Properties

Label 5292.2.w.b.521.7
Level $5292$
Weight $2$
Character 5292.521
Analytic conductor $42.257$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5292,2,Mod(521,5292)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5292, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5292.521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5292.w (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,6,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2568327497\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 5 x^{14} - 17 x^{13} + 22 x^{12} - 31 x^{11} + 62 x^{10} - 52 x^{9} + 52 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3^{6} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 521.7
Root \(-0.811340 + 1.53027i\) of defining polynomial
Character \(\chi\) \(=\) 5292.521
Dual form 5292.2.w.b.1097.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.37166 - 2.37578i) q^{5} +(0.362306 - 0.209178i) q^{11} +(-1.32512 + 0.765056i) q^{13} +(-1.95291 + 3.38253i) q^{17} +(5.11994 - 2.95600i) q^{19} +(-7.72884 - 4.46225i) q^{23} +(-1.26290 - 2.18740i) q^{25} +(-6.00378 - 3.46629i) q^{29} +3.52907i q^{31} +(-4.54861 - 7.87842i) q^{37} +(1.06236 + 1.84006i) q^{41} +(-5.77846 + 10.0086i) q^{43} -1.77075 q^{47} +(3.39526 + 1.96025i) q^{53} -1.14768i q^{55} -4.05456 q^{59} -1.86437i q^{61} +4.19758i q^{65} -12.7688 q^{67} -8.51021i q^{71} +(-1.65059 - 0.952971i) q^{73} -0.867266 q^{79} +(3.45880 - 5.99082i) q^{83} +(5.35744 + 9.27936i) q^{85} +(-4.88864 - 8.46738i) q^{89} -16.2185i q^{95} +(-0.200411 - 0.115707i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 6 q^{11} + 3 q^{13} + 9 q^{17} - 21 q^{23} - 8 q^{25} - 6 q^{29} + q^{37} - 6 q^{41} - 2 q^{43} - 36 q^{47} - 30 q^{59} + 14 q^{67} + 2 q^{79} + 6 q^{85} + 21 q^{89} + 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(2647\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.37166 2.37578i 0.613425 1.06248i −0.377234 0.926118i \(-0.623125\pi\)
0.990659 0.136365i \(-0.0435419\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.362306 0.209178i 0.109240 0.0630695i −0.444385 0.895836i \(-0.646578\pi\)
0.553624 + 0.832767i \(0.313244\pi\)
\(12\) 0 0
\(13\) −1.32512 + 0.765056i −0.367521 + 0.212188i −0.672375 0.740211i \(-0.734726\pi\)
0.304854 + 0.952399i \(0.401392\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.95291 + 3.38253i −0.473649 + 0.820385i −0.999545 0.0301645i \(-0.990397\pi\)
0.525896 + 0.850549i \(0.323730\pi\)
\(18\) 0 0
\(19\) 5.11994 2.95600i 1.17459 0.678152i 0.219836 0.975537i \(-0.429448\pi\)
0.954758 + 0.297385i \(0.0961144\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.72884 4.46225i −1.61157 0.930443i −0.989006 0.147878i \(-0.952756\pi\)
−0.622569 0.782565i \(-0.713911\pi\)
\(24\) 0 0
\(25\) −1.26290 2.18740i −0.252579 0.437480i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.00378 3.46629i −1.11487 0.643673i −0.174787 0.984606i \(-0.555924\pi\)
−0.940088 + 0.340933i \(0.889257\pi\)
\(30\) 0 0
\(31\) 3.52907i 0.633839i 0.948452 + 0.316920i \(0.102649\pi\)
−0.948452 + 0.316920i \(0.897351\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.54861 7.87842i −0.747787 1.29520i −0.948881 0.315633i \(-0.897783\pi\)
0.201095 0.979572i \(-0.435550\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.06236 + 1.84006i 0.165913 + 0.287370i 0.936979 0.349385i \(-0.113610\pi\)
−0.771066 + 0.636755i \(0.780276\pi\)
\(42\) 0 0
\(43\) −5.77846 + 10.0086i −0.881208 + 1.52630i −0.0312079 + 0.999513i \(0.509935\pi\)
−0.850000 + 0.526783i \(0.823398\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.77075 −0.258290 −0.129145 0.991626i \(-0.541223\pi\)
−0.129145 + 0.991626i \(0.541223\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.39526 + 1.96025i 0.466374 + 0.269261i 0.714721 0.699410i \(-0.246554\pi\)
−0.248346 + 0.968671i \(0.579887\pi\)
\(54\) 0 0
\(55\) 1.14768i 0.154753i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.05456 −0.527859 −0.263929 0.964542i \(-0.585019\pi\)
−0.263929 + 0.964542i \(0.585019\pi\)
\(60\) 0 0
\(61\) 1.86437i 0.238708i −0.992852 0.119354i \(-0.961918\pi\)
0.992852 0.119354i \(-0.0380823\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.19758i 0.520646i
\(66\) 0 0
\(67\) −12.7688 −1.55996 −0.779979 0.625805i \(-0.784770\pi\)
−0.779979 + 0.625805i \(0.784770\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.51021i 1.00998i −0.863126 0.504988i \(-0.831497\pi\)
0.863126 0.504988i \(-0.168503\pi\)
\(72\) 0 0
\(73\) −1.65059 0.952971i −0.193187 0.111537i 0.400286 0.916390i \(-0.368911\pi\)
