Properties

Label 5292.2.l.j.3313.5
Level $5292$
Weight $2$
Character 5292.3313
Analytic conductor $42.257$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5292,2,Mod(361,5292)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5292.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5292, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5292.l (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2568327497\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 1764)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 3313.5
Character \(\chi\) \(=\) 5292.3313
Dual form 5292.2.l.j.361.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.938454 q^{5} -2.63595 q^{11} +(2.71055 + 4.69481i) q^{13} +(-1.92740 - 3.33835i) q^{17} +(-0.548251 + 0.949599i) q^{19} +6.33440 q^{23} -4.11930 q^{25} +(1.94145 - 3.36268i) q^{29} +(-2.33312 + 4.04109i) q^{31} +(-1.15439 + 1.99946i) q^{37} +(-4.12179 - 7.13915i) q^{41} +(-2.14515 + 3.71551i) q^{43} +(1.32160 + 2.28908i) q^{47} +(-0.637645 - 1.10443i) q^{53} +2.47372 q^{55} +(3.02092 - 5.23239i) q^{59} +(6.71961 + 11.6387i) q^{61} +(-2.54373 - 4.40587i) q^{65} +(3.64378 - 6.31122i) q^{67} -14.7859 q^{71} +(-2.87484 - 4.97937i) q^{73} +(-5.51357 - 9.54979i) q^{79} +(-1.24637 + 2.15877i) q^{83} +(1.80877 + 3.13289i) q^{85} +(-6.75703 + 11.7035i) q^{89} +(0.514508 - 0.891154i) q^{95} +(-1.75370 + 3.03749i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{11} - 16 q^{23} + 24 q^{25} + 32 q^{29} - 12 q^{37} + 16 q^{53} + 36 q^{65} + 12 q^{67} - 48 q^{71} + 12 q^{79} + 12 q^{85} - 32 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(2647\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.938454 −0.419689 −0.209845 0.977735i \(-0.567296\pi\)
−0.209845 + 0.977735i \(0.567296\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.63595 −0.794768 −0.397384 0.917652i \(-0.630082\pi\)
−0.397384 + 0.917652i \(0.630082\pi\)
\(12\) 0 0
\(13\) 2.71055 + 4.69481i 0.751772 + 1.30211i 0.946963 + 0.321342i \(0.104134\pi\)
−0.195191 + 0.980765i \(0.562533\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.92740 3.33835i −0.467463 0.809669i 0.531846 0.846841i \(-0.321498\pi\)
−0.999309 + 0.0371717i \(0.988165\pi\)
\(18\) 0 0
\(19\) −0.548251 + 0.949599i −0.125777 + 0.217853i −0.922037 0.387103i \(-0.873476\pi\)
0.796259 + 0.604956i \(0.206809\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.33440 1.32081 0.660407 0.750908i \(-0.270384\pi\)
0.660407 + 0.750908i \(0.270384\pi\)
\(24\) 0 0
\(25\) −4.11930 −0.823861
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.94145 3.36268i 0.360517 0.624434i −0.627529 0.778593i \(-0.715934\pi\)
0.988046 + 0.154159i \(0.0492668\pi\)
\(30\) 0 0
\(31\) −2.33312 + 4.04109i −0.419041 + 0.725801i −0.995843 0.0910831i \(-0.970967\pi\)
0.576802 + 0.816884i \(0.304300\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.15439 + 1.99946i −0.189780 + 0.328709i −0.945177 0.326559i \(-0.894111\pi\)
0.755397 + 0.655268i \(0.227444\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.12179 7.13915i −0.643715 1.11495i −0.984597 0.174841i \(-0.944059\pi\)
0.340882 0.940106i \(-0.389274\pi\)
\(42\) 0 0
\(43\) −2.14515 + 3.71551i −0.327132 + 0.566609i −0.981942 0.189185i \(-0.939416\pi\)
0.654810 + 0.755794i \(0.272749\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.32160 + 2.28908i 0.192775 + 0.333897i 0.946169 0.323673i \(-0.104918\pi\)
−0.753394 + 0.657570i \(0.771584\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −0.637645 1.10443i −0.0875873 0.151706i 0.818903 0.573931i \(-0.194582\pi\)
−0.906491 + 0.422226i \(0.861249\pi\)
\(54\) 0 0
\(55\) 2.47372 0.333556
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.02092 5.23239i 0.393291 0.681199i −0.599591 0.800307i \(-0.704670\pi\)
