)
\(740\) −22.4198 + 2.43831i −0.824170 + 0.0896339i
\(741\) 0 0
\(742\) 0.705705 13.0160i 0.0259073 0.477831i
\(743\) 33.4440 + 3.63726i 1.22694 + 0.133438i 0.698550 0.715562i \(-0.253829\pi\)
0.528393 + 0.849000i \(0.322795\pi\)
\(744\) 0 0
\(745\) −0.885844 + 2.22330i −0.0324548 + 0.0814554i
\(746\) 48.8692 10.7569i 1.78923 0.393839i
\(747\) 0 0
\(748\) 46.8477 + 21.6740i 1.71292 + 0.792481i
\(749\) 7.74245 + 2.60873i 0.282903 + 0.0953211i
\(750\) 0 0
\(751\) 0.111877 + 0.0673144i 0.00408247 + 0.00245634i 0.517594 0.855627i \(-0.326828\pi\)
−0.513511 + 0.858083i \(0.671656\pi\)
\(752\) 8.51453 + 30.6666i 0.310493 + 1.11830i
\(753\) 0 0
\(754\) −2.47563 + 3.65128i −0.0901571 + 0.132972i
\(755\) 1.80589 + 1.71063i 0.0657230 + 0.0622562i
\(756\) 0 0
\(757\) 2.98239 18.1918i 0.108397 0.661191i −0.875604 0.483029i \(-0.839537\pi\)
0.984001 0.178162i \(-0.0570152\pi\)
\(758\) −21.0083 30.9849i −0.763056 1.12542i
\(759\) 0 0
\(760\) 13.7310 + 16.1654i 0.498077 + 0.586381i
\(761\) −2.85579 17.4196i −0.103522 0.631459i −0.986717 0.162451i \(-0.948060\pi\)
0.883194 0.469008i \(-0.155388\pi\)
\(762\) 0 0
\(763\) 1.30897 4.71449i 0.0473879 0.170676i
\(764\) −48.9288 + 92.2896i −1.77018 + 3.33892i
\(765\) 0 0
\(766\) −77.7261 −2.80836
\(767\) 1.74831 0.978120i 0.0631279 0.0353179i
\(768\) 0 0
\(769\) −12.0412 + 9.15349i −0.434217 + 0.330083i −0.799343 0.600875i \(-0.794819\pi\)
0.365126 + 0.930958i \(0.381026\pi\)
\(770\) −0.639873 + 1.20693i −0.0230594 + 0.0434947i
\(771\) 0 0
\(772\) 12.6968 12.0271i 0.456968 0.432863i
\(773\) 3.71417 + 22.6555i 0.133590 + 0.814860i 0.965587 + 0.260080i \(0.0837491\pi\)
−0.831997 + 0.554779i \(0.812803\pi\)
\(774\) 0 0
\(775\) 0.756339 + 1.89827i 0.0271685 + 0.0681878i
\(776\) −14.4222 21.2712i −0.517727 0.763590i
\(777\) 0 0
\(778\) −67.8834 + 40.8441i −2.43374 + 1.46433i
\(779\) −11.2429 10.6499i −0.402820 0.381571i
\(780\) 0 0
\(781\) −4.79541 1.05555i −0.171593 0.0377706i
\(782\) −12.3191 44.3693i −0.440530 1.58664i
\(783\) 0 0
\(784\) −71.1375 + 83.7496i −2.54063 + 2.99106i
\(785\) 3.67413 + 1.23796i 0.131135 + 0.0441846i
\(786\) 0 0
\(787\) −8.72867 16.4640i −0.311143 0.586879i 0.677787 0.735258i \(-0.262939\pi\)
−0.988930 + 0.148380i \(0.952594\pi\)
\(788\) −35.3926 + 7.79050i −1.26081 + 0.277525i
\(789\) 0 0
\(790\) −2.93148 + 0.987729i −0.104297 + 0.0351418i
\(791\) 5.57941 + 0.606798i 0.198381 + 0.0215752i
\(792\) 0 0
\(793\) −0.0159690 0.294531i −0.000567075 0.0104591i
\(794\) 49.6903 5.40414i 1.76344 0.191786i
\(795\) 0 0