−0.593474 + 0.804853i \(0.702244\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −0.867266 −0.0975750 −0.0487875 0.998809i \(-0.515536\pi\)
−0.0487875 + 0.998809i \(0.515536\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.45880 5.99082i 0.379653 0.657578i −0.611359 0.791354i \(-0.709377\pi\)
0.991012 + 0.133775i \(0.0427100\pi\)
\(84\) 0 0
\(85\) 5.35744 + 9.27936i 0.581096 + 1.00649i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.88864 8.46738i −0.518195 0.897540i −0.999777 0.0211389i \(-0.993271\pi\)
0.481581 0.876401i \(-0.340063\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 16.2185i 1.66398i
\(96\) 0 0
\(97\) −0.200411 0.115707i −0.0203486 0.0117483i 0.489791 0.871840i \(-0.337073\pi\)
−0.510140 + 0.860091i \(0.670406\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −7.14031 12.3674i −0.710487 1.23060i −0.964674 0.263445i \(-0.915141\pi\)
0.254187 0.967155i \(-0.418192\pi\)
\(102\) 0 0
\(103\) 9.30617 + 5.37292i 0.916964 + 0.529410i 0.882665 0.470002i \(-0.155747\pi\)
0.0342991 + 0.999412i \(0.489080\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.50534 3.17851i 0.532221 0.307278i −0.209699 0.977766i \(-0.567249\pi\)
0.741920 + 0.670488i \(0.233915\pi\)
\(108\) 0 0
\(109\) 2.58036 4.46932i 0.247154 0.428083i −0.715581 0.698530i \(-0.753838\pi\)
0.962735 + 0.270447i \(0.0871714\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −9.19186 + 5.30692i −0.864697 + 0.499233i −0.865582 0.500766i \(-0.833052\pi\)
0.000885276 1.00000i \(0.499718\pi\)
\(114\) 0 0
\(115\) −21.2027 + 12.2414i −1.97716 + 1.14151i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −5.41249 + 9.37471i −0.492044 + 0.852246i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.78753 0.607096
\(126\) 0 0
\(127\) 10.2909 0.913169 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 9.83048 17.0269i 0.858893 1.48765i −0.0140928 0.999901i \(-0.504486\pi\)
0.872986 0.487746i \(-0.162181\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.66411 2.69282i 0.398481 0.230063i −0.287347 0.957827i \(-0.592773\pi\)
0.685829 + 0.727763i \(0.259440\pi\)
\(138\) 0 0
\(139\) −14.7839 + 8.53549i −1.25395 + 0.723971i −0.971892 0.235425i \(-0.924352\pi\)
−0.282062 + 0.959396i \(0.591018\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.320065 + 0.554369i −0.0267652 + 0.0463587i
\(144\) 0 0
\(145\) −16.4703 + 9.50912i −1.36778 + 0.789690i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −9.31162 5.37607i −0.762838 0.440425i 0.0674758 0.997721i \(-0.478505\pi\)
−0.830314 + 0.557296i \(0.811839\pi\)
\(150\) 0 0
\(151\) −3.78223 6.55102i −0.307794 0.533115i 0.670086 0.742284i \(-0.266257\pi\)
−0.977879 + 0.209169i \(0.932924\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 8.38430 + 4.84068i 0.673443 + 0.388812i
\(156\) 0 0
\(157\) 12.2764i 0.979763i 0.871789 + 0.489882i \(0.162960\pi\)
−0.871789 + 0.489882i \(0.837040\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 5.91745 + 10.2493i 0.463490 + 0.802789i 0.999132 0.0416566i \(-0.0132635\pi\)
−0.535642 + 0.844445i \(0.679930\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.78854 + 11.7581i 0.525313 + 0.909869i 0.999565 + 0.0294798i \(0.00938508\pi\)
−0.474252 + 0.880389i \(0.657282\pi\)
\(168\) 0 0
\(169\) −5.32938 + 9.23075i −0.409952 + 0.710058i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −16.6217 −1.26372 −0.631862 0.775081i \(-0.717709\pi\)
−0.631862 + 0.775081i \(0.717709\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −14.8080 8.54942i −1.10680 0.639014i −0.168805 0.985650i \(-0.553991\pi\)
−0.938000 + 0.346636i \(0.887324\pi\)
\(180\) 0 0
\(181\) 18.2171i 1.35407i −0.735952 0.677034i \(-0.763265\pi\)
0.735952 0.677034i \(-0.236735\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −24.9566 −1.83484
\(186\) 0 0
\(187\) 1.63402i 0.119491i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 20.9994i 1.51946i 0.650239 + 0.759730i \(0.274669\pi\)
−0.650239 + 0.759730i \(0.725331\pi\)
\(192\) 0 0
\(193\) −6.97483 −0.502059 −0.251030 0.967979i \(-0.580769\pi\)
−0.251030 + 0.967979i \(0.580769\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 16.0756i 1.14534i 0.819786 + 0.572670i \(0.194092\pi\)
−0.819786 + 0.572670i \(0.805908\pi\)
\(198\) 0 0
\(199\) 5.44956 + 3.14630i 0.386309 + 0.223036i 0.680560 0.732693i \(-0.261737\pi\)
−0.294251 + 0.955728i \(0.595070\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 5.82879 0.407100
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.23666 2.14195i 0.0855414 0.148162i
\(210\) 0 0
\(211\) −1.29814 2.24844i −0.0893674 0.154789i 0.817876 0.575394i \(-0.195151\pi\)