0.992881 + 0.119107i \(0.0380033\pi\)
\(60\) 0 0
\(61\) 6.71961 + 11.6387i 0.860357 + 1.49018i 0.871584 + 0.490246i \(0.163093\pi\)
−0.0112268 + 0.999937i \(0.503574\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.54373 4.40587i −0.315511 0.546480i
\(66\) 0 0
\(67\) 3.64378 6.31122i 0.445159 0.771038i −0.552904 0.833245i \(-0.686480\pi\)
0.998063 + 0.0622066i \(0.0198138\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −14.7859 −1.75476 −0.877382 0.479793i \(-0.840712\pi\)
−0.877382 + 0.479793i \(0.840712\pi\)
\(72\) 0 0
\(73\) −2.87484 4.97937i −0.336475 0.582791i 0.647292 0.762242i \(-0.275901\pi\)
−0.983767 + 0.179451i \(0.942568\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −5.51357 9.54979i −0.620326 1.07444i −0.989425 0.145046i \(-0.953667\pi\)
0.369099 0.929390i \(-0.379666\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.24637 + 2.15877i −0.136807 + 0.236956i −0.926286 0.376821i \(-0.877017\pi\)
0.789479 + 0.613777i \(0.210351\pi\)
\(84\) 0 0
\(85\) 1.80877 + 3.13289i 0.196189 + 0.339810i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.75703 + 11.7035i −0.716244 + 1.24057i 0.246234 + 0.969210i \(0.420807\pi\)
−0.962478 + 0.271360i \(0.912526\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.514508 0.891154i 0.0527874 0.0914305i
\(96\) 0 0
\(97\) −1.75370 + 3.03749i −0.178061 + 0.308410i −0.941216 0.337805i \(-0.890316\pi\)
0.763155 + 0.646215i \(0.223649\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.09067 0.705548 0.352774 0.935708i \(-0.385238\pi\)
0.352774 + 0.935708i \(0.385238\pi\)
\(102\) 0 0
\(103\) 11.2462 1.10812 0.554061 0.832476i \(-0.313077\pi\)
0.554061 + 0.832476i \(0.313077\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.42195 7.65905i 0.427486 0.740428i −0.569163 0.822225i \(-0.692733\pi\)
0.996649 + 0.0817968i \(0.0260659\pi\)
\(108\) 0 0
\(109\) −9.34721 16.1898i −0.895300 1.55071i −0.833433 0.552621i \(-0.813628\pi\)
−0.0618674 0.998084i \(-0.519706\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −3.99798 6.92471i −0.376099 0.651422i 0.614392 0.789001i \(-0.289401\pi\)
−0.990491 + 0.137579i \(0.956068\pi\)
\(114\) 0 0
\(115\) −5.94454 −0.554331
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −4.05178 −0.368343
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 8.55805 0.765455
\(126\) 0 0
\(127\) 3.73961 0.331837 0.165918 0.986140i \(-0.446941\pi\)
0.165918 + 0.986140i \(0.446941\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −21.6344 −1.89021 −0.945104 0.326768i \(-0.894040\pi\)
−0.945104 + 0.326768i \(0.894040\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −14.0974 −1.20442 −0.602211 0.798337i \(-0.705714\pi\)
−0.602211 + 0.798337i \(0.705714\pi\)
\(138\) 0 0
\(139\) −3.46104 5.99470i −0.293562 0.508463i 0.681088 0.732202i \(-0.261507\pi\)
−0.974649 + 0.223738i \(0.928174\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −7.14487 12.3753i −0.597484 1.03487i
\(144\) 0 0
\(145\) −1.82196 + 3.15572i −0.151305 + 0.262068i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −11.4331 −0.936637 −0.468318 0.883560i \(-0.655140\pi\)
−0.468318 + 0.883560i \(0.655140\pi\)
\(150\) 0 0
\(151\) −10.7735 −0.876739 −0.438369 0.898795i \(-0.644444\pi\)
−0.438369 + 0.898795i \(0.644444\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.18953 3.79237i 0.175867 0.304611i
\(156\) 0 0
\(157\) −8.44500 + 14.6272i −0.673984 + 1.16737i 0.302780 + 0.953060i \(0.402085\pi\)
−0.976765 + 0.214315i \(0.931248\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 9.08879 15.7422i 0.711889 1.23303i −0.252258 0.967660i \(-0.581173\pi\)
