Properties

Label 1764.2.x.b.1469.7
Level $1764$
Weight $2$
Character 1764.1469
Analytic conductor $14.086$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1764,2,Mod(293,1764)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1764.293"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.x (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-6,0,6,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 5 x^{14} - 17 x^{13} + 22 x^{12} - 31 x^{11} + 62 x^{10} - 52 x^{9} + 52 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1469.7
Root \(-0.811340 + 1.53027i\) of defining polynomial
Character \(\chi\) \(=\) 1764.1469
Dual form 1764.2.x.b.293.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.20245 + 1.24664i) q^{3} +(-1.37166 - 2.37578i) q^{5} +(-0.108243 + 2.99805i) q^{9} +(0.362306 + 0.209178i) q^{11} +(-1.32512 + 0.765056i) q^{13} +(1.31241 - 4.56672i) q^{15} -3.90581 q^{17} +5.91199i q^{19} +(-7.72884 + 4.46225i) q^{23} +(-1.26290 + 2.18740i) q^{25} +(-3.86765 + 3.47005i) q^{27} +(6.00378 + 3.46629i) q^{29} +(3.05626 - 1.76453i) q^{31} +(0.174884 + 0.703192i) q^{33} +9.09722 q^{37} +(-2.54713 - 0.732009i) q^{39} +(-1.06236 - 1.84006i) q^{41} +(-5.77846 + 10.0086i) q^{43} +(7.27118 - 3.85514i) q^{45} +(-0.885373 + 1.53351i) q^{47} +(-4.69653 - 4.86916i) q^{51} +3.92050i q^{53} -1.14768i q^{55} +(-7.37015 + 7.10886i) q^{57} +(-2.02728 - 3.51135i) q^{59} +(1.61459 + 0.932184i) q^{61} +(3.63521 + 2.09879i) q^{65} +(6.38441 + 11.0581i) q^{67} +(-14.8564 - 4.26950i) q^{69} +8.51021i q^{71} +1.90594i q^{73} +(-4.24548 + 1.05585i) q^{75} +(0.433633 - 0.751074i) q^{79} +(-8.97657 - 0.649034i) q^{81} +(-3.45880 + 5.99082i) q^{83} +(5.35744 + 9.27936i) q^{85} +(2.89801 + 11.6526i) q^{87} -9.77729 q^{89} +(5.87474 + 1.68831i) q^{93} +(14.0456 - 8.10924i) q^{95} +(-0.200411 - 0.115707i) q^{97} +(-0.666342 + 1.06357i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{9} + 6 q^{11} + 3 q^{13} - 3 q^{15} + 18 q^{17} - 21 q^{23} - 8 q^{25} - 9 q^{27} + 6 q^{29} - 6 q^{31} + 27 q^{33} - 2 q^{37} + 6 q^{39} + 6 q^{41} - 2 q^{43} - 15 q^{45} - 18 q^{47} + 18 q^{51}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.20245 + 1.24664i 0.694233 + 0.719750i
\(4\) 0 0
\(5\) −1.37166 2.37578i −0.613425 1.06248i −0.990659 0.136365i \(-0.956458\pi\)
0.377234 0.926118i \(-0.376875\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −0.108243 + 2.99805i −0.0360809 + 0.999349i
\(10\) 0 0
\(11\) 0.362306 + 0.209178i 0.109240 + 0.0630695i 0.553624 0.832767i \(-0.313244\pi\)
−0.444385 + 0.895836i \(0.646578\pi\)
\(12\) 0 0
\(13\) −1.32512 + 0.765056i −0.367521 + 0.212188i −0.672375 0.740211i \(-0.734726\pi\)
0.304854 + 0.952399i \(0.401392\pi\)
\(14\) 0 0
\(15\) 1.31241 4.56672i 0.338862 1.17912i
\(16\) 0 0
\(17\) −3.90581 −0.947298 −0.473649 0.880714i \(-0.657064\pi\)
−0.473649 + 0.880714i \(0.657064\pi\)
\(18\) 0 0
\(19\) 5.91199i 1.35630i 0.734922 + 0.678152i \(0.237219\pi\)
−0.734922 + 0.678152i \(0.762781\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.72884 + 4.46225i −1.61157 + 0.930443i −0.622569 + 0.782565i \(0.713911\pi\)
−0.989006 + 0.147878i \(0.952756\pi\)
\(24\) 0 0
\(25\) −1.26290 + 2.18740i −0.252579 + 0.437480i
\(26\) 0 0
\(27\) −3.86765 + 3.47005i −0.744330 + 0.667812i
\(28\) 0 0
\(29\) 6.00378 + 3.46629i 1.11487 + 0.643673i 0.940088 0.340933i \(-0.110743\pi\)
0.174787 + 0.984606i \(0.444076\pi\)
\(30\) 0 0
\(31\) 3.05626 1.76453i 0.548921 0.316920i −0.199766 0.979844i \(-0.564018\pi\)
0.748687 + 0.662924i \(0.230685\pi\)
\(32\) 0 0
\(33\) 0.174884 + 0.703192i 0.0304434 + 0.122410i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 9.09722 1.49557 0.747787 0.663939i \(-0.231116\pi\)
0.747787 + 0.663939i \(0.231116\pi\)
\(38\) 0 0
\(39\) −2.54713 0.732009i −0.407868 0.117215i
\(40\) 0 0
\(41\) −1.06236 1.84006i −0.165913 0.287370i 0.771066 0.636755i \(-0.219724\pi\)
−0.936979 + 0.349385i \(0.886390\pi\)
\(42\) 0 0
\(43\) −5.77846 + 10.0086i −0.881208 + 1.52630i −0.0312079 + 0.999513i \(0.509935\pi\)
−0.850000 + 0.526783i \(0.823398\pi\)
\(44\) 0 0
\(45\) 7.27118 3.85514i 1.08392 0.574690i
\(46\) 0 0
\(47\) −0.885373 + 1.53351i −0.129145 + 0.223686i −0.923346 0.383970i \(-0.874557\pi\)
0.794201 + 0.607656i \(0.207890\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −4.69653 4.86916i −0.657646 0.681818i
\(52\) 0 0
\(53\) 3.92050i 0.538523i 0.963067 + 0.269261i \(0.0867795\pi\)
−0.963067 + 0.269261i \(0.913220\pi\)
\(54\) 0 0
\(55\) 1.14768i 0.154753i
\(56\) 0 0
\(57\) −7.37015 + 7.10886i −0.976200 + 0.941591i
\(58\) 0 0
\(59\) −2.02728 3.51135i −0.263929 0.457139i 0.703353 0.710840i \(-0.251685\pi\)
−0.967283 + 0.253702i \(0.918352\pi\)
\(60\) 0 0
\(61\) 1.61459 + 0.932184i 0.206727 + 0.119354i 0.599789 0.800158i \(-0.295251\pi\)
−0.393062 + 0.919512i \(0.628584\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.63521 + 2.09879i 0.450893 + 0.260323i
\(66\) 0 0
\(67\) 6.38441 + 11.0581i 0.779979 + 1.35096i 0.931953 + 0.362579i \(0.118104\pi\)
−0.151974 + 0.988385i \(0.548563\pi\)
\(68\) 0 0
\(69\) −14.8564 4.26950i −1.78850 0.513987i
\(70\) 0 0
\(71\) 8.51021i 1.00998i 0.863126 + 0.504988i \(0.168503\pi\)
−0.863126 + 0.504988i \(0.831497\pi\)
\(72\) 0 0
\(73\) 1.90594i 0.223074i 0.993760 + 0.111537i \(0.0355773\pi\)
−0.993760 + 0.111537i \(0.964423\pi\)
\(74\) 0 0