−0.907244 + 0.420605i \(0.861818\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 15.8522 + 27.4568i 1.08111 + 1.87254i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 5.97633i 0.402011i
\(222\) 0 0
\(223\) 20.7215 + 11.9636i 1.38762 + 0.801141i 0.993046 0.117725i \(-0.0375600\pi\)
0.394571 + 0.918866i \(0.370893\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1.86609 3.23216i −0.123857 0.214526i 0.797429 0.603413i \(-0.206193\pi\)
−0.921285 + 0.388887i \(0.872860\pi\)
\(228\) 0 0
\(229\) −18.2455 10.5341i −1.20570 0.696111i −0.243882 0.969805i \(-0.578421\pi\)
−0.961817 + 0.273694i \(0.911754\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.0542 6.38215i 0.724186 0.418109i −0.0921057 0.995749i \(-0.529360\pi\)
0.816291 + 0.577640i \(0.196026\pi\)
\(234\) 0 0
\(235\) −2.42886 + 4.20691i −0.158441 + 0.274429i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −11.0521 + 6.38091i −0.714899 + 0.412747i −0.812872 0.582442i \(-0.802097\pi\)
0.0979736 + 0.995189i \(0.468764\pi\)
\(240\) 0 0
\(241\) 2.63438 1.52096i 0.169695 0.0979737i −0.412747 0.910846i \(-0.635431\pi\)
0.582442 + 0.812872i \(0.302097\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −4.52301 + 7.83408i −0.287792 + 0.498470i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −6.32067 −0.398957 −0.199478 0.979902i \(-0.563925\pi\)
−0.199478 + 0.979902i \(0.563925\pi\)
\(252\) 0 0
\(253\) −3.73361 −0.234730
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −12.2538 + 21.2242i −0.764372 + 1.32393i 0.176206 + 0.984353i \(0.443617\pi\)
−0.940578 + 0.339577i \(0.889716\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 21.1163 12.1915i 1.30208 0.751759i 0.321323 0.946970i \(-0.395872\pi\)
0.980761 + 0.195211i \(0.0625390\pi\)
\(264\) 0 0
\(265\) 9.31427 5.37760i 0.572171 0.330343i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4.94525 8.56542i 0.301517 0.522243i −0.674963 0.737852i \(-0.735840\pi\)
0.976480 + 0.215609i \(0.0691737\pi\)
\(270\) 0 0
\(271\) 5.10505 2.94740i 0.310110 0.179042i −0.336866 0.941553i \(-0.609367\pi\)
0.646976 + 0.762511i \(0.276034\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.915111 0.528340i −0.0551833 0.0318601i
\(276\) 0 0
\(277\) −11.6469 20.1731i −0.699796 1.21208i −0.968537 0.248870i \(-0.919941\pi\)
0.268741 0.963213i \(-0.413392\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −21.7962 12.5840i −1.30025 0.750700i −0.319803 0.947484i \(-0.603617\pi\)
−0.980447 + 0.196784i \(0.936950\pi\)
\(282\) 0 0
\(283\) 9.96439i 0.592322i 0.955138 + 0.296161i \(0.0957064\pi\)
−0.955138 + 0.296161i \(0.904294\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0.872317 + 1.51090i 0.0513128 + 0.0888764i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −6.79065 11.7618i −0.396714 0.687129i 0.596604 0.802536i \(-0.296516\pi\)
−0.993318 + 0.115406i \(0.963183\pi\)
\(294\) 0 0
\(295\) −5.56147 + 9.63275i −0.323801 + 0.560841i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 13.6555 0.789717
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −4.42933 2.55728i −0.253623 0.146429i
\(306\) 0 0
\(307\) 16.9849i 0.969381i 0.874686 + 0.484691i \(0.161068\pi\)
−0.874686 + 0.484691i \(0.838932\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0.00297881 0.000168913 8.44563e−5 1.00000i \(-0.499973\pi\)
8.44563e−5 1.00000i \(0.499973\pi\)
\(312\) 0 0
\(313\) 12.2576i 0.692838i −0.938080 0.346419i \(-0.887398\pi\)
0.938080 0.346419i \(-0.112602\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 23.0950i 1.29714i −0.761154 0.648571i \(-0.775367\pi\)
0.761154 0.648571i \(-0.224633\pi\)
\(318\) 0 0
\(319\) −2.90028 −0.162384
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 23.0911i 1.28482i
\(324\) 0 0
\(325\) 3.34697 + 1.93237i 0.185656 + 0.107189i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −3.46213 −0.190296 −0.0951479 0.995463i \(-0.530332\pi\)
−0.0951479 + 0.995463i \(0.530332\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −17.5145 + 30.3359i −0.956917 + 1.65743i
\(336\) 0 0
\(337\) −9.13018 15.8139i −0.497352 0.861440i 0.502643 0.864494i \(-0.332361\pi\)
−0.999995 + 0.00305455i \(0.999028\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.738202 + 1.27860i 0.0399759 + 0.0692403i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5.33917i 0.286622i −0.989678 0.143311i \(-0.954225\pi\)
0.989678 0.143311i \(-0.0457749\pi\)
\(348\) 0 0
\(349\) 0.0136817 + 0.00789914i 0.000732365 + 0.000422831i 0.500366 0.865814i \(-0.333199\pi\)
−0.499634 + 0.866237i \(0.666532\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 17.1543 + 29.7121i 0.913029 + 1.58141i 0.809761 + 0.586760i \(0.199597\pi\)