0.964147 0.265368i \(-0.0854933\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.45398 4.25041i −0.189894 0.328907i 0.755320 0.655356i \(-0.227481\pi\)
−0.945215 + 0.326449i \(0.894148\pi\)
\(168\) 0 0
\(169\) −8.19418 + 14.1927i −0.630322 + 1.09175i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 5.99519 + 10.3840i 0.455806 + 0.789479i 0.998734 0.0503002i \(-0.0160178\pi\)
−0.542928 + 0.839779i \(0.682684\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −11.9324 20.6675i −0.891871 1.54477i −0.837631 0.546237i \(-0.816060\pi\)
−0.0542400 0.998528i \(-0.517274\pi\)
\(180\) 0 0
\(181\) 14.0990 1.04797 0.523987 0.851726i \(-0.324444\pi\)
0.523987 + 0.851726i \(0.324444\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.08334 1.87640i 0.0796487 0.137956i
\(186\) 0 0
\(187\) 5.08052 + 8.79972i 0.371525 + 0.643500i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.97457 + 15.5444i 0.649377 + 1.12475i 0.983272 + 0.182144i \(0.0583036\pi\)
−0.333895 + 0.942610i \(0.608363\pi\)
\(192\) 0 0
\(193\) −10.5119 + 18.2072i −0.756665 + 1.31058i 0.187878 + 0.982192i \(0.439839\pi\)
−0.944542 + 0.328389i \(0.893494\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −9.65707 −0.688038 −0.344019 0.938963i \(-0.611788\pi\)
−0.344019 + 0.938963i \(0.611788\pi\)
\(198\) 0 0
\(199\) −1.61669 2.80018i −0.114604 0.198500i 0.803017 0.595955i \(-0.203227\pi\)
−0.917621 + 0.397456i \(0.869893\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 3.86811 + 6.69976i 0.270160 + 0.467931i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.44516 2.50309i 0.0999639 0.173143i
\(210\) 0 0
\(211\) 0.853200 + 1.47779i 0.0587367 + 0.101735i 0.893899 0.448269i \(-0.147959\pi\)
−0.835162 + 0.550004i \(0.814626\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.01312 3.48683i 0.137294 0.237800i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 10.4486 18.0976i 0.702851 1.21737i
\(222\) 0 0
\(223\) 1.60137 2.77366i 0.107236 0.185738i −0.807414 0.589986i \(-0.799133\pi\)
0.914649 + 0.404248i \(0.132467\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −23.0579 −1.53041 −0.765204 0.643788i \(-0.777362\pi\)
−0.765204 + 0.643788i \(0.777362\pi\)
\(228\) 0 0
\(229\) −4.00303 −0.264528 −0.132264 0.991215i \(-0.542225\pi\)
−0.132264 + 0.991215i \(0.542225\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 14.3624 24.8765i 0.940914 1.62971i 0.177182 0.984178i \(-0.443302\pi\)
0.763732 0.645534i \(-0.223365\pi\)
\(234\) 0 0
\(235\) −1.24026 2.14820i −0.0809057 0.140133i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 10.5967 + 18.3540i 0.685443 + 1.18722i 0.973297 + 0.229548i \(0.0737248\pi\)
−0.287854 + 0.957674i \(0.592942\pi\)
\(240\) 0 0
\(241\) −18.1185 −1.16712 −0.583558 0.812071i \(-0.698340\pi\)
−0.583558 + 0.812071i \(0.698340\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −5.94425 −0.378224
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4.04768 −0.255487 −0.127744 0.991807i \(-0.540773\pi\)
−0.127744 + 0.991807i \(0.540773\pi\)
\(252\) 0 0
\(253\) −16.6971 −1.04974
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −28.7200 −1.79151 −0.895753 0.444551i \(-0.853363\pi\)
−0.895753 + 0.444551i \(0.853363\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.12711 0.254488 0.127244 0.991871i \(-0.459387\pi\)
0.127244 + 0.991871i \(0.459387\pi\)
\(264\) 0 0
\(265\) 0.598401 + 1.03646i 0.0367595 + 0.0636692i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −8.59348 14.8843i −0.523954 0.907514i −0.999611 0.0278838i \(-0.991123\pi\)
0.475657 0.879631i \(-0.342210\pi\)
\(270\) 0 0
\(271\) −13.5462 + 23.4628i −0.822875 + 1.42526i 0.0806581 + 0.996742i \(0.474298\pi\)
−0.903533 + 0.428519i \(0.859036\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 10.8583 0.654779