\(796\) −57.0510 43.3690i −2.02212 1.53718i
\(797\) 1.91562 + 1.45622i 0.0678548 + 0.0515819i 0.638552 0.769579i \(-0.279534\pi\)
−0.570697 + 0.821161i \(0.693327\pi\)
\(798\) 0 0
\(799\) −9.08552 + 0.988110i −0.321423 + 0.0349568i
\(800\) −6.57490 121.267i −0.232458 4.28743i
\(801\) 0 0
\(802\) 53.3083 + 5.79763i 1.88238 + 0.204721i
\(803\) 19.8984 6.70454i 0.702198 0.236598i
\(804\) 0 0
\(805\) 0.878156 0.193297i 0.0309509 0.00681282i
\(806\) 0.143861 + 0.271351i 0.00506730 + 0.00955793i
\(807\) 0 0
\(808\) −127.640 43.0071i −4.49038 1.51298i
\(809\) −19.3198 + 22.7450i −0.679247 + 0.799672i −0.988486 0.151313i \(-0.951650\pi\)
0.309239 + 0.950984i \(0.399926\pi\)
\(810\) 0 0
\(811\) −6.09940 21.9681i −0.214179 0.771403i −0.990075 0.140542i \(-0.955116\pi\)
0.775896 0.630861i \(-0.217298\pi\)
\(812\) −18.8324 4.14533i −0.660889 0.145473i
\(813\) 0 0
\(814\) −34.3111 32.5012i −1.20260 1.13917i
\(815\) −1.90567 + 1.14661i −0.0667529 + 0.0401639i
\(816\) 0 0
\(817\) 10.4683 + 15.4396i 0.366239 + 0.540163i
\(818\) −9.66450 24.2561i −0.337911 0.848094i
\(819\) 0 0
\(820\) −1.38000 8.41762i −0.0481916 0.293956i
\(821\) −18.2222 + 17.2610i −0.635961 + 0.602414i −0.936208 0.351448i \(-0.885690\pi\)
0.300247 + 0.953862i \(0.402931\pi\)
\(822\) 0 0
\(823\) 14.7380 27.7988i 0.513734 0.969006i −0.481950 0.876199i \(-0.660071\pi\)
0.995684 0.0928069i \(-0.0295839\pi\)
\(824\) −86.9023 + 66.0614i −3.02739 + 2.30136i
\(825\) 0 0
\(826\) 9.21666 + 7.47693i 0.320689 + 0.260156i
\(827\) −10.5707 −0.367580 −0.183790 0.982966i \(-0.558837\pi\)
−0.183790 + 0.982966i \(0.558837\pi\)
\(828\) 0 0
\(829\) −23.5498 + 44.4196i −0.817919 + 1.54276i 0.0218166 + 0.999762i \(0.493055\pi\)
−0.839735 + 0.542996i \(0.817290\pi\)
\(830\) −2.80079 + 10.0875i −0.0972168 + 0.350143i
\(831\) 0 0
\(832\) −1.56638 9.55452i −0.0543046 0.331243i
\(833\) −20.4273 24.0489i −0.707764 0.833244i
\(834\) 0 0
\(835\) −3.36546 4.96369i −0.116467 0.171775i
\(836\) −8.22965 + 50.1987i −0.284629 + 1.73616i
\(837\) 0 0
\(838\) −29.9423 28.3629i −1.03434 0.979779i
\(839\) −19.2563 + 28.4009i −0.664801 + 0.980508i 0.334473 + 0.942405i \(0.391442\pi\)
−0.999274 + 0.0381028i \(0.987869\pi\)
\(840\) 0 0
\(841\) 2.27348 + 8.18833i 0.0783959 + 0.282356i
\(842\) 90.8658 + 54.6721i 3.13144 + 1.88413i
\(843\) 0 0
\(844\) −136.933 46.1382i −4.71344 1.58814i
\(845\) −5.33994 2.47052i −0.183700 0.0849885i
\(846\) 0 0
\(847\) 3.94639 0.868666i 0.135600 0.0298477i
\(848\) 51.3122 128.784i 1.76207 4.42246i
\(849\) 0 0
\(850\) 62.1029 + 6.75409i 2.13011 + 0.231663i