0.103268 + 0.994654i \(0.467070\pi\)
\(354\) 0 0
\(355\) −20.2184 11.6731i −1.07308 0.619544i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 5.42754 3.13359i 0.286454 0.165385i −0.349887 0.936792i \(-0.613780\pi\)
0.636342 + 0.771407i \(0.280447\pi\)
\(360\) 0 0
\(361\) 7.97583 13.8145i 0.419781 0.727081i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −4.52811 + 2.61430i −0.237012 + 0.136839i
\(366\) 0 0
\(367\) −16.4888 + 9.51984i −0.860711 + 0.496931i −0.864250 0.503062i \(-0.832207\pi\)
0.00353959 + 0.999994i \(0.498873\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −5.41901 + 9.38600i −0.280586 + 0.485989i −0.971529 0.236920i \(-0.923862\pi\)
0.690943 + 0.722909i \(0.257195\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 10.6076 0.546320
\(378\) 0 0
\(379\) 0.700312 0.0359726 0.0179863 0.999838i \(-0.494274\pi\)
0.0179863 + 0.999838i \(0.494274\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 19.0235 32.9497i 0.972056 1.68365i 0.282729 0.959200i \(-0.408760\pi\)
0.689327 0.724451i \(-0.257906\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −16.6958 + 9.63934i −0.846512 + 0.488734i −0.859473 0.511182i \(-0.829208\pi\)
0.0129603 + 0.999916i \(0.495875\pi\)
\(390\) 0 0
\(391\) 30.1874 17.4287i 1.52664 0.881407i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.18959 + 2.06044i −0.0598549 + 0.103672i
\(396\) 0 0
\(397\) 17.3610 10.0234i 0.871325 0.503059i 0.00353639 0.999994i \(-0.498874\pi\)
0.867788 + 0.496934i \(0.165541\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −26.4232 15.2554i −1.31951 0.761820i −0.335861 0.941912i \(-0.609027\pi\)
−0.983650 + 0.180092i \(0.942360\pi\)
\(402\) 0 0
\(403\) −2.69993 4.67642i −0.134493 0.232949i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.29598 1.90294i −0.163376 0.0943250i
\(408\) 0 0
\(409\) 0.173933i 0.00860045i 0.999991 + 0.00430023i \(0.00136881\pi\)
−0.999991 + 0.00430023i \(0.998631\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −9.48860 16.4347i −0.465777 0.806749i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −14.0690 24.3682i −0.687316 1.19047i −0.972703 0.232054i \(-0.925455\pi\)
0.285387 0.958412i \(-0.407878\pi\)
\(420\) 0 0
\(421\) −1.56130 + 2.70424i −0.0760929 + 0.131797i −0.901561 0.432652i \(-0.857578\pi\)
0.825468 + 0.564449i \(0.190911\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 9.86527 0.478536
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −8.58876 4.95872i −0.413706 0.238853i 0.278675 0.960385i \(-0.410105\pi\)
−0.692381 + 0.721532i \(0.743438\pi\)
\(432\) 0 0
\(433\) 17.1274i 0.823092i 0.911389 + 0.411546i \(0.135011\pi\)
−0.911389 + 0.411546i \(0.864989\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −52.7616 −2.52393
\(438\) 0 0
\(439\) 21.4537i 1.02393i −0.859006 0.511965i \(-0.828918\pi\)
0.859006 0.511965i \(-0.171082\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6.74738i 0.320578i 0.987070 + 0.160289i \(0.0512425\pi\)
−0.987070 + 0.160289i \(0.948757\pi\)
\(444\) 0 0
\(445\) −26.8222 −1.27149
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 5.81624i 0.274485i 0.990537 + 0.137243i \(0.0438240\pi\)
−0.990537 + 0.137243i \(0.956176\pi\)
\(450\) 0 0
\(451\) 0.769801 + 0.444445i 0.0362485 + 0.0209281i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −33.3898 −1.56191 −0.780954 0.624588i \(-0.785267\pi\)
−0.780954 + 0.624588i \(0.785267\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −18.5154 + 32.0696i −0.862347 + 1.49363i 0.00730959 + 0.999973i \(0.497673\pi\)
−0.869657 + 0.493656i \(0.835660\pi\)
\(462\) 0 0
\(463\) 10.5618 + 18.2935i 0.490848 + 0.850173i 0.999944 0.0105362i \(-0.00335383\pi\)
−0.509097 + 0.860709i \(0.670020\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 9.30470 + 16.1162i 0.430570 + 0.745770i 0.996922 0.0783937i \(-0.0249791\pi\)
−0.566352 + 0.824163i \(0.691646\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.83490i 0.222309i
\(474\) 0 0
\(475\) −12.9319 7.46624i −0.593356 0.342574i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 7.16703 + 12.4137i 0.327470 + 0.567194i 0.982009 0.188834i \(-0.0604707\pi\)
−0.654539 + 0.756028i \(0.727137\pi\)
\(480\) 0 0
\(481\) 12.0549 + 6.95988i 0.549655 + 0.317343i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.549791 + 0.317422i −0.0249647 + 0.0144134i
\(486\) 0 0
\(487\) −5.64829 + 9.78313i −0.255949 + 0.443316i −0.965153 0.261687i \(-0.915721\pi\)
0.709204 + 0.705003i \(0.249054\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 8.84097 5.10434i 0.398988 0.230356i −0.287059 0.957913i \(-0.592678\pi\)