\(276\) 0 0
\(277\) −29.5101 −1.77309 −0.886545 0.462642i \(-0.846902\pi\)
−0.886545 + 0.462642i \(0.846902\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −3.09348 + 5.35807i −0.184542 + 0.319636i −0.943422 0.331595i \(-0.892413\pi\)
0.758880 + 0.651230i \(0.225747\pi\)
\(282\) 0 0
\(283\) 12.1655 21.0713i 0.723166 1.25256i −0.236559 0.971617i \(-0.576020\pi\)
0.959725 0.280942i \(-0.0906470\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.07027 1.85376i 0.0629570 0.109045i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 13.1615 + 22.7963i 0.768900 + 1.33177i 0.938160 + 0.346203i \(0.112529\pi\)
−0.169259 + 0.985572i \(0.554138\pi\)
\(294\) 0 0
\(295\) −2.83500 + 4.91036i −0.165060 + 0.285892i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 17.1697 + 29.7388i 0.992950 + 1.71984i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −6.30604 10.9224i −0.361083 0.625414i
\(306\) 0 0
\(307\) −18.8042 −1.07321 −0.536606 0.843833i \(-0.680294\pi\)
−0.536606 + 0.843833i \(0.680294\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −6.67126 + 11.5550i −0.378292 + 0.655221i −0.990814 0.135232i \(-0.956822\pi\)
0.612522 + 0.790454i \(0.290155\pi\)
\(312\) 0 0
\(313\) −5.50564 9.53604i −0.311197 0.539009i 0.667425 0.744677i \(-0.267397\pi\)
−0.978622 + 0.205668i \(0.934063\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4.77717 8.27429i −0.268312 0.464731i 0.700114 0.714031i \(-0.253133\pi\)
−0.968426 + 0.249301i \(0.919799\pi\)
\(318\) 0 0
\(319\) −5.11755 + 8.86385i −0.286528 + 0.496281i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4.22679 0.235185
\(324\) 0 0
\(325\) −11.1656 19.3394i −0.619355 1.07276i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −16.1908 28.0433i −0.889929 1.54140i −0.839958 0.542651i \(-0.817421\pi\)
−0.0499706 0.998751i \(-0.515913\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.41952 + 5.92279i −0.186829 + 0.323596i
\(336\) 0 0
\(337\) −4.33194 7.50313i −0.235976 0.408722i 0.723580 0.690240i \(-0.242495\pi\)
−0.959556 + 0.281519i \(0.909162\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 6.14999 10.6521i 0.333041 0.576844i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10.5569 18.2852i 0.566726 0.981598i −0.430161 0.902752i \(-0.641543\pi\)
0.996887 0.0788461i \(-0.0251236\pi\)
\(348\) 0 0
\(349\) 8.18677 14.1799i 0.438228 0.759033i −0.559325 0.828948i \(-0.688940\pi\)
0.997553 + 0.0699158i \(0.0222731\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 33.5236 1.78428 0.892142 0.451755i \(-0.149202\pi\)
0.892142 + 0.451755i \(0.149202\pi\)
\(354\) 0 0
\(355\) 13.8759 0.736456
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.11650 10.5941i 0.322816 0.559134i −0.658252 0.752798i \(-0.728704\pi\)
0.981068 + 0.193664i \(0.0620371\pi\)
\(360\) 0 0
\(361\) 8.89884 + 15.4132i 0.468360 + 0.811223i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.69791 + 4.67291i 0.141215 + 0.244591i
\(366\) 0 0
\(367\) 9.77838 0.510427 0.255214 0.966885i \(-0.417854\pi\)
0.255214 + 0.966885i \(0.417854\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −20.3976 −1.05615 −0.528074 0.849199i \(-0.677085\pi\)
−0.528074 + 0.849199i \(0.677085\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 21.0496 1.08411
\(378\) 0 0
\(379\) −9.11318 −0.468113 −0.234056 0.972223i \(-0.575200\pi\)
−0.234056 + 0.972223i \(0.575200\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0.381668 0.0195023 0.00975117 0.999952i \(-0.496896\pi\)
0.00975117 + 0.999952i \(0.496896\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 8.65175 0.438661 0.219331 0.975651i \(-0.429613\pi\)
0.219331 + 0.975651i \(0.429613\pi\)