\(75\) −4.24548 + 1.05585i −0.490226 + 0.121919i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0.433633 0.751074i 0.0487875 0.0845024i −0.840600 0.541656i \(-0.817798\pi\)
0.889388 + 0.457153i \(0.151131\pi\)
\(80\) 0 0
\(81\) −8.97657 0.649034i −0.997396 0.0721149i
\(82\) 0 0
\(83\) −3.45880 + 5.99082i −0.379653 + 0.657578i −0.991012 0.133775i \(-0.957290\pi\)
0.611359 + 0.791354i \(0.290623\pi\)
\(84\) 0 0
\(85\) 5.35744 + 9.27936i 0.581096 + 1.00649i
\(86\) 0 0
\(87\) 2.89801 + 11.6526i 0.310699 + 1.24929i
\(88\) 0 0
\(89\) −9.77729 −1.03639 −0.518195 0.855262i \(-0.673396\pi\)
−0.518195 + 0.855262i \(0.673396\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 5.87474 + 1.68831i 0.609182 + 0.175070i
\(94\) 0 0
\(95\) 14.0456 8.10924i 1.44105 0.831990i
\(96\) 0 0
\(97\) −0.200411 0.115707i −0.0203486 0.0117483i 0.489791 0.871840i \(-0.337073\pi\)
−0.510140 + 0.860091i \(0.670406\pi\)
\(98\) 0 0
\(99\) −0.666342 + 1.06357i −0.0669699 + 0.106893i
\(100\) 0 0
\(101\) 7.14031 12.3674i 0.710487 1.23060i −0.254187 0.967155i \(-0.581808\pi\)
0.964674 0.263445i \(-0.0848587\pi\)
\(102\) 0 0
\(103\) −9.30617 + 5.37292i −0.916964 + 0.529410i −0.882665 0.470002i \(-0.844253\pi\)
−0.0342991 + 0.999412i \(0.510920\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.35702i 0.614556i −0.951620 0.307278i \(-0.900582\pi\)
0.951620 0.307278i \(-0.0994181\pi\)
\(108\) 0 0
\(109\) −5.16072 −0.494308 −0.247154 0.968976i \(-0.579495\pi\)
−0.247154 + 0.968976i \(0.579495\pi\)
\(110\) 0 0
\(111\) 10.9389 + 11.3410i 1.03828 + 1.07644i
\(112\) 0 0
\(113\) 9.19186 5.30692i 0.864697 0.499233i −0.000885276 1.00000i \(-0.500282\pi\)
0.865582 + 0.500766i \(0.166948\pi\)
\(114\) 0 0
\(115\) 21.2027 + 12.2414i 1.97716 + 1.14151i
\(116\) 0 0
\(117\) −2.15024 4.05557i −0.198790 0.374938i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −5.41249 9.37471i −0.492044 0.852246i
\(122\) 0 0
\(123\) 1.01647 3.53697i 0.0916521 0.318917i
\(124\) 0 0
\(125\) −6.78753 −0.607096
\(126\) 0 0
\(127\) 10.2909 0.913169 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(128\) 0 0
\(129\) −19.4255 + 4.83111i −1.71032 + 0.425356i
\(130\) 0 0
\(131\) −9.83048 17.0269i −0.858893 1.48765i −0.872986 0.487746i \(-0.837819\pi\)
0.0140928 0.999901i \(-0.495514\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 13.5492 + 4.42898i 1.16613 + 0.381186i
\(136\) 0 0
\(137\) 4.66411 + 2.69282i 0.398481 + 0.230063i 0.685829 0.727763i \(-0.259440\pi\)
−0.287347 + 0.957827i \(0.592773\pi\)
\(138\) 0 0
\(139\) −14.7839 + 8.53549i −1.25395 + 0.723971i −0.971892 0.235425i \(-0.924352\pi\)
−0.282062 + 0.959396i \(0.591018\pi\)
\(140\) 0 0
\(141\) −2.97636 + 0.740221i −0.250655 + 0.0623379i
\(142\) 0 0
\(143\) −0.640131 −0.0535304
\(144\) 0 0
\(145\) 19.0182i 1.57938i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −9.31162 + 5.37607i −0.762838 + 0.440425i −0.830314 0.557296i \(-0.811839\pi\)
0.0674758 + 0.997721i \(0.478505\pi\)
\(150\) 0 0
\(151\) −3.78223 + 6.55102i −0.307794 + 0.533115i −0.977879 0.209169i \(-0.932924\pi\)
0.670086 + 0.742284i \(0.266257\pi\)
\(152\) 0 0
\(153\) 0.422776 11.7098i 0.0341794 0.946682i
\(154\) 0 0
\(155\) −8.38430 4.84068i −0.673443 0.388812i
\(156\) 0 0
\(157\) 10.6317 6.13820i 0.848500 0.489882i −0.0116445 0.999932i \(-0.503707\pi\)
0.860144 + 0.510051i \(0.170373\pi\)
\(158\) 0 0
\(159\) −4.88747 + 4.71420i −0.387602 + 0.373860i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −11.8349 −0.926981 −0.463490 0.886102i \(-0.653403\pi\)
−0.463490 + 0.886102i \(0.653403\pi\)
\(164\) 0 0
\(165\) 1.43075 1.38003i 0.111384 0.107435i
\(166\) 0 0
\(167\) −6.78854 11.7581i −0.525313 0.909869i −0.999565 0.0294798i \(-0.990615\pi\)
0.474252 0.880389i \(-0.342718\pi\)
\(168\) 0 0
\(169\) −5.32938 + 9.23075i −0.409952 + 0.710058i
\(170\) 0 0
\(171\) −17.7244 0.639931i −1.35542 0.0489367i
\(172\) 0 0
\(173\) −8.31085 + 14.3948i −0.631862 + 1.09442i 0.355308 + 0.934749i \(0.384376\pi\)
−0.987171 + 0.159668i \(0.948957\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.93971 6.74951i 0.145797 0.507324i
\(178\) 0 0
\(179\) 17.0988i 1.27803i −0.769195 0.639014i \(-0.779343\pi\)
0.769195 0.639014i \(-0.220657\pi\)
\(180\) 0 0
\(181\) 18.2171i 1.35407i −0.735952 0.677034i \(-0.763265\pi\)
0.735952 0.677034i \(-0.236735\pi\)
\(182\) 0 0
\(183\) 0.779357 + 3.13372i 0.0576117 + 0.231651i
\(184\) 0 0
\(185\) −12.4783 21.6130i −0.917422 1.58902i
\(186\) 0 0
\(187\) −1.41510 0.817009i −0.103482 0.0597456i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 18.1860 + 10.4997i 1.31589 + 0.759730i 0.983065 0.183258i \(-0.0586644\pi\)
0.332826 + 0.942988i \(0.391998\pi\)
\(192\) 0 0
\(193\) 3.48741 + 6.04038i 0.251030 + 0.434796i 0.963810 0.266592i \(-0.0858975\pi\)
−0.712780 + 0.701388i \(0.752564\pi\)
\(194\) 0 0
\(195\) 1.75471 + 7.05550i 0.125657 + 0.505255i
\(196\) 0 0
\(197\) 16.0756i 1.14534i −0.819786 0.572670i \(-0.805908\pi\)
0.819786 0.572670i \(-0.194092\pi\)
\(198\) 0 0
\(199\) 6.29261i 0.446071i −0.974810 0.223036i \(-0.928403\pi\)
0.974810 0.223036i \(-0.0715966\pi\)
\(200\) 0 0
\(201\) −6.10862 + 21.2559i −0.430869 + 1.49927i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −2.91440 + 5.04788i −0.203550 + 0.352559i
\(206\) 0 0
\(207\) −12.5414 23.6544i −0.871690 1.64410i
\(208\) 0 0
\(209\) −1.23666 + 2.14195i −0.0855414 + 0.148162i
\(210\) 0 0