0.686047 + 0.727557i \(0.259344\pi\)
\(492\) 0 0
\(493\) 23.4496 13.5387i 1.05612 0.609751i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 9.56672 16.5701i 0.428265 0.741777i −0.568454 0.822715i \(-0.692458\pi\)
0.996719 + 0.0809379i \(0.0257915\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0.268917 0.0119904 0.00599520 0.999982i \(-0.498092\pi\)
0.00599520 + 0.999982i \(0.498092\pi\)
\(504\) 0 0
\(505\) −39.1763 −1.74332
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 10.9439 18.9553i 0.485079 0.840181i −0.514774 0.857326i \(-0.672124\pi\)
0.999853 + 0.0171449i \(0.00545767\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 25.5298 14.7396i 1.12498 0.649506i
\(516\) 0 0
\(517\) −0.641553 + 0.370401i −0.0282155 + 0.0162902i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0.856074 1.48276i 0.0375053 0.0649610i −0.846663 0.532129i \(-0.821392\pi\)
0.884169 + 0.467168i \(0.154726\pi\)
\(522\) 0 0
\(523\) −7.16320 + 4.13568i −0.313225 + 0.180841i −0.648369 0.761326i \(-0.724548\pi\)
0.335144 + 0.942167i \(0.391215\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −11.9372 6.89193i −0.519992 0.300217i
\(528\) 0 0
\(529\) 28.3233 + 49.0574i 1.23145 + 2.13293i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −2.81550 1.62553i −0.121953 0.0704096i
\(534\) 0 0
\(535\) 17.4393i 0.753967i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −10.1997 17.6664i −0.438518 0.759536i 0.559057 0.829129i \(-0.311163\pi\)
−0.997575 + 0.0695932i \(0.977830\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −7.07875 12.2608i −0.303220 0.525193i
\(546\) 0 0
\(547\) 18.9630 32.8449i 0.810801 1.40435i −0.101503 0.994835i \(-0.532365\pi\)
0.912304 0.409513i \(-0.134301\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −40.9853 −1.74603
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −14.5919 8.42463i −0.618278 0.356963i 0.157920 0.987452i \(-0.449521\pi\)
−0.776198 + 0.630489i \(0.782854\pi\)
\(558\) 0 0
\(559\) 17.6834i 0.747928i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −16.5607 −0.697950 −0.348975 0.937132i \(-0.613470\pi\)
−0.348975 + 0.937132i \(0.613470\pi\)
\(564\) 0 0
\(565\) 29.1171i 1.22497i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6.34919i 0.266172i 0.991104 + 0.133086i \(0.0424886\pi\)
−0.991104 + 0.133086i \(0.957511\pi\)
\(570\) 0 0
\(571\) 45.7406 1.91418 0.957092 0.289785i \(-0.0935838\pi\)
0.957092 + 0.289785i \(0.0935838\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 22.5414i 0.940043i
\(576\) 0 0
\(577\) −15.3719 8.87497i −0.639940 0.369470i 0.144651 0.989483i \(-0.453794\pi\)
−0.784592 + 0.620013i \(0.787127\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.64016 0.0679287
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4.41148 7.64091i 0.182081 0.315374i −0.760508 0.649329i \(-0.775050\pi\)
0.942589 + 0.333955i \(0.108383\pi\)
\(588\) 0 0
\(589\) 10.4319 + 18.0686i 0.429839 + 0.744503i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 4.24849 + 7.35860i 0.174465 + 0.302181i 0.939976 0.341241i \(-0.110847\pi\)
−0.765511 + 0.643422i \(0.777514\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3.70842i 0.151522i −0.997126 0.0757609i \(-0.975861\pi\)
0.997126 0.0757609i \(-0.0241386\pi\)
\(600\) 0 0
\(601\) −6.14043 3.54518i −0.250473 0.144611i 0.369508 0.929228i \(-0.379526\pi\)
−0.619981 + 0.784617i \(0.712860\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 14.8482 + 25.7178i 0.603664 + 1.04558i
\(606\) 0 0
\(607\) 29.4396 + 16.9970i 1.19492 + 0.689886i 0.959418 0.281988i \(-0.0909939\pi\)
0.235500 + 0.971874i \(0.424327\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.34644 1.35472i 0.0949270 0.0548061i
\(612\) 0 0
\(613\) −11.6761 + 20.2237i −0.471595 + 0.816827i −0.999472 0.0324944i \(-0.989655\pi\)
0.527877 + 0.849321i \(0.322988\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 39.0817 22.5638i 1.57337 0.908386i 0.577618 0.816307i \(-0.303982\pi\)
0.995752 0.0920787i \(-0.0293511\pi\)
\(618\) 0 0
\(619\) 7.97914 4.60676i 0.320709 0.185161i −0.331000 0.943631i \(-0.607386\pi\)
0.651708 + 0.758470i \(0.274053\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 15.6247 27.0627i 0.624987 1.08251i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 35.5320 1.41675
\(630\) 0 0
\(631\) 17.6136 0.701188 0.350594 0.936528i \(-0.385980\pi\)
0.350594 + 0.936528i \(0.385980\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 14.1156 24.4489i 0.560160 0.970226i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −16.5759 + 9.57009i −0.654708 + 0.377996i −0.790258 0.612775i \(-0.790053\pi\)