\(390\) 0 0
\(391\) −12.2089 21.1464i −0.617431 1.06942i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5.17423 + 8.96204i 0.260344 + 0.450929i
\(396\) 0 0
\(397\) −6.83118 + 11.8320i −0.342847 + 0.593829i −0.984960 0.172781i \(-0.944725\pi\)
0.642113 + 0.766610i \(0.278058\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −31.4467 −1.57037 −0.785187 0.619258i \(-0.787433\pi\)
−0.785187 + 0.619258i \(0.787433\pi\)
\(402\) 0 0
\(403\) −25.2962 −1.26009
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.04290 5.27047i 0.150831 0.261247i
\(408\) 0 0
\(409\) 1.61948 2.80503i 0.0800783 0.138700i −0.823205 0.567744i \(-0.807816\pi\)
0.903283 + 0.429044i \(0.141150\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 1.16966 2.02591i 0.0574163 0.0994480i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −10.9772 19.0130i −0.536271 0.928848i −0.999101 0.0424009i \(-0.986499\pi\)
0.462830 0.886447i \(-0.346834\pi\)
\(420\) 0 0
\(421\) 11.8273 20.4855i 0.576428 0.998402i −0.419457 0.907775i \(-0.637780\pi\)
0.995885 0.0906270i \(-0.0288871\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 7.93954 + 13.7517i 0.385124 + 0.667055i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −13.9920 24.2349i −0.673972 1.16735i −0.976768 0.214298i \(-0.931253\pi\)
0.302796 0.953055i \(-0.402080\pi\)
\(432\) 0 0
\(433\) 4.17947 0.200852 0.100426 0.994945i \(-0.467979\pi\)
0.100426 + 0.994945i \(0.467979\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.47284 + 6.01513i −0.166128 + 0.287743i
\(438\) 0 0
\(439\) 16.3653 + 28.3456i 0.781074 + 1.35286i 0.931316 + 0.364211i \(0.118661\pi\)
−0.150242 + 0.988649i \(0.548005\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6.23770 + 10.8040i 0.296362 + 0.513314i 0.975301 0.220881i \(-0.0708931\pi\)
−0.678939 + 0.734195i \(0.737560\pi\)
\(444\) 0 0
\(445\) 6.34116 10.9832i 0.300600 0.520654i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −38.8840 −1.83505 −0.917524 0.397680i \(-0.869815\pi\)
−0.917524 + 0.397680i \(0.869815\pi\)
\(450\) 0 0
\(451\) 10.8648 + 18.8184i 0.511604 + 0.886125i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 11.5977 + 20.0878i 0.542517 + 0.939667i 0.998759 + 0.0498113i \(0.0158620\pi\)
−0.456241 + 0.889856i \(0.650805\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −8.96496 + 15.5278i −0.417540 + 0.723200i −0.995691 0.0927293i \(-0.970441\pi\)
0.578152 + 0.815929i \(0.303774\pi\)
\(462\) 0 0
\(463\) 0.481797 + 0.834496i 0.0223910 + 0.0387823i 0.877004 0.480483i \(-0.159539\pi\)
−0.854613 + 0.519266i \(0.826205\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.65095 6.32364i 0.168946 0.292623i −0.769104 0.639124i \(-0.779297\pi\)
0.938050 + 0.346501i \(0.112630\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 5.65450 9.79388i 0.259994 0.450323i
\(474\) 0 0
\(475\) 2.25841 3.91169i 0.103623 0.179480i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −13.5097 −0.617276 −0.308638 0.951180i \(-0.599873\pi\)
−0.308638 + 0.951180i \(0.599873\pi\)
\(480\) 0 0
\(481\) −12.5161 −0.570685
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.64576 2.85054i 0.0747302 0.129436i
\(486\) 0 0
\(487\) −8.25241 14.2936i −0.373953 0.647705i 0.616217 0.787576i \(-0.288664\pi\)
−0.990170 + 0.139871i \(0.955331\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 9.04610 + 15.6683i 0.408245 + 0.707101i 0.994693 0.102886i \(-0.0328076\pi\)
−0.586448 + 0.809987i \(0.699474\pi\)
\(492\) 0 0
\(493\) −14.9678 −0.674114
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 30.9204 1.38419 0.692093 0.721808i \(-0.256689\pi\)
0.692093 + 0.721808i \(0.256689\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 29.3747 1.30976 0.654878 0.755735i \(-0.272720\pi\)