\(211\) −1.29814 2.24844i −0.0893674 0.154789i 0.817876 0.575394i \(-0.195151\pi\)
−0.907244 + 0.420605i \(0.861818\pi\)
\(212\) 0 0
\(213\) −10.6092 + 10.2331i −0.726931 + 0.701159i
\(214\) 0 0
\(215\) 31.7043 2.16222
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −2.37603 + 2.29179i −0.160557 + 0.154865i
\(220\) 0 0
\(221\) 5.17565 2.98816i 0.348152 0.201006i
\(222\) 0 0
\(223\) 20.7215 + 11.9636i 1.38762 + 0.801141i 0.993046 0.117725i \(-0.0375600\pi\)
0.394571 + 0.918866i \(0.370893\pi\)
\(224\) 0 0
\(225\) −6.42123 4.02299i −0.428082 0.268200i
\(226\) 0 0
\(227\) 1.86609 3.23216i 0.123857 0.214526i −0.797429 0.603413i \(-0.793807\pi\)
0.921285 + 0.388887i \(0.127140\pi\)
\(228\) 0 0
\(229\) 18.2455 10.5341i 1.20570 0.696111i 0.243882 0.969805i \(-0.421579\pi\)
0.961817 + 0.273694i \(0.0882457\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.7643i 0.836217i −0.908397 0.418109i \(-0.862693\pi\)
0.908397 0.418109i \(-0.137307\pi\)
\(234\) 0 0
\(235\) 4.85772 0.316883
\(236\) 0 0
\(237\) 1.45774 0.362541i 0.0946905 0.0235496i
\(238\) 0 0
\(239\) 11.0521 6.38091i 0.714899 0.412747i −0.0979736 0.995189i \(-0.531236\pi\)
0.812872 + 0.582442i \(0.197903\pi\)
\(240\) 0 0
\(241\) −2.63438 1.52096i −0.169695 0.0979737i 0.412747 0.910846i \(-0.364569\pi\)
−0.582442 + 0.812872i \(0.697903\pi\)
\(242\) 0 0
\(243\) −9.98473 11.9710i −0.640521 0.767941i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −4.52301 7.83408i −0.287792 0.498470i
\(248\) 0 0
\(249\) −11.6275 + 2.89175i −0.736860 + 0.183257i
\(250\) 0 0
\(251\) 6.32067 0.398957 0.199478 0.979902i \(-0.436075\pi\)
0.199478 + 0.979902i \(0.436075\pi\)
\(252\) 0 0
\(253\) −3.73361 −0.234730
\(254\) 0 0
\(255\) −5.12602 + 17.8368i −0.321004 + 1.11698i
\(256\) 0 0
\(257\) 12.2538 + 21.2242i 0.764372 + 1.32393i 0.940578 + 0.339577i \(0.110284\pi\)
−0.176206 + 0.984353i \(0.556383\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −11.0420 + 17.6244i −0.683480 + 1.09092i
\(262\) 0 0
\(263\) 21.1163 + 12.1915i 1.30208 + 0.751759i 0.980761 0.195211i \(-0.0625390\pi\)
0.321323 + 0.946970i \(0.395872\pi\)
\(264\) 0 0
\(265\) 9.31427 5.37760i 0.572171 0.330343i
\(266\) 0 0
\(267\) −11.7567 12.1888i −0.719496 0.745942i
\(268\) 0 0
\(269\) 9.89049 0.603034 0.301517 0.953461i \(-0.402507\pi\)
0.301517 + 0.953461i \(0.402507\pi\)
\(270\) 0 0
\(271\) 5.89481i 0.358084i 0.983841 + 0.179042i \(0.0572998\pi\)
−0.983841 + 0.179042i \(0.942700\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.915111 + 0.528340i −0.0551833 + 0.0318601i
\(276\) 0 0
\(277\) −11.6469 + 20.1731i −0.699796 + 1.21208i 0.268741 + 0.963213i \(0.413392\pi\)
−0.968537 + 0.248870i \(0.919941\pi\)
\(278\) 0 0
\(279\) 4.95933 + 9.35381i 0.296908 + 0.559998i
\(280\) 0 0
\(281\) 21.7962 + 12.5840i 1.30025 + 0.750700i 0.980447 0.196784i \(-0.0630499\pi\)
0.319803 + 0.947484i \(0.396383\pi\)
\(282\) 0 0
\(283\) 8.62942 4.98220i 0.512966 0.296161i −0.221086 0.975254i \(-0.570960\pi\)
0.734052 + 0.679093i \(0.237627\pi\)
\(284\) 0 0
\(285\) 26.9984 + 7.75895i 1.59925 + 0.459601i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.74463 −0.102626
\(290\) 0 0
\(291\) −0.0967377 0.388973i −0.00567086 0.0228020i
\(292\) 0 0
\(293\) 6.79065 + 11.7618i 0.396714 + 0.687129i 0.993318 0.115406i \(-0.0368171\pi\)
−0.596604 + 0.802536i \(0.703484\pi\)
\(294\) 0 0
\(295\) −5.56147 + 9.63275i −0.323801 + 0.560841i
\(296\) 0 0
\(297\) −2.12713 + 0.448195i −0.123429 + 0.0260069i
\(298\) 0 0
\(299\) 6.82774 11.8260i 0.394858 0.683915i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 24.0036 5.96969i 1.37897 0.342950i
\(304\) 0 0
\(305\) 5.11455i 0.292858i
\(306\) 0 0
\(307\) 16.9849i 0.969381i 0.874686 + 0.484691i \(0.161068\pi\)
−0.874686 + 0.484691i \(0.838932\pi\)
\(308\) 0 0
\(309\) −17.8883 5.14083i −1.01763 0.292452i
\(310\) 0 0
\(311\) 0.00148940 + 0.00257972i 8.44563e−5 + 0.000146283i 0.866068 0.499927i \(-0.166640\pi\)
−0.865983 + 0.500073i \(0.833306\pi\)
\(312\) 0 0
\(313\) 10.6154 + 6.12878i 0.600015 + 0.346419i 0.769048 0.639191i \(-0.220731\pi\)
−0.169032 + 0.985611i \(0.554064\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −20.0008 11.5475i −1.12336 0.648571i −0.181102 0.983464i \(-0.557966\pi\)
−0.942256 + 0.334894i \(0.891300\pi\)
\(318\) 0 0
\(319\) 1.45014 + 2.51172i 0.0811922 + 0.140629i
\(320\) 0 0
\(321\) 7.92494 7.64397i 0.442327 0.426645i
\(322\) 0 0
\(323\) 23.0911i 1.28482i
\(324\) 0 0
\(325\) 3.86475i 0.214378i
\(326\) 0 0
\(327\) −6.20550 6.43358i −0.343165 0.355778i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 1.73106 2.99829i 0.0951479 0.164801i −0.814522 0.580132i \(-0.803001\pi\)
0.909670 + 0.415331i \(0.136334\pi\)
\(332\) 0 0
\(333\) −0.984708 + 27.2739i −0.0539617 + 1.49460i
\(334\) 0 0
\(335\) 17.5145 30.3359i 0.956917 1.65743i
\(336\) 0 0
\(337\) −9.13018 15.8139i −0.497352 0.861440i 0.502643 0.864494i \(-0.332361\pi\)
−0.999995 + 0.00305455i \(0.999028\pi\)
\(338\) 0 0
\(339\) 17.6686 + 5.07768i 0.959625 + 0.275782i
\(340\) 0 0
\(341\) 1.47640 0.0799518
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 10.2345 + 41.1518i 0.551005 + 2.21554i
\(346\) 0 0
\(347\) 4.62386 2.66959i 0.248222 0.143311i −0.370728 0.928741i \(-0.620892\pi\)
0.618950 + 0.785431i \(0.287558\pi\)
\(348\) 0 0
\(349\) 0.0136817 + 0.00789914i 0.000732365 + 0.000422831i 0.500366 0.865814i \(-0.333199\pi\)