\(851\) −1.68418 + 31.0628i −0.0577328 + 1.06482i
\(852\) 0 0
\(853\) 26.8140 2.91620i 0.918094 0.0998488i 0.363145 0.931733i \(-0.381703\pi\)
0.554950 + 0.831884i \(0.312738\pi\)
\(854\) 1.58591 0.733722i 0.0542689 0.0251075i
\(855\) 0 0
\(856\) 116.569 + 88.6131i 3.98423 + 3.02873i
\(857\) −52.0485 + 24.0802i −1.77794 + 0.822564i −0.804391 + 0.594101i \(0.797508\pi\)
−0.973552 + 0.228464i \(0.926630\pi\)
\(858\) 0 0
\(859\) 3.06830 + 56.5914i 0.104689 + 1.93088i 0.307294 + 0.951615i \(0.400576\pi\)
−0.202605 + 0.979260i \(0.564941\pi\)
\(860\) −0.556264 + 10.2597i −0.0189684 + 0.349852i
\(861\) 0 0
\(862\) 57.2286 19.2826i 1.94921 0.656767i
\(863\) 8.05576 20.2184i 0.274221 0.688243i −0.725779 0.687928i \(-0.758520\pi\)
1.00000 0.000315051i \(-0.000100284\pi\)
\(864\) 0 0
\(865\) 2.93369 + 5.53352i 0.0997483 + 0.188145i
\(866\) −35.8352 16.5791i −1.21773 0.563381i
\(867\) 0 0
\(868\) −0.869131 + 1.02322i −0.0295002 + 0.0347304i
\(869\) −4.09859 2.46604i −0.139035 0.0836546i
\(870\) 0 0
\(871\) 1.17295 + 0.258185i 0.0397438 + 0.00874826i
\(872\) 49.2103 72.5798i 1.66647 2.45786i
\(873\) 0 0
\(874\) 38.8833 23.3953i 1.31525 0.791358i
\(875\) −0.403219 + 2.45953i −0.0136313 + 0.0831472i
\(876\) 0 0
\(877\) 10.4297 + 26.1765i 0.352184 + 0.883916i 0.993203 + 0.116391i \(0.0371327\pi\)
−0.641019 + 0.767525i \(0.721488\pi\)
\(878\) −33.4931 39.4312i −1.13034 1.33074i
\(879\) 0 0
\(880\) −10.5474 + 9.99104i −0.355553 + 0.336798i
\(881\) 8.49212 30.5858i 0.286107 1.03046i −0.671173 0.741301i \(-0.734209\pi\)
0.957280 0.289163i \(-0.0933769\pi\)
\(882\) 0 0
\(883\) −13.8071 + 10.4959i −0.464647 + 0.353215i −0.811155 0.584832i \(-0.801161\pi\)
0.346508 + 0.938047i \(0.387367\pi\)
\(884\) 6.92796 0.233012
\(885\) 0 0
\(886\) −49.4043 −1.65977
\(887\) −35.8341 + 27.2404i −1.20319 + 0.914642i −0.997945 0.0640687i \(-0.979592\pi\)
−0.205245 + 0.978711i \(0.565799\pi\)
\(888\) 0 0
\(889\) −2.63235 + 9.48086i −0.0882861 + 0.317978i
\(890\) −12.2852 + 11.6371i −0.411800 + 0.390078i
\(891\) 0 0
\(892\) 76.6495 + 90.2388i 2.56642 + 3.02142i
\(893\) −3.33360 8.36670i −0.111555 0.279981i
\(894\) 0 0
\(895\) −0.348473 + 2.12559i −0.0116482 + 0.0710506i
\(896\) 24.8585 14.9569i 0.830465 0.499674i
\(897\) 0 0
\(898\) 28.8932 42.6143i 0.964179 1.42206i
\(899\) 2.54962 + 0.561214i 0.0850347 + 0.0187176i
\(900\) 0 0
\(901\) 34.1097 + 20.5231i 1.13636 + 0.683724i
\(902\) 11.5725 13.6242i 0.385322 0.453636i
\(903\) 0 0
\(904\) 91.2879 + 42.2343i 3.03619 + 1.40469i