0.654878 + 0.755735i \(0.272720\pi\)
\(504\) 0 0
\(505\) −6.65427 −0.296111
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −11.6041 −0.514344 −0.257172 0.966366i \(-0.582791\pi\)
−0.257172 + 0.966366i \(0.582791\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −10.5540 −0.465067
\(516\) 0 0
\(517\) −3.48367 6.03390i −0.153212 0.265371i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −6.51960 11.2923i −0.285629 0.494724i 0.687133 0.726532i \(-0.258869\pi\)
−0.972762 + 0.231808i \(0.925536\pi\)
\(522\) 0 0
\(523\) 20.8474 36.1088i 0.911595 1.57893i 0.0997839 0.995009i \(-0.468185\pi\)
0.811811 0.583920i \(-0.198482\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 17.9874 0.783545
\(528\) 0 0
\(529\) 17.1246 0.744547
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 22.3446 38.7021i 0.967854 1.67637i
\(534\) 0 0
\(535\) −4.14980 + 7.18766i −0.179411 + 0.310750i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −5.14656 + 8.91410i −0.221268 + 0.383247i −0.955193 0.295983i \(-0.904353\pi\)
0.733925 + 0.679230i \(0.237686\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 8.77192 + 15.1934i 0.375748 + 0.650814i
\(546\) 0 0
\(547\) −4.05659 + 7.02622i −0.173447 + 0.300420i −0.939623 0.342212i \(-0.888824\pi\)
0.766176 + 0.642631i \(0.222157\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 2.12880 + 3.68719i 0.0906899 + 0.157079i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 10.8085 + 18.7208i 0.457969 + 0.793225i 0.998854 0.0478714i \(-0.0152438\pi\)
−0.540885 + 0.841097i \(0.681910\pi\)
\(558\) 0 0
\(559\) −23.2581 −0.983715
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −5.55754 + 9.62593i −0.234222 + 0.405685i −0.959046 0.283249i \(-0.908588\pi\)
0.724824 + 0.688934i \(0.241921\pi\)
\(564\) 0 0
\(565\) 3.75192 + 6.49852i 0.157845 + 0.273395i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 4.85754 + 8.41350i 0.203639 + 0.352712i 0.949698 0.313167i \(-0.101390\pi\)
−0.746059 + 0.665879i \(0.768057\pi\)
\(570\) 0 0
\(571\) −6.10695 + 10.5775i −0.255568 + 0.442656i −0.965050 0.262067i \(-0.915596\pi\)
0.709482 + 0.704724i \(0.248929\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −26.0933 −1.08817
\(576\) 0 0
\(577\) 2.25670 + 3.90872i 0.0939477 + 0.162722i 0.909169 0.416427i \(-0.136718\pi\)
−0.815221 + 0.579150i \(0.803385\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.68080 + 2.91123i 0.0696116 + 0.120571i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −15.0425 + 26.0545i −0.620872 + 1.07538i 0.368451 + 0.929647i \(0.379888\pi\)
−0.989324 + 0.145735i \(0.953445\pi\)
\(588\) 0 0
\(589\) −2.55828 4.43106i −0.105412 0.182579i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 3.46894 6.00838i 0.142452 0.246735i −0.785967 0.618268i \(-0.787835\pi\)
0.928420 + 0.371533i \(0.121168\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −3.77649 + 6.54108i −0.154303 + 0.267261i −0.932805 0.360381i \(-0.882647\pi\)
0.778502 + 0.627642i \(0.215980\pi\)
\(600\) 0 0
\(601\) −2.43406 + 4.21591i −0.0992873 + 0.171971i −0.911390 0.411544i \(-0.864990\pi\)
0.812103 + 0.583515i \(0.198323\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3.80240 0.154590
\(606\) 0 0
\(607\) −21.6943 −0.880546 −0.440273 0.897864i \(-0.645118\pi\)
−0.440273 + 0.897864i \(0.645118\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −7.16454 + 12.4093i −0.289846 + 0.502028i
\(612\) 0 0
\(613\) 6.17923 + 10.7027i 0.249577 + 0.432280i 0.963408 0.268038i \(-0.0863752\pi\)
−0.713832 + 0.700317i \(0.753042\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 12.9992 + 22.5152i 0.523327 + 0.906428i 0.999631 + 0.0271481i \(0.00864258\pi\)