0.135550 + 0.990771i \(0.456720\pi\)
\(642\) 0 0
\(643\) 2.01129 1.16122i 0.0793177 0.0457941i −0.459817 0.888014i \(-0.652085\pi\)
0.539134 + 0.842220i \(0.318752\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.9310 22.3971i 0.508370 0.880522i −0.491583 0.870831i \(-0.663582\pi\)
0.999953 0.00969167i \(-0.00308500\pi\)
\(648\) 0 0
\(649\) −1.46899 + 0.848123i −0.0576630 + 0.0332918i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 20.1140 + 11.6128i 0.787123 + 0.454446i 0.838949 0.544211i \(-0.183171\pi\)
−0.0518258 + 0.998656i \(0.516504\pi\)
\(654\) 0 0
\(655\) −26.9681 46.7102i −1.05373 1.82512i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −13.7002 7.90981i −0.533684 0.308122i 0.208832 0.977952i \(-0.433034\pi\)
−0.742515 + 0.669829i \(0.766367\pi\)
\(660\) 0 0
\(661\) 18.2450i 0.709647i 0.934933 + 0.354823i \(0.115459\pi\)
−0.934933 + 0.354823i \(0.884541\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 30.9349 + 53.5807i 1.19780 + 2.07465i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −0.389984 0.675472i −0.0150552 0.0260763i
\(672\) 0 0
\(673\) 14.4184 24.9733i 0.555787 0.962651i −0.442055 0.896988i \(-0.645750\pi\)
0.997842 0.0656633i \(-0.0209163\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −33.5336 −1.28880 −0.644400 0.764689i \(-0.722893\pi\)
−0.644400 + 0.764689i \(0.722893\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 19.0943 + 11.0241i 0.730621 + 0.421824i 0.818649 0.574294i \(-0.194723\pi\)
−0.0880282 + 0.996118i \(0.528057\pi\)
\(684\) 0 0
\(685\) 14.7745i 0.564506i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −5.99881 −0.228537
\(690\) 0 0
\(691\) 26.4036i 1.00444i −0.864740 0.502219i \(-0.832517\pi\)
0.864740 0.502219i \(-0.167483\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 46.8311i 1.77641i
\(696\) 0 0
\(697\) −8.29877 −0.314338
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 20.5140i 0.774804i −0.921911 0.387402i \(-0.873373\pi\)
0.921911 0.387402i \(-0.126627\pi\)
\(702\) 0 0
\(703\) −46.5772 26.8913i −1.75669 1.01423i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −6.26109 −0.235140 −0.117570 0.993065i \(-0.537510\pi\)
−0.117570 + 0.993065i \(0.537510\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 15.7476 27.2756i 0.589751 1.02148i
\(714\) 0 0
\(715\) 0.878041 + 1.52081i 0.0328369 + 0.0568751i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −11.6111 20.1111i −0.433023 0.750017i 0.564109 0.825700i \(-0.309220\pi\)
−0.997132 + 0.0756828i \(0.975886\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 17.5102i 0.650314i
\(726\) 0 0
\(727\) −2.50999 1.44914i −0.0930903 0.0537457i 0.452732 0.891647i \(-0.350449\pi\)
−0.545822 + 0.837901i \(0.683783\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −22.5696 39.0917i −0.834767 1.44586i
\(732\) 0 0
\(733\) −10.2963 5.94457i −0.380302 0.219568i 0.297647 0.954676i \(-0.403798\pi\)
−0.677950 + 0.735108i \(0.737131\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.62622 + 2.67095i −0.170409 + 0.0983858i
\(738\) 0 0
\(739\) 17.2254 29.8354i 0.633648 1.09751i −0.353151 0.935566i \(-0.614890\pi\)
0.986800 0.161945i \(-0.0517767\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2.44069 1.40913i 0.0895401 0.0516960i −0.454561 0.890715i \(-0.650204\pi\)
0.544101 + 0.839019i \(0.316871\pi\)
\(744\) 0 0
\(745\) −25.5447 + 14.7483i −0.935887 + 0.540335i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −3.86045 + 6.68649i −0.140870 + 0.243993i −0.927824 0.373017i \(-0.878323\pi\)
0.786955 + 0.617011i \(0.211657\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −20.7517 −0.755233
\(756\) 0 0
\(757\) 1.17924 0.0428603 0.0214302 0.999770i \(-0.493178\pi\)
0.0214302 + 0.999770i \(0.493178\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.56644 + 2.71316i −0.0567835 + 0.0983520i −0.893020 0.450017i \(-0.851418\pi\)
0.836236 + 0.548369i \(0.184751\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 5.37276 3.10196i 0.193999 0.112005i
\(768\) 0 0
\(769\) −5.53497 + 3.19562i −0.199596 + 0.115237i −0.596467 0.802637i \(-0.703429\pi\)
0.396871 + 0.917874i \(0.370096\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 23.9779 41.5309i 0.862425 1.49376i −0.00715621 0.999974i \(-0.502278\pi\)
0.869581 0.493790i \(-0.164389\pi\)
\(774\) 0 0
\(775\) 7.71948 4.45685i 0.277292 0.160095i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 10.8784 + 6.28067i 0.389761 + 0.225028i
\(780\) 0 0