\(905\) −4.07436 7.68507i −0.135436 0.255460i
\(906\) 0 0
\(907\) 10.0941 25.3343i 0.335169 0.841212i −0.660720 0.750633i \(-0.729749\pi\)
0.995889 0.0905793i \(-0.0288718\pi\)
\(908\) 3.72125 1.25383i 0.123494 0.0416099i
\(909\) 0 0
\(910\) −0.00992609 + 0.183076i −0.000329047 + 0.00606891i
\(911\) −2.18840 40.3627i −0.0725050 1.33728i −0.777867 0.628429i \(-0.783698\pi\)
0.705362 0.708847i \(-0.250784\pi\)
\(912\) 0 0
\(913\) −14.6920 + 6.79726i −0.486236 + 0.224957i
\(914\) 76.6870 + 58.2959i 2.53658 + 1.92826i
\(915\) 0 0
\(916\) 45.8139 21.1958i 1.51373 0.700327i
\(917\) −0.102783 + 0.0111783i −0.00339418 + 0.000369139i
\(918\) 0 0
\(919\) 1.90808 35.1924i 0.0629417 1.16089i −0.781026 0.624498i \(-0.785304\pi\)
0.843968 0.536393i \(-0.180214\pi\)
\(920\) 16.0207 + 1.74236i 0.528187 + 0.0574437i
\(921\) 0 0
\(922\) 34.4083 86.3584i 1.13318 2.84406i
\(923\) −0.643614 + 0.141670i −0.0211848 + 0.00466313i
\(924\) 0 0
\(925\) −38.3016 17.7202i −1.25935 0.582637i
\(926\) −58.3698 19.6671i −1.91815 0.646301i
\(927\) 0 0
\(928\) −132.949 79.9928i −4.36427 2.62589i
\(929\) 2.83215 + 10.2005i 0.0929199 + 0.334667i 0.995369 0.0961297i \(-0.0306463\pi\)
−0.902449 + 0.430797i \(0.858233\pi\)
\(930\) 0 0
\(931\) 17.4502 25.7372i 0.571908 0.843501i
\(932\) 46.5341 + 44.0794i 1.52428 + 1.44387i
\(933\) 0 0
\(934\) 6.95722 42.4372i 0.227647 1.38859i
\(935\) −2.34116 3.45296i −0.0765642 0.112924i
\(936\) 0 0
\(937\) −38.5366 45.3688i −1.25894 1.48213i −0.807542 0.589810i \(-0.799203\pi\)
−0.451394 0.892325i \(-0.649073\pi\)
\(938\) 1.15110 + 7.02137i 0.0375846 + 0.229256i
\(939\) 0 0
\(940\) 1.32716 4.77998i 0.0432870 0.155906i
\(941\) 24.0840 45.4272i 0.785116 1.48089i −0.0894570 0.995991i \(-0.528513\pi\)
0.874573 0.484895i \(-0.161142\pi\)
\(942\) 0 0
\(943\) −11.7663 −0.383164
\(944\) 67.4992 + 106.654i 2.19691 + 3.47128i
\(945\) 0 0
\(946\) −17.1416 + 13.0307i −0.557320 + 0.423664i
\(947\) −7.34190 + 13.8483i −0.238580 + 0.450009i −0.973671 0.227960i \(-0.926795\pi\)
0.735091 + 0.677969i \(0.237139\pi\)
\(948\) 0 0
\(949\) 2.04598 1.93806i 0.0664154 0.0629120i
\(950\) 9.95958 + 60.7508i 0.323132 + 1.97102i
\(951\) 0 0
\(952\) 9.79434 + 24.5819i 0.317436 + 0.796705i
\(953\) −9.23932 13.6270i −0.299291 0.441421i 0.648074 0.761578i \(-0.275575\pi\)
−0.947365 + 0.320156i \(0.896265\pi\)
\(954\) 0 0
\(955\) 7.23381 4.35244i 0.234081 0.140842i
\(956\) −27.6971 26.2361i −0.895790 0.848537i
\(957\) 0 0
\(958\) 26.0656 + 5.73748i 0.842142 + 0.185370i
\(959\) 1.82914 + 6.58796i 0.0590659 + 0.212736i