−0.476305 + 0.879280i \(0.658024\pi\)
\(618\) 0 0
\(619\) 1.17410 0.0471909 0.0235954 0.999722i \(-0.492489\pi\)
0.0235954 + 0.999722i \(0.492489\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 12.5652 0.502608
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 8.89986 0.354861
\(630\) 0 0
\(631\) 42.2661 1.68259 0.841294 0.540579i \(-0.181795\pi\)
0.841294 + 0.540579i \(0.181795\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3.50945 −0.139268
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −35.2805 −1.39350 −0.696748 0.717316i \(-0.745370\pi\)
−0.696748 + 0.717316i \(0.745370\pi\)
\(642\) 0 0
\(643\) 7.98321 + 13.8273i 0.314827 + 0.545296i 0.979401 0.201926i \(-0.0647202\pi\)
−0.664574 + 0.747223i \(0.731387\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −10.0390 17.3881i −0.394674 0.683596i 0.598385 0.801208i \(-0.295809\pi\)
−0.993060 + 0.117613i \(0.962476\pi\)
\(648\) 0 0
\(649\) −7.96300 + 13.7923i −0.312575 + 0.541396i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −22.4700 −0.879318 −0.439659 0.898165i \(-0.644901\pi\)
−0.439659 + 0.898165i \(0.644901\pi\)
\(654\) 0 0
\(655\) 20.3029 0.793300
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 8.25173 14.2924i 0.321442 0.556754i −0.659344 0.751842i \(-0.729166\pi\)
0.980786 + 0.195088i \(0.0624992\pi\)
\(660\) 0 0
\(661\) 6.95039 12.0384i 0.270339 0.468241i −0.698610 0.715503i \(-0.746198\pi\)
0.968949 + 0.247262i \(0.0795309\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 12.2979 21.3006i 0.476176 0.824761i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −17.7125 30.6790i −0.683785 1.18435i
\(672\) 0 0
\(673\) 1.03684 1.79586i 0.0399672 0.0692252i −0.845350 0.534213i \(-0.820608\pi\)
0.885317 + 0.464988i \(0.153941\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1.48092 2.56504i −0.0569166 0.0985824i 0.836163 0.548481i \(-0.184794\pi\)
−0.893080 + 0.449898i \(0.851460\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 25.2670 + 43.7637i 0.966814 + 1.67457i 0.704659 + 0.709546i \(0.251100\pi\)
0.262156 + 0.965026i \(0.415567\pi\)
\(684\) 0 0
\(685\) 13.2298 0.505483
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.45674 5.98725i 0.131691 0.228096i
\(690\) 0 0
\(691\) −14.0134 24.2720i −0.533096 0.923350i −0.999253 0.0386479i \(-0.987695\pi\)
0.466156 0.884702i \(-0.345638\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.24803 + 5.62574i 0.123205 + 0.213397i
\(696\) 0 0
\(697\) −15.8887 + 27.5200i −0.601826 + 1.04239i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −4.60621 −0.173974 −0.0869871 0.996209i \(-0.527724\pi\)
−0.0869871 + 0.996209i \(0.527724\pi\)
\(702\) 0 0
\(703\) −1.26579 2.19241i −0.0477401 0.0826883i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −6.65298 11.5233i −0.249858 0.432767i 0.713628 0.700525i \(-0.247051\pi\)
−0.963486 + 0.267758i \(0.913717\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −14.7789 + 25.5979i −0.553475 + 0.958647i
\(714\) 0 0
\(715\) 6.70513 + 11.6136i 0.250758 + 0.434325i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 22.6002 39.1447i 0.842845 1.45985i −0.0446355 0.999003i \(-0.514213\pi\)
0.887480 0.460846i \(-0.152454\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −7.99740 + 13.8519i −0.297016 + 0.514447i
\(726\) 0 0
\(727\) −12.4702 + 21.5989i −0.462492 + 0.801060i −0.999084 0.0427815i \(-0.986378\pi\)
0.536592 + 0.843842i \(0.319711\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 16.5382 0.611688
\(732\) 0 0
\(733\) 11.7526 0.434092 0.217046 0.976161i \(-0.430358\pi\)
0.217046 + 0.976161i \(0.430358\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −9.60483 + 16.6361i −0.353798 + 0.612797i
\(738\) 0 0