−0.499634 + 0.866237i \(0.666532\pi\)
\(350\) 0 0
\(351\) 2.47030 7.55719i 0.131855 0.403373i
\(352\) 0 0
\(353\) −17.1543 + 29.7121i −0.913029 + 1.58141i −0.103268 + 0.994654i \(0.532930\pi\)
−0.809761 + 0.586760i \(0.800403\pi\)
\(354\) 0 0
\(355\) 20.2184 11.6731i 1.07308 0.619544i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.26718i 0.330769i −0.986229 0.165385i \(-0.947113\pi\)
0.986229 0.165385i \(-0.0528865\pi\)
\(360\) 0 0
\(361\) −15.9517 −0.839561
\(362\) 0 0
\(363\) 5.17869 18.0200i 0.271811 0.945807i
\(364\) 0 0
\(365\) 4.52811 2.61430i 0.237012 0.136839i
\(366\) 0 0
\(367\) 16.4888 + 9.51984i 0.860711 + 0.496931i 0.864250 0.503062i \(-0.167793\pi\)
−0.00353959 + 0.999994i \(0.501127\pi\)
\(368\) 0 0
\(369\) 5.63159 2.98584i 0.293169 0.155436i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −5.41901 9.38600i −0.280586 0.485989i 0.690943 0.722909i \(-0.257195\pi\)
−0.971529 + 0.236920i \(0.923862\pi\)
\(374\) 0 0
\(375\) −8.16165 8.46164i −0.421466 0.436957i
\(376\) 0 0
\(377\) −10.6076 −0.546320
\(378\) 0 0
\(379\) 0.700312 0.0359726 0.0179863 0.999838i \(-0.494274\pi\)
0.0179863 + 0.999838i \(0.494274\pi\)
\(380\) 0 0
\(381\) 12.3742 + 12.8291i 0.633952 + 0.657253i
\(382\) 0 0
\(383\) −19.0235 32.9497i −0.972056 1.68365i −0.689327 0.724451i \(-0.742094\pi\)
−0.282729 0.959200i \(-0.591240\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −29.3808 18.4075i −1.49351 0.935704i
\(388\) 0 0
\(389\) −16.6958 9.63934i −0.846512 0.488734i 0.0129603 0.999916i \(-0.495875\pi\)
−0.859473 + 0.511182i \(0.829208\pi\)
\(390\) 0 0
\(391\) 30.1874 17.4287i 1.52664 0.881407i
\(392\) 0 0
\(393\) 9.40584 32.7290i 0.474462 1.65096i
\(394\) 0 0
\(395\) −2.37919 −0.119710
\(396\) 0 0
\(397\) 20.0468i 1.00612i 0.864252 + 0.503059i \(0.167792\pi\)
−0.864252 + 0.503059i \(0.832208\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −26.4232 + 15.2554i −1.31951 + 0.761820i −0.983650 0.180092i \(-0.942360\pi\)
−0.335861 + 0.941912i \(0.609027\pi\)
\(402\) 0 0
\(403\) −2.69993 + 4.67642i −0.134493 + 0.232949i
\(404\) 0 0
\(405\) 10.7708 + 22.2166i 0.535207 + 1.10395i
\(406\) 0 0
\(407\) 3.29598 + 1.90294i 0.163376 + 0.0943250i
\(408\) 0 0
\(409\) 0.150631 0.0869667i 0.00744821 0.00430023i −0.496271 0.868168i \(-0.665298\pi\)
0.503719 + 0.863867i \(0.331965\pi\)
\(410\) 0 0
\(411\) 2.25135 + 9.05246i 0.111051 + 0.446525i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 18.9772 0.931554
\(416\) 0 0
\(417\) −28.4176 8.16679i −1.39161 0.399929i
\(418\) 0 0
\(419\) 14.0690 + 24.3682i 0.687316 + 1.19047i 0.972703 + 0.232054i \(0.0745445\pi\)
−0.285387 + 0.958412i \(0.592122\pi\)
\(420\) 0 0
\(421\) −1.56130 + 2.70424i −0.0760929 + 0.131797i −0.901561 0.432652i \(-0.857578\pi\)
0.825468 + 0.564449i \(0.190911\pi\)
\(422\) 0 0
\(423\) −4.50170 2.82038i −0.218880 0.137132i
\(424\) 0 0
\(425\) 4.93264 8.54358i 0.239268 0.414424i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −0.769723 0.798015i −0.0371626 0.0385285i
\(430\) 0 0
\(431\) 9.91744i 0.477706i −0.971056 0.238853i \(-0.923229\pi\)
0.971056 0.238853i \(-0.0767715\pi\)
\(432\) 0 0
\(433\) 17.1274i 0.823092i 0.911389 + 0.411546i \(0.135011\pi\)
−0.911389 + 0.411546i \(0.864989\pi\)
\(434\) 0 0
\(435\) 23.7090 22.8684i 1.13676 1.09646i
\(436\) 0 0
\(437\) −26.3808 45.6929i −1.26196 2.18579i
\(438\) 0 0
\(439\) 18.5795 + 10.7269i 0.886750 + 0.511965i 0.872878 0.487938i \(-0.162251\pi\)
0.0138721 + 0.999904i \(0.495584\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 5.84340 + 3.37369i 0.277628 + 0.160289i 0.632349 0.774683i \(-0.282091\pi\)
−0.354721 + 0.934972i \(0.615424\pi\)
\(444\) 0 0
\(445\) 13.4111 + 23.2287i 0.635747 + 1.10115i
\(446\) 0 0
\(447\) −17.8988 5.14384i −0.846583 0.243295i
\(448\) 0 0
\(449\) 5.81624i 0.274485i −0.990537 0.137243i \(-0.956176\pi\)
0.990537 0.137243i \(-0.0438240\pi\)
\(450\) 0 0
\(451\) 0.888889i 0.0418562i
\(452\) 0 0
\(453\) −12.7147 + 3.16216i −0.597390 + 0.148571i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 16.6949 28.9164i 0.780954 1.35265i −0.150432 0.988620i \(-0.548066\pi\)
0.931386 0.364032i \(-0.118600\pi\)
\(458\) 0 0
\(459\) 15.1063 13.5534i 0.705103 0.632617i
\(460\) 0 0
\(461\) 18.5154 32.0696i 0.862347 1.49363i −0.00730959 0.999973i \(-0.502327\pi\)
0.869657 0.493656i \(-0.164340\pi\)
\(462\) 0 0
\(463\) 10.5618 + 18.2935i 0.490848 + 0.850173i 0.999944 0.0105362i \(-0.00335383\pi\)
−0.509097 + 0.860709i \(0.670020\pi\)
\(464\) 0 0
\(465\) −4.04707 16.2729i −0.187678 0.754637i
\(466\) 0 0
\(467\) 18.6094 0.861141 0.430570 0.902557i \(-0.358312\pi\)
0.430570 + 0.902557i \(0.358312\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 20.4362 + 5.87305i 0.941649 + 0.270616i
\(472\) 0 0
\(473\) −4.18715 + 2.41745i −0.192525 + 0.111155i
\(474\) 0 0
\(475\) −12.9319 7.46624i −0.593356 0.342574i
\(476\) 0 0
\(477\) −11.7539 0.424366i −0.538172 0.0194304i
\(478\) 0 0
\(479\) −7.16703 + 12.4137i −0.327470 + 0.567194i −0.982009 0.188834i \(-0.939529\pi\)
0.654539 + 0.756028i \(0.272863\pi\)
\(480\) 0 0
\(481\) −12.0549 + 6.95988i −0.549655 + 0.317343i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0.634844i 0.0288268i
\(486\) 0 0
\(487\) 11.2966 0.511897 0.255949 0.966690i \(-0.417612\pi\)
0.255949 + 0.966690i \(0.417612\pi\)
\(488\) 0 0