\(960\) 0 0
\(961\) −19.9513 + 23.4885i −0.643591 + 0.757693i
\(962\) −6.01105 2.02536i −0.193804 0.0653002i
\(963\) 0 0
\(964\) 31.7167 + 59.8241i 1.02153 + 1.92681i
\(965\) −1.38040 + 0.303849i −0.0444367 + 0.00978126i
\(966\) 0 0
\(967\) −34.0867 + 11.4851i −1.09615 + 0.369338i −0.808559 0.588415i \(-0.799752\pi\)
−0.287595 + 0.957752i \(0.592856\pi\)
\(968\) 71.9961 + 7.83005i 2.31404 + 0.251667i
\(969\) 0 0
\(970\) 0.174412 + 3.21683i 0.00560002 + 0.103286i
\(971\) −8.77295 + 0.954116i −0.281537 + 0.0306190i −0.247798 0.968812i \(-0.579707\pi\)
−0.0337391 + 0.999431i \(0.510742\pi\)
\(972\) 0 0
\(973\) 8.70085 + 6.61422i 0.278937 + 0.212042i
\(974\) 34.1297 + 25.9447i 1.09359 + 0.831323i
\(975\) 0 0
\(976\) 18.4751 2.00929i 0.591374 0.0643158i
\(977\) −1.18540 21.8634i −0.0379242 0.699471i −0.954245 0.299026i \(-0.903338\pi\)
0.916321 0.400445i \(-0.131145\pi\)
\(978\) 0 0
\(979\) −26.0126 2.82904i −0.831365 0.0904164i
\(980\) 16.2310 5.46886i 0.518481 0.174696i
\(981\) 0 0
\(982\) −56.2274 + 12.3766i −1.79429 + 0.394952i
\(983\) −26.6755 50.3153i −0.850816 1.60481i −0.795192 0.606358i \(-0.792630\pi\)
−0.0556239 0.998452i \(-0.517715\pi\)
\(984\) 0 0
\(985\) 2.77559 + 0.935204i 0.0884375 + 0.0297981i
\(986\) 51.6685 60.8289i 1.64546 1.93719i
\(987\) 0 0
\(988\) 1.82651 + 6.57848i 0.0581089 + 0.209289i
\(989\) 13.8417 + 3.04679i 0.440140 + 0.0968822i
\(990\) 0 0
\(991\) 19.7502 + 18.7084i 0.627387 + 0.594293i 0.933883 0.357579i \(-0.116398\pi\)
−0.306496 + 0.951872i \(0.599156\pi\)
\(992\) −9.25607 + 5.56919i −0.293880 + 0.176822i
\(993\) 0 0
\(994\) −2.19097 3.23144i −0.0694934 0.102495i
\(995\) 2.14379 + 5.38051i 0.0679627 + 0.170574i
\(996\) 0 0
\(997\) 0.497262 + 3.03317i 0.0157485 + 0.0960614i 0.993531 0.113560i \(-0.0362253\pi\)
−0.977783 + 0.209621i \(0.932777\pi\)
\(998\) −8.61909 + 8.16444i −0.272833 + 0.258441i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 531.2.i.a.262.4 112
3.2 odd 2 59.2.c.a.26.1 yes 112
12.11 even 2 944.2.m.c.321.1 112
59.25 even 29 inner 531.2.i.a.379.4 112
177.5 odd 58 3481.2.a.p.1.1 56
177.113 even 58 3481.2.a.q.1.56 56
177.143 odd 58 59.2.c.a.25.1 112
708.143 even 58 944.2.m.c.497.1 112
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
59.2.c.a.25.1 112 177.143 odd 58
59.2.c.a.26.1 yes 112 3.2 odd 2
531.2.i.a.262.4 112 1.1 even 1 trivial
531.2.i.a.379.4 112 59.25 even 29 inner
944.2.m.c.321.1 112 12.11 even 2
944.2.m.c.497.1 112 708.143 even 58
3481.2.a.p.1.1 56 177.5 odd 58
3481.2.a.q.1.56 56 177.113 even 58