\(781\) −1.78015 3.08331i −0.0636987 0.110329i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 29.1661 + 16.8390i 1.04098 + 0.601011i
\(786\) 0 0
\(787\) 6.04066i 0.215326i −0.994187 0.107663i \(-0.965663\pi\)
0.994187 0.107663i \(-0.0343368\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 1.42635 + 2.47050i 0.0506510 + 0.0877301i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0.782501 + 1.35533i 0.0277176 + 0.0480083i 0.879551 0.475804i \(-0.157843\pi\)
−0.851834 + 0.523812i \(0.824509\pi\)
\(798\) 0 0
\(799\) 3.45810 5.98961i 0.122339 0.211897i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −0.797361 −0.0281383
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 15.3445 + 8.85918i 0.539485 + 0.311472i 0.744870 0.667209i \(-0.232511\pi\)
−0.205385 + 0.978681i \(0.565845\pi\)
\(810\) 0 0
\(811\) 27.5261i 0.966571i 0.875463 + 0.483285i \(0.160557\pi\)
−0.875463 + 0.483285i \(0.839443\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 32.4669 1.13727
\(816\) 0 0
\(817\) 68.3245i 2.39037i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 26.5977i 0.928267i −0.885765 0.464134i \(-0.846366\pi\)
0.885765 0.464134i \(-0.153634\pi\)
\(822\) 0 0
\(823\) 24.1595 0.842146 0.421073 0.907027i \(-0.361654\pi\)
0.421073 + 0.907027i \(0.361654\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 9.64923i 0.335537i −0.985826 0.167768i \(-0.946344\pi\)
0.985826 0.167768i \(-0.0536561\pi\)
\(828\) 0 0
\(829\) 25.1481 + 14.5193i 0.873430 + 0.504275i 0.868486 0.495713i \(-0.165093\pi\)
0.00494329 + 0.999988i \(0.498426\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 37.2462 1.28896
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 6.84383 11.8539i 0.236275 0.409241i −0.723367 0.690463i \(-0.757407\pi\)
0.959642 + 0.281223i \(0.0907400\pi\)
\(840\) 0 0
\(841\) 9.53027 + 16.5069i 0.328630 + 0.569204i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 14.6202 + 25.3229i 0.502949 + 0.871134i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 81.1881i 2.78309i
\(852\) 0 0
\(853\) −40.5184 23.3933i −1.38732 0.800972i −0.394310 0.918977i \(-0.629017\pi\)
−0.993013 + 0.118006i \(0.962350\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 15.8980 + 27.5361i 0.543065 + 0.940616i 0.998726 + 0.0504623i \(0.0160695\pi\)
−0.455661 + 0.890153i \(0.650597\pi\)
\(858\) 0 0
\(859\) −21.9005 12.6442i −0.747235 0.431416i 0.0774592 0.996996i \(-0.475319\pi\)
−0.824694 + 0.565579i \(0.808653\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −15.9513 + 9.20946i −0.542987 + 0.313494i −0.746289 0.665622i \(-0.768166\pi\)
0.203302 + 0.979116i \(0.434833\pi\)
\(864\) 0 0
\(865\) −22.7993 + 39.4896i −0.775200 + 1.34269i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −0.314216 + 0.181413i −0.0106590 + 0.00615400i
\(870\) 0 0
\(871\) 16.9202 9.76886i 0.573318 0.331005i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 4.44695 7.70234i 0.150163 0.260089i −0.781124 0.624375i \(-0.785354\pi\)
0.931287 + 0.364286i \(0.118687\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 13.1721 0.443780 0.221890 0.975072i \(-0.428777\pi\)
0.221890 + 0.975072i \(0.428777\pi\)
\(882\) 0 0
\(883\) 12.6729 0.426477 0.213239 0.977000i \(-0.431599\pi\)
0.213239 + 0.977000i \(0.431599\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −16.6991 + 28.9238i −0.560703 + 0.971165i 0.436733 + 0.899591i \(0.356136\pi\)
−0.997435 + 0.0715740i \(0.977198\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −9.06611 + 5.23432i −0.303386 + 0.175160i
\(894\) 0 0
\(895\) −40.6231 + 23.4538i −1.35788 + 0.783974i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 12.2328 21.1877i 0.407985 0.706651i
\(900\) 0 0
\(901\) −13.2612 + 7.65638i −0.441796 + 0.255071i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −43.2799 24.9877i −1.43867 0.830618i
\(906\) 0 0
\(907\) 14.6563 + 25.3855i 0.486655 + 0.842912i 0.999882 0.0153411i \(-0.00488340\pi\)
−0.513227 + 0.858253i \(0.671550\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1.72555 0.996246i −0.0571700 0.0330071i 0.471143 0.882057i \(-0.343842\pi\)
−0.528313 + 0.849050i \(0.677175\pi\)
\(912\) 0 0
\(913\) 2.89402i 0.0957780i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −0.897678 1.55482i −0.0296117 0.0512889i 0.850840 0.525425i \(-0.176094\pi\)
−0.880451 + 0.474136i \(0.842760\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 6.51079 + 11.2770i 0.214305 + 0.371188i
\(924\) 0 0
\(925\) −11.4889 + 19.8993i −0.377751 + 0.654284i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −24.8356 −0.814831 −0.407415 0.913243i \(-0.633570\pi\)