\(489\) −14.2308 14.7539i −0.643541 0.667195i
\(490\) 0 0
\(491\) −8.84097 + 5.10434i −0.398988 + 0.230356i −0.686047 0.727557i \(-0.740656\pi\)
0.287059 + 0.957913i \(0.407322\pi\)
\(492\) 0 0
\(493\) −23.4496 13.5387i −1.05612 0.609751i
\(494\) 0 0
\(495\) 3.44080 + 0.124228i 0.154653 + 0.00558365i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 9.56672 + 16.5701i 0.428265 + 0.741777i 0.996719 0.0809379i \(-0.0257915\pi\)
−0.568454 + 0.822715i \(0.692458\pi\)
\(500\) 0 0
\(501\) 6.49530 22.6014i 0.290189 1.00976i
\(502\) 0 0
\(503\) −0.268917 −0.0119904 −0.00599520 0.999982i \(-0.501908\pi\)
−0.00599520 + 0.999982i \(0.501908\pi\)
\(504\) 0 0
\(505\) −39.1763 −1.74332
\(506\) 0 0
\(507\) −17.9158 + 4.45565i −0.795667 + 0.197883i
\(508\) 0 0
\(509\) −10.9439 18.9553i −0.485079 0.840181i 0.514774 0.857326i \(-0.327876\pi\)
−0.999853 + 0.0171449i \(0.994542\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −20.5149 22.8655i −0.905756 1.00954i
\(514\) 0 0
\(515\) 25.5298 + 14.7396i 1.12498 + 0.649506i
\(516\) 0 0
\(517\) −0.641553 + 0.370401i −0.0282155 + 0.0162902i
\(518\) 0 0
\(519\) −27.9386 + 6.94833i −1.22637 + 0.304998i
\(520\) 0 0
\(521\) 1.71215 0.0750105 0.0375053 0.999296i \(-0.488059\pi\)
0.0375053 + 0.999296i \(0.488059\pi\)
\(522\) 0 0
\(523\) 8.27136i 0.361681i −0.983512 0.180841i \(-0.942118\pi\)
0.983512 0.180841i \(-0.0578818\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −11.9372 + 6.89193i −0.519992 + 0.300217i
\(528\) 0 0
\(529\) 28.3233 49.0574i 1.23145 2.13293i
\(530\) 0 0
\(531\) 10.7466 5.69780i 0.466364 0.247263i
\(532\) 0 0
\(533\) 2.81550 + 1.62553i 0.121953 + 0.0704096i
\(534\) 0 0
\(535\) −15.1029 + 8.71966i −0.652955 + 0.376984i
\(536\) 0 0
\(537\) 21.3162 20.5605i 0.919861 0.887249i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 20.3993 0.877036 0.438518 0.898722i \(-0.355503\pi\)
0.438518 + 0.898722i \(0.355503\pi\)
\(542\) 0 0
\(543\) 22.7103 21.9051i 0.974591 0.940039i
\(544\) 0 0
\(545\) 7.07875 + 12.2608i 0.303220 + 0.525193i
\(546\) 0 0
\(547\) 18.9630 32.8449i 0.810801 1.40435i −0.101503 0.994835i \(-0.532365\pi\)
0.912304 0.409513i \(-0.134301\pi\)
\(548\) 0 0
\(549\) −2.96950 + 4.73971i −0.126735 + 0.202286i
\(550\) 0 0
\(551\) −20.4927 + 35.4943i −0.873017 + 1.51211i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 11.9393 41.5445i 0.506794 1.76347i
\(556\) 0 0
\(557\) 16.8493i 0.713926i −0.934119 0.356963i \(-0.883812\pi\)
0.934119 0.356963i \(-0.116188\pi\)
\(558\) 0 0
\(559\) 17.6834i 0.747928i
\(560\) 0 0
\(561\) −0.683064 2.74654i −0.0288390 0.115959i
\(562\) 0 0
\(563\) −8.28035 14.3420i −0.348975 0.604443i 0.637093 0.770787i \(-0.280137\pi\)
−0.986068 + 0.166345i \(0.946804\pi\)
\(564\) 0 0
\(565\) −25.2162 14.5586i −1.06085 0.612484i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.49856 + 3.17460i 0.230512 + 0.133086i 0.610808 0.791779i \(-0.290845\pi\)
−0.380296 + 0.924865i \(0.624178\pi\)
\(570\) 0 0
\(571\) −22.8703 39.6125i −0.957092 1.65773i −0.729507 0.683973i \(-0.760250\pi\)
−0.227585 0.973758i \(-0.573083\pi\)
\(572\) 0 0
\(573\) 8.77831 + 35.2967i 0.366719 + 1.47454i
\(574\) 0 0
\(575\) 22.5414i 0.940043i
\(576\) 0 0
\(577\) 17.7499i 0.738939i 0.929243 + 0.369470i \(0.120461\pi\)
−0.929243 + 0.369470i \(0.879539\pi\)
\(578\) 0 0
\(579\) −3.33677 + 11.6108i −0.138671 + 0.482528i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −0.820082 + 1.42042i −0.0339643 + 0.0588280i
\(584\) 0 0
\(585\) −6.68576 + 10.6714i −0.276422 + 0.441207i
\(586\) 0 0
\(587\) −4.41148 + 7.64091i −0.182081 + 0.315374i −0.942589 0.333955i \(-0.891617\pi\)
0.760508 + 0.649329i \(0.224950\pi\)
\(588\) 0 0
\(589\) 10.4319 + 18.0686i 0.429839 + 0.744503i
\(590\) 0 0
\(591\) 20.0406 19.3301i 0.824359 0.795133i
\(592\) 0 0
\(593\) 8.49698 0.348929 0.174465 0.984663i \(-0.444181\pi\)
0.174465 + 0.984663i \(0.444181\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 7.84464 7.56652i 0.321060 0.309677i
\(598\) 0 0
\(599\) 3.21158 1.85421i 0.131222 0.0757609i −0.432952 0.901417i \(-0.642528\pi\)
0.564174 + 0.825656i \(0.309195\pi\)
\(600\) 0 0
\(601\) −6.14043 3.54518i −0.250473 0.144611i 0.369508 0.929228i \(-0.379526\pi\)
−0.619981 + 0.784617i \(0.712860\pi\)
\(602\) 0 0
\(603\) −33.8438 + 17.9438i −1.37823 + 0.730727i
\(604\) 0 0
\(605\) −14.8482 + 25.7178i −0.603664 + 1.04558i
\(606\) 0 0
\(607\) −29.4396 + 16.9970i −1.19492 + 0.689886i −0.959418 0.281988i \(-0.909006\pi\)
−0.235500 + 0.971874i \(0.575673\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.70944i 0.109612i
\(612\) 0 0
\(613\) 23.3523 0.943190 0.471595 0.881815i \(-0.343678\pi\)
0.471595 + 0.881815i \(0.343678\pi\)
\(614\) 0 0
\(615\) −9.79732 + 2.43659i −0.395066 + 0.0982530i
\(616\) 0 0
\(617\) −39.0817 + 22.5638i −1.57337 + 0.908386i −0.577618 + 0.816307i \(0.696018\pi\)
−0.995752 + 0.0920787i \(0.970649\pi\)
\(618\) 0 0
\(619\) −7.97914 4.60676i −0.320709 0.185161i 0.331000 0.943631i \(-0.392614\pi\)
−0.651708 + 0.758470i \(0.725947\pi\)
\(620\) 0 0
\(621\) 14.4082 44.0779i 0.578183 1.76879i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 15.6247 + 27.0627i 0.624987 + 1.08251i
\(626\) 0 0
\(627\) −4.15727 + 1.03391i −0.166025 + 0.0412905i
\(628\) 0 0
\(629\) −35.5320 −1.41675
\(630\) 0 0
\(631\) 17.6136 0.701188 0.350594 0.936528i \(-0.385980\pi\)
0.350594 + 0.936528i \(0.385980\pi\)
\(632\) 0 0
\(633\) 1.24206 4.32194i 0.0493675 0.171782i
\(634\) 0 0
\(635\) −14.1156 24.4489i −0.560160 0.970226i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −25.5140 0.921169i −1.00932 0.0364409i
\(640\) 0 0
\(641\) −16.5759 9.57009i −0.654708 0.377996i 0.135550 0.990771i \(-0.456720\pi\)
−0.790258 + 0.612775i \(0.790053\pi\)
\(642\) 0 0
\(643\) 2.01129 1.16122i 0.0793177 0.0457941i −0.459817 0.888014i \(-0.652085\pi\)
0.539134 + 0.842220i \(0.318752\pi\)
\(644\) 0 0
\(645\) 38.1228 + 39.5240i 1.50108 + 1.55626i
\(646\) 0 0
\(647\) 25.8620 1.01674 0.508370 0.861139i \(-0.330248\pi\)
0.508370 + 0.861139i \(0.330248\pi\)
\(648\) 0 0
\(649\) 1.69625i 0.0665835i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 20.1140 11.6128i 0.787123 0.454446i −0.0518258 0.998656i \(-0.516504\pi\)
0.838949 + 0.544211i \(0.183171\pi\)
\(654\) 0 0
\(655\) −26.9681 + 46.7102i −1.05373 + 1.82512i
\(656\) 0 0
\(657\) −5.71410 0.206305i −0.222928 0.00804871i
\(658\) 0 0
\(659\) 13.7002 + 7.90981i 0.533684 + 0.308122i 0.742515 0.669829i \(-0.233633\pi\)
−0.208832 + 0.977952i \(0.566966\pi\)
\(660\) 0 0
\(661\) 15.8006 9.12248i 0.614572 0.354823i −0.160181 0.987088i \(-0.551208\pi\)
0.774753 + 0.632264i \(0.217874\pi\)
\(662\) 0 0
\(663\) 9.94863 + 2.85909i 0.386373 + 0.111038i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −61.8697 −2.39560
\(668\) 0 0
\(669\) 10.0022 + 40.2180i 0.386708 + 1.55492i
\(670\) 0 0
\(671\) 0.389984 + 0.675472i 0.0150552 + 0.0260763i
\(672\) 0 0
\(673\) 14.4184 24.9733i 0.555787 0.962651i −0.442055 0.896988i \(-0.645750\pi\)
0.997842 0.0656633i \(-0.0209163\pi\)
\(674\) 0 0
\(675\) −2.70595 12.8424i −0.104152 0.494305i
\(676\) 0 0
\(677\) −16.7668 + 29.0409i −0.644400 + 1.11613i 0.340040 + 0.940411i \(0.389559\pi\)
−0.984440 + 0.175722i \(0.943774\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 6.27323 1.56015i 0.240391 0.0597852i
\(682\) 0 0
\(683\) 22.0481i 0.843649i 0.906678 + 0.421824i \(0.138610\pi\)
−0.906678 + 0.421824i \(0.861390\pi\)
\(684\) 0 0
\(685\) 14.7745i 0.564506i
\(686\) 0 0
\(687\) 35.0715 + 10.0790i 1.33806 + 0.384539i
\(688\) 0 0
\(689\) −2.99941 5.19512i −0.114268 0.197918i
\(690\) 0 0
\(691\) 22.8662 + 13.2018i 0.869869 + 0.502219i 0.867305 0.497777i \(-0.165850\pi\)
0.00256453 + 0.999997i \(0.499184\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 40.5569 + 23.4156i 1.53841 + 0.888203i
\(696\) 0 0
\(697\) 4.14938 + 7.18694i 0.157169 + 0.272225i
\(698\) 0 0
\(699\) 15.9125 15.3484i 0.601868 0.580530i
\(700\) 0 0
\(701\) 20.5140i 0.774804i 0.921911 + 0.387402i \(0.126627\pi\)
−0.921911 + 0.387402i \(0.873373\pi\)
\(702\) 0 0
\(703\) 53.7827i 2.02845i
\(704\) 0 0
\(705\) 5.84115 + 6.05585i 0.219991 + 0.228076i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 3.13054 5.42226i 0.117570 0.203637i −0.801234 0.598351i \(-0.795823\pi\)
0.918804 + 0.394714i \(0.129156\pi\)
\(710\) 0 0
\(711\) 2.20482 + 1.38135i 0.0826871 + 0.0518047i
\(712\) 0 0
\(713\) −15.7476 + 27.2756i −0.589751 + 1.02148i
\(714\) 0 0
\(715\) 0.878041 + 1.52081i 0.0328369 + 0.0568751i
\(716\) 0 0
\(717\) 21.2442 + 6.10528i 0.793381 + 0.228006i
\(718\) 0 0
\(719\) −23.2223 −0.866045 −0.433023 0.901383i \(-0.642553\pi\)
−0.433023 + 0.901383i \(0.642553\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −1.27161 5.11301i −0.0472916 0.190155i
\(724\) 0 0
\(725\) −15.1643 + 8.75512i −0.563189 + 0.325157i
\(726\) 0 0
\(727\) −2.50999 1.44914i −0.0930903 0.0537457i 0.452732 0.891647i \(-0.350449\pi\)
−0.545822 + 0.837901i \(0.683783\pi\)
\(728\) 0 0
\(729\) 2.91748 26.8419i 0.108055 0.994145i
\(730\) 0 0
\(731\) 22.5696 39.0917i 0.834767 1.44586i
\(732\) 0 0
\(733\) 10.2963 5.94457i 0.380302 0.219568i −0.297647 0.954676i \(-0.596202\pi\)
0.677950 + 0.735108i \(0.262869\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.34190i 0.196772i
\(738\) 0 0
\(739\) −34.4509 −1.26730 −0.633648 0.773621i \(-0.718443\pi\)
−0.633648 + 0.773621i \(0.718443\pi\)
\(740\) 0 0
\(741\) 4.32763 15.0586i 0.158979 0.553193i
\(742\) 0 0
\(743\) −2.44069 + 1.40913i −0.0895401 + 0.0516960i −0.544101 0.839019i \(-0.683129\pi\)
0.454561 + 0.890715i \(0.349796\pi\)
\(744\) 0 0
\(745\) 25.5447 + 14.7483i 0.935887 + 0.540335i
\(746\) 0 0
\(747\) −17.5864 11.0181i −0.643452 0.403132i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −3.86045 6.68649i −0.140870 0.243993i 0.786955 0.617011i \(-0.211657\pi\)
−0.927824 + 0.373017i \(0.878323\pi\)
\(752\) 0 0
\(753\) 7.60026 + 7.87962i 0.276969 + 0.287149i
\(754\) 0 0
\(755\) 20.7517 0.755233
\(756\) 0 0
\(757\) 1.17924 0.0428603 0.0214302 0.999770i \(-0.493178\pi\)
0.0214302 + 0.999770i \(0.493178\pi\)
\(758\) 0 0
\(759\) −4.48947 4.65449i −0.162957 0.168947i
\(760\) 0 0
\(761\) 1.56644 + 2.71316i 0.0567835 + 0.0983520i 0.893020 0.450017i \(-0.148582\pi\)
−0.836236 + 0.548369i \(0.815249\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −28.3999 + 15.0574i −1.02680 + 0.544403i
\(766\) 0 0
\(767\) 5.37276 + 3.10196i 0.193999 + 0.112005i
\(768\) 0 0
\(769\) −5.53497 + 3.19562i −0.199596 + 0.115237i −0.596467 0.802637i \(-0.703429\pi\)
0.396871 + 0.917874i \(0.370096\pi\)
\(770\) 0 0
\(771\) −11.7245 + 40.7971i −0.422247 + 1.46927i
\(772\) 0 0
\(773\) 47.9558 1.72485 0.862425 0.506185i \(-0.168945\pi\)
0.862425 + 0.506185i \(0.168945\pi\)
\(774\) 0 0