−0.407415 + 0.913243i \(0.633570\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 3.88207 + 2.24132i 0.126957 + 0.0732988i
\(936\) 0 0
\(937\) 27.9046i 0.911605i 0.890081 + 0.455802i \(0.150648\pi\)
−0.890081 + 0.455802i \(0.849352\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 52.5075 1.71169 0.855847 0.517229i \(-0.173036\pi\)
0.855847 + 0.517229i \(0.173036\pi\)
\(942\) 0 0
\(943\) 18.9621i 0.617490i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 43.1385i 1.40181i 0.713253 + 0.700907i \(0.247221\pi\)
−0.713253 + 0.700907i \(0.752779\pi\)
\(948\) 0 0
\(949\) 2.91631 0.0946673
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 59.9829i 1.94304i −0.236965 0.971518i \(-0.576153\pi\)
0.236965 0.971518i \(-0.423847\pi\)
\(954\) 0 0
\(955\) 49.8899 + 28.8040i 1.61440 + 0.932074i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 18.5457 0.598248
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −9.56709 + 16.5707i −0.307975 + 0.533429i
\(966\) 0 0
\(967\) −26.6398 46.1414i −0.856677 1.48381i −0.875080 0.483978i \(-0.839191\pi\)
0.0184029 0.999831i \(-0.494142\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 28.1556 + 48.7669i 0.903555 + 1.56500i 0.822845 + 0.568266i \(0.192385\pi\)
0.0807100 + 0.996738i \(0.474281\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 26.0679i 0.833988i −0.908909 0.416994i \(-0.863084\pi\)
0.908909 0.416994i \(-0.136916\pi\)
\(978\) 0 0
\(979\) −3.54237 2.04519i −0.113215 0.0653646i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 19.0252 + 32.9527i 0.606811 + 1.05103i 0.991763 + 0.128090i \(0.0408848\pi\)
−0.384952 + 0.922937i \(0.625782\pi\)
\(984\) 0 0
\(985\) 38.1922 + 22.0503i 1.21690 + 0.702580i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 89.3217 51.5699i 2.84026 1.63983i
\(990\) 0 0
\(991\) −5.68758 + 9.85118i −0.180672 + 0.312933i −0.942110 0.335305i \(-0.891161\pi\)
0.761438 + 0.648238i \(0.224494\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 14.9499 8.63131i 0.473943 0.273631i
\(996\) 0 0
\(997\) 44.1590 25.4952i 1.39853 0.807441i 0.404290 0.914631i \(-0.367518\pi\)
0.994239 + 0.107189i \(0.0341851\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5292.2.w.b.521.7 16
3.2 odd 2 1764.2.w.b.1109.2 16
7.2 even 3 756.2.bm.a.89.2 16
7.3 odd 6 5292.2.x.a.4409.2 16
7.4 even 3 5292.2.x.b.4409.7 16
7.5 odd 6 5292.2.bm.a.4625.7 16
7.6 odd 2 756.2.w.a.521.2 16
9.4 even 3 1764.2.bm.a.1697.4 16
9.5 odd 6 5292.2.bm.a.2285.7 16
21.2 odd 6 252.2.bm.a.173.5 yes 16
21.5 even 6 1764.2.bm.a.1685.4 16
21.11 odd 6 1764.2.x.b.1469.7 16
21.17 even 6 1764.2.x.a.1469.2 16
21.20 even 2 252.2.w.a.101.7 yes 16
28.23 odd 6 3024.2.df.d.1601.2 16
28.27 even 2 3024.2.ca.d.2033.2 16
63.2 odd 6 2268.2.t.a.2105.2 16
63.4 even 3 1764.2.x.a.293.2 16
63.5 even 6 inner 5292.2.w.b.1097.7 16
63.13 odd 6 252.2.bm.a.185.5 yes 16
63.16 even 3 2268.2.t.b.2105.7 16
63.20 even 6 2268.2.t.b.1781.7 16
63.23 odd 6 756.2.w.a.341.2 16
63.31 odd 6 1764.2.x.b.293.7 16
63.32 odd 6 5292.2.x.a.881.2 16
63.34 odd 6 2268.2.t.a.1781.2 16
63.40 odd 6 1764.2.w.b.509.2 16
63.41 even 6 756.2.bm.a.17.2 16
63.58 even 3 252.2.w.a.5.7 16
63.59 even 6 5292.2.x.b.881.7 16
84.23 even 6 1008.2.df.d.929.4 16
84.83 odd 2 1008.2.ca.d.353.2 16
252.23 even 6 3024.2.ca.d.2609.2 16
252.139 even 6 1008.2.df.d.689.4 16
252.167 odd 6 3024.2.df.d.17.2 16
252.247 odd 6 1008.2.ca.d.257.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.w.a.5.7 16 63.58 even 3
252.2.w.a.101.7 yes 16 21.20 even 2
252.2.bm.a.173.5 yes 16 21.2 odd 6
252.2.bm.a.185.5 yes 16 63.13 odd 6
756.2.w.a.341.2 16 63.23 odd 6
756.2.w.a.521.2 16 7.6 odd 2
756.2.bm.a.17.2 16 63.41 even 6
756.2.bm.a.89.2 16 7.2 even 3
1008.2.ca.d.257.2 16 252.247 odd 6
1008.2.ca.d.353.2 16 84.83 odd 2
1008.2.df.d.689.4 16 252.139 even 6
1008.2.df.d.929.4 16 84.23 even 6
1764.2.w.b.509.2 16 63.40 odd 6
1764.2.w.b.1109.2 16 3.2 odd 2
1764.2.x.a.293.2 16 63.4 even 3
1764.2.x.a.1469.2 16 21.17 even 6
1764.2.x.b.293.7 16 63.31 odd 6
1764.2.x.b.1469.7 16 21.11 odd 6
1764.2.bm.a.1685.4 16 21.5 even 6
1764.2.bm.a.1697.4 16 9.4 even 3
2268.2.t.a.1781.2 16 63.34 odd 6
2268.2.t.a.2105.2 16 63.2 odd 6
2268.2.t.b.1781.7 16 63.20 even 6
2268.2.t.b.2105.7 16 63.16 even 3
3024.2.ca.d.2033.2 16 28.27 even 2
3024.2.ca.d.2609.2 16 252.23 even 6
3024.2.df.d.17.2 16 252.167 odd 6
3024.2.df.d.1601.2 16 28.23 odd 6
5292.2.w.b.521.7 16 1.1 even 1 trivial
5292.2.w.b.1097.7 16 63.5 even 6 inner
5292.2.x.a.881.2 16 63.32 odd 6
5292.2.x.a.4409.2 16 7.3 odd 6
5292.2.x.b.881.7 16 63.59 even 6
5292.2.x.b.4409.7 16 7.4 even 3
5292.2.bm.a.2285.7 16 9.5 odd 6
5292.2.bm.a.4625.7 16 7.5 odd 6