\(775\) 8.91369i 0.320189i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 10.8784 6.28067i 0.389761 0.225028i
\(780\) 0 0
\(781\) −1.78015 + 3.08331i −0.0636987 + 0.110329i
\(782\) 0 0
\(783\) −35.2487 + 7.42705i −1.25969 + 0.265421i
\(784\) 0 0
\(785\) −29.1661 16.8390i −1.04098 0.601011i
\(786\) 0 0
\(787\) −5.23136 + 3.02033i −0.186478 + 0.107663i −0.590333 0.807160i \(-0.701003\pi\)
0.403855 + 0.914823i \(0.367670\pi\)
\(788\) 0 0
\(789\) 10.1928 + 40.9841i 0.362872 + 1.45907i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −2.85269 −0.101302
\(794\) 0 0
\(795\) 17.9039 + 5.14530i 0.634985 + 0.182485i
\(796\) 0 0
\(797\) −0.782501 1.35533i −0.0277176 0.0480083i 0.851834 0.523812i \(-0.175491\pi\)
−0.879551 + 0.475804i \(0.842157\pi\)
\(798\) 0 0
\(799\) 3.45810 5.98961i 0.122339 0.211897i
\(800\) 0 0
\(801\) 1.05832 29.3128i 0.0373939 1.03572i
\(802\) 0 0
\(803\) −0.398681 + 0.690535i −0.0140691 + 0.0243685i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 11.8928 + 12.3299i 0.418646 + 0.434034i
\(808\) 0 0
\(809\) 17.7184i 0.622944i 0.950255 + 0.311472i \(0.100822\pi\)
−0.950255 + 0.311472i \(0.899178\pi\)
\(810\) 0 0
\(811\) 27.5261i 0.966571i 0.875463 + 0.483285i \(0.160557\pi\)
−0.875463 + 0.483285i \(0.839443\pi\)
\(812\) 0 0
\(813\) −7.34872 + 7.08819i −0.257731 + 0.248594i
\(814\) 0 0
\(815\) 16.2334 + 28.1171i 0.568633 + 0.984901i
\(816\) 0 0
\(817\) −59.1707 34.1622i −2.07012 1.19519i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −23.0343 13.2989i −0.803903 0.464134i 0.0409311 0.999162i \(-0.486968\pi\)
−0.844834 + 0.535028i \(0.820301\pi\)
\(822\) 0 0
\(823\) −12.0797 20.9227i −0.421073 0.729319i 0.574972 0.818173i \(-0.305013\pi\)
−0.996045 + 0.0888537i \(0.971680\pi\)
\(824\) 0 0
\(825\) −1.75902 0.505518i −0.0612414 0.0175999i
\(826\) 0 0
\(827\) 9.64923i 0.335537i 0.985826 + 0.167768i \(0.0536561\pi\)
−0.985826 + 0.167768i \(0.946344\pi\)
\(828\) 0 0
\(829\) 29.0385i 1.00855i −0.863543 0.504275i \(-0.831760\pi\)
0.863543 0.504275i \(-0.168240\pi\)
\(830\) 0 0
\(831\) −39.1535 + 9.73747i −1.35822 + 0.337789i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −18.6231 + 32.2562i −0.644480 + 1.11627i
\(836\) 0 0
\(837\) −5.69754 + 17.4300i −0.196936 + 0.602468i
\(838\) 0 0
\(839\) −6.84383 + 11.8539i −0.236275 + 0.409241i −0.959642 0.281223i \(-0.909260\pi\)
0.723367 + 0.690463i \(0.242593\pi\)
\(840\) 0 0
\(841\) 9.53027 + 16.5069i 0.328630 + 0.569204i
\(842\) 0 0
\(843\) 10.5209 + 42.3037i 0.362360 + 1.45702i
\(844\) 0 0
\(845\) 29.2404 1.00590
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 16.5874 + 4.76698i 0.569279 + 0.163602i
\(850\) 0 0
\(851\) −70.3110 + 40.5941i −2.41023 + 1.39155i
\(852\) 0 0
\(853\) −40.5184 23.3933i −1.38732 0.800972i −0.394310 0.918977i \(-0.629017\pi\)
−0.993013 + 0.118006i \(0.962350\pi\)
\(854\) 0 0
\(855\) 22.7915 + 42.9872i 0.779454 + 1.47013i
\(856\) 0 0
\(857\) −15.8980 + 27.5361i −0.543065 + 0.940616i 0.455661 + 0.890153i \(0.349403\pi\)
−0.998726 + 0.0504623i \(0.983931\pi\)
\(858\) 0 0
\(859\) 21.9005 12.6442i 0.747235 0.431416i −0.0774592 0.996996i \(-0.524681\pi\)
0.824694 + 0.565579i \(0.191347\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 18.4189i 0.626987i 0.949590 + 0.313494i \(0.101499\pi\)
−0.949590 + 0.313494i \(0.898501\pi\)
\(864\) 0 0
\(865\) 45.5986 1.55040
\(866\) 0 0
\(867\) −2.09783 2.17494i −0.0712461 0.0738648i
\(868\) 0 0
\(869\) 0.314216 0.181413i 0.0106590 0.00615400i
\(870\) 0 0
\(871\) −16.9202 9.76886i −0.573318 0.331005i
\(872\) 0 0
\(873\) 0.368589 0.588317i 0.0124748 0.0199115i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 4.44695 + 7.70234i 0.150163 + 0.260089i 0.931287 0.364286i \(-0.118687\pi\)
−0.781124 + 0.624375i \(0.785354\pi\)
\(878\) 0 0
\(879\) −6.49732 + 22.6084i −0.219149 + 0.762563i
\(880\) 0 0
\(881\) −13.1721 −0.443780 −0.221890 0.975072i \(-0.571223\pi\)
−0.221890 + 0.975072i \(0.571223\pi\)
\(882\) 0 0
\(883\) 12.6729 0.426477 0.213239 0.977000i \(-0.431599\pi\)
0.213239 + 0.977000i \(0.431599\pi\)
\(884\) 0 0
\(885\) −18.6960 + 4.64970i −0.628459 + 0.156298i
\(886\) 0 0
\(887\) 16.6991 + 28.9238i 0.560703 + 0.971165i 0.997435 + 0.0715740i \(0.0228022\pi\)
−0.436733 + 0.899591i \(0.643864\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −3.11650 2.11285i −0.104407 0.0707830i
\(892\) 0 0
\(893\) −9.06611 5.23432i −0.303386 0.175160i
\(894\) 0 0
\(895\) −40.6231 + 23.4538i −1.35788 + 0.783974i
\(896\) 0 0
\(897\) 22.9528 5.70837i 0.766372 0.190597i
\(898\) 0 0
\(899\) 24.4655 0.815970
\(900\) 0 0
\(901\) 15.3128i 0.510142i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −43.2799 + 24.9877i −1.43867 + 0.830618i
\(906\) 0 0
\(907\) 14.6563 25.3855i 0.486655 0.842912i −0.513227 0.858253i \(-0.671550\pi\)
0.999882 + 0.0153411i \(0.00488340\pi\)
\(908\) 0 0
\(909\) 36.3051 + 22.7457i 1.20416 + 0.754426i
\(910\) 0 0
\(911\) 1.72555 + 0.996246i 0.0571700 + 0.0330071i 0.528313 0.849050i \(-0.322825\pi\)
−0.471143 + 0.882057i \(0.656158\pi\)
\(912\) 0 0
\(913\) −2.50629 + 1.44701i −0.0829462 + 0.0478890i
\(914\) 0 0
\(915\) 6.37603 6.14998i 0.210785 0.203312i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 1.79536 0.0592233 0.0296117 0.999561i \(-0.490573\pi\)
0.0296117 + 0.999561i \(0.490573\pi\)
\(920\) 0 0
\(921\) −21.1742 + 20.4235i −0.697712 + 0.672976i
\(922\) 0 0
\(923\) −6.51079 11.2770i −0.214305 0.371188i
\(924\) 0 0
\(925\) −11.4889 + 19.8993i −0.377751 + 0.654284i
\(926\) 0 0
\(927\) −15.1009 28.4819i −0.495980 0.935469i
\(928\) 0 0
\(929\) −12.4178 + 21.5083i −0.407415 + 0.705664i −0.994599 0.103789i \(-0.966903\pi\)
0.587184 + 0.809453i \(0.300237\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −0.00142507 + 0.00495873i −4.66546e−5 + 0.000162342i
\(934\) 0 0
\(935\) 4.48263i 0.146598i
\(936\) 0 0
\(937\) 27.9046i 0.911605i 0.890081 + 0.455802i \(0.150648\pi\)
−0.890081 + 0.455802i \(0.849352\pi\)
\(938\) 0 0
\(939\) 5.12400 + 20.6031i 0.167215 + 0.672357i
\(940\) 0 0
\(941\) 26.2537 + 45.4728i 0.855847 + 1.48237i 0.875857 + 0.482571i \(0.160297\pi\)
−0.0200094 + 0.999800i \(0.506370\pi\)
\(942\) 0 0
\(943\) 16.4216 + 9.48104i 0.534762 + 0.308745i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 37.3591 + 21.5693i 1.21401 + 0.700907i 0.963630 0.267241i \(-0.0861121\pi\)
0.250377 + 0.968148i \(0.419445\pi\)
\(948\) 0 0
\(949\) −1.45815 2.52559i −0.0473336 0.0819843i
\(950\) 0 0
\(951\) −9.65433 38.8191i −0.313063 1.25880i
\(952\) 0 0
\(953\) 59.9829i 1.94304i 0.236965 + 0.971518i \(0.423847\pi\)
−0.236965 + 0.971518i \(0.576153\pi\)
\(954\) 0 0
\(955\) 57.6079i 1.86415i
\(956\) 0 0
\(957\) −1.38750 + 4.82801i −0.0448515 + 0.156067i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −9.27285 + 16.0610i −0.299124 + 0.518098i
\(962\) 0 0
\(963\) 19.0586 + 0.688101i 0.614156 + 0.0221737i
\(964\) 0 0
\(965\) 9.56709 16.5707i 0.307975 0.533429i
\(966\) 0 0
\(967\) −26.6398 46.1414i −0.856677 1.48381i −0.875080 0.483978i \(-0.839191\pi\)
0.0184029 0.999831i \(-0.494142\pi\)
\(968\) 0 0
\(969\) 28.7864 27.7659i 0.924753 0.891968i
\(970\) 0 0
\(971\) 56.3111 1.80711 0.903555 0.428472i \(-0.140948\pi\)
0.903555 + 0.428472i \(0.140948\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 4.81796 4.64715i 0.154298 0.148828i
\(976\) 0 0
\(977\) 22.5755 13.0340i 0.722254 0.416994i −0.0933275 0.995635i \(-0.529750\pi\)
0.815582 + 0.578642i \(0.196417\pi\)
\(978\) 0 0
\(979\) −3.54237 2.04519i −0.113215 0.0653646i
\(980\) 0 0
\(981\) 0.558611 15.4721i 0.0178351 0.493986i
\(982\) 0 0
\(983\) −19.0252 + 32.9527i −0.606811 + 1.05103i 0.384952 + 0.922937i \(0.374218\pi\)
−0.991763 + 0.128090i \(0.959115\pi\)
\(984\) 0 0
\(985\) −38.1922 + 22.0503i −1.21690 + 0.702580i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 103.140i 3.27965i
\(990\) 0 0
\(991\) 11.3752 0.361344 0.180672 0.983543i \(-0.442173\pi\)
0.180672 + 0.983543i \(0.442173\pi\)
\(992\) 0 0
\(993\) 5.81931 1.44726i 0.184670 0.0459276i
\(994\) 0 0
\(995\) −14.9499 + 8.63131i −0.473943 + 0.273631i
\(996\) 0 0
\(997\) −44.1590 25.4952i −1.39853 0.807441i −0.404290 0.914631i \(-0.632482\pi\)
−0.994239 + 0.107189i \(0.965815\pi\)
\(998\) 0 0
\(999\) −35.1849 + 31.5678i −1.11320 + 0.998762i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.x.b.1469.7 16
3.2 odd 2 5292.2.x.b.4409.7 16
7.2 even 3 1764.2.w.b.1109.2 16
7.3 odd 6 1764.2.bm.a.1685.4 16
7.4 even 3 252.2.bm.a.173.5 yes 16
7.5 odd 6 252.2.w.a.101.7 yes 16
7.6 odd 2 1764.2.x.a.1469.2 16
9.4 even 3 5292.2.x.a.881.2 16
9.5 odd 6 1764.2.x.a.293.2 16
21.2 odd 6 5292.2.w.b.521.7 16
21.5 even 6 756.2.w.a.521.2 16
21.11 odd 6 756.2.bm.a.89.2 16
21.17 even 6 5292.2.bm.a.4625.7 16
21.20 even 2 5292.2.x.a.4409.2 16
28.11 odd 6 1008.2.df.d.929.4 16
28.19 even 6 1008.2.ca.d.353.2 16
63.4 even 3 756.2.w.a.341.2 16
63.5 even 6 252.2.bm.a.185.5 yes 16
63.11 odd 6 2268.2.t.b.2105.7 16
63.13 odd 6 5292.2.x.b.881.7 16
63.23 odd 6 1764.2.bm.a.1697.4 16
63.25 even 3 2268.2.t.a.2105.2 16
63.31 odd 6 5292.2.w.b.1097.7 16
63.32 odd 6 252.2.w.a.5.7 16
63.40 odd 6 756.2.bm.a.17.2 16
63.41 even 6 inner 1764.2.x.b.293.7 16
63.47 even 6 2268.2.t.a.1781.2 16
63.58 even 3 5292.2.bm.a.2285.7 16
63.59 even 6 1764.2.w.b.509.2 16
63.61 odd 6 2268.2.t.b.1781.7 16
84.11 even 6 3024.2.df.d.1601.2 16
84.47 odd 6 3024.2.ca.d.2033.2 16
252.67 odd 6 3024.2.ca.d.2609.2 16
252.95 even 6 1008.2.ca.d.257.2 16
252.103 even 6 3024.2.df.d.17.2 16
252.131 odd 6 1008.2.df.d.689.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.w.a.5.7 16 63.32 odd 6
252.2.w.a.101.7 yes 16 7.5 odd 6
252.2.bm.a.173.5 yes 16 7.4 even 3
252.2.bm.a.185.5 yes 16 63.5 even 6
756.2.w.a.341.2 16 63.4 even 3
756.2.w.a.521.2 16 21.5 even 6
756.2.bm.a.17.2 16 63.40 odd 6
756.2.bm.a.89.2 16 21.11 odd 6
1008.2.ca.d.257.2 16 252.95 even 6
1008.2.ca.d.353.2 16 28.19 even 6
1008.2.df.d.689.4 16 252.131 odd 6
1008.2.df.d.929.4 16 28.11 odd 6
1764.2.w.b.509.2 16 63.59 even 6
1764.2.w.b.1109.2 16 7.2 even 3
1764.2.x.a.293.2 16 9.5 odd 6
1764.2.x.a.1469.2 16 7.6 odd 2
1764.2.x.b.293.7 16 63.41 even 6 inner
1764.2.x.b.1469.7 16 1.1 even 1 trivial
1764.2.bm.a.1685.4 16 7.3 odd 6
1764.2.bm.a.1697.4 16 63.23 odd 6
2268.2.t.a.1781.2 16 63.47 even 6
2268.2.t.a.2105.2 16 63.25 even 3
2268.2.t.b.1781.7 16 63.61 odd 6
2268.2.t.b.2105.7 16 63.11 odd 6
3024.2.ca.d.2033.2 16 84.47 odd 6
3024.2.ca.d.2609.2 16 252.67 odd 6
3024.2.df.d.17.2 16 252.103 even 6
3024.2.df.d.1601.2 16 84.11 even 6
5292.2.w.b.521.7 16 21.2 odd 6
5292.2.w.b.1097.7 16 63.31 odd 6
5292.2.x.a.881.2 16 9.4 even 3
5292.2.x.a.4409.2 16 21.20 even 2
5292.2.x.b.881.7 16 63.13 odd 6
5292.2.x.b.4409.7 16 3.2 odd 2
5292.2.bm.a.2285.7 16 63.58 even 3
5292.2.bm.a.4625.7 16 21.17 even 6