\(739\) −9.91252 17.1690i −0.364638 0.631571i 0.624080 0.781360i \(-0.285474\pi\)
−0.988718 + 0.149789i \(0.952141\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −2.00263 3.46866i −0.0734695 0.127253i 0.826950 0.562275i \(-0.190074\pi\)
−0.900420 + 0.435022i \(0.856740\pi\)
\(744\) 0 0
\(745\) 10.7294 0.393096
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 22.8743 0.834694 0.417347 0.908747i \(-0.362960\pi\)
0.417347 + 0.908747i \(0.362960\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 10.1105 0.367958
\(756\) 0 0
\(757\) −26.4149 −0.960064 −0.480032 0.877251i \(-0.659375\pi\)
−0.480032 + 0.877251i \(0.659375\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −17.4735 −0.633412 −0.316706 0.948524i \(-0.602577\pi\)
−0.316706 + 0.948524i \(0.602577\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 32.7535 1.18266
\(768\) 0 0
\(769\) 16.0849 + 27.8598i 0.580035 + 1.00465i 0.995475 + 0.0950290i \(0.0302944\pi\)
−0.415440 + 0.909621i \(0.636372\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.12986 + 1.95697i 0.0406382 + 0.0703875i 0.885629 0.464393i \(-0.153728\pi\)
−0.844991 + 0.534781i \(0.820394\pi\)
\(774\) 0 0
\(775\) 9.61085 16.6465i 0.345232 0.597959i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 9.03910 0.323859
\(780\) 0 0
\(781\) 38.9749 1.39463
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 7.92524 13.7269i 0.282864 0.489935i
\(786\) 0 0
\(787\) −7.93595 + 13.7455i −0.282886 + 0.489973i −0.972094 0.234590i \(-0.924625\pi\)
0.689208 + 0.724563i \(0.257959\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −36.4277 + 63.0946i −1.29358 + 2.24055i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −18.3376 31.7616i −0.649550 1.12505i −0.983231 0.182367i \(-0.941624\pi\)
0.333681 0.942686i \(-0.391709\pi\)
\(798\) 0 0
\(799\) 5.09450 8.82394i 0.180231 0.312169i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 7.57793 + 13.1254i 0.267419 + 0.463184i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 20.1800 + 34.9529i 0.709492 + 1.22888i 0.965046 + 0.262082i \(0.0844091\pi\)
−0.255553 + 0.966795i \(0.582258\pi\)
\(810\) 0 0
\(811\) 6.44178 0.226202 0.113101 0.993584i \(-0.463922\pi\)
0.113101 + 0.993584i \(0.463922\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −8.52941 + 14.7734i −0.298772 + 0.517488i
\(816\) 0 0
\(817\) −2.35216 4.07406i −0.0822916 0.142533i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −5.47086 9.47581i −0.190934 0.330708i 0.754626 0.656155i \(-0.227818\pi\)
−0.945560 + 0.325447i \(0.894485\pi\)
\(822\) 0 0
\(823\) 28.1738 48.7985i 0.982079 1.70101i 0.327818 0.944741i \(-0.393687\pi\)
0.654261 0.756269i \(-0.272980\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 39.4286 1.37107 0.685533 0.728042i \(-0.259569\pi\)
0.685533 + 0.728042i \(0.259569\pi\)
\(828\) 0 0
\(829\) 10.0453 + 17.3989i 0.348887 + 0.604290i 0.986052 0.166437i \(-0.0532263\pi\)
−0.637165 + 0.770728i \(0.719893\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 2.30294 + 3.98881i 0.0796966 + 0.138039i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 23.7318 41.1047i 0.819312 1.41909i −0.0868775 0.996219i \(-0.527689\pi\)
0.906190 0.422871i \(-0.138978\pi\)
\(840\) 0 0
\(841\) 6.96158 + 12.0578i 0.240055 + 0.415787i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 7.68986 13.3192i 0.264539 0.458196i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −7.31235 + 12.6654i −0.250664 + 0.434163i
\(852\) 0 0
\(853\) −3.02004 + 5.23086i −0.103404 + 0.179101i −0.913085 0.407769i \(-0.866307\pi\)
0.809681 + 0.586870i \(0.199640\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 24.9325 0.851678 0.425839 0.904799i \(-0.359979\pi\)
0.425839 + 0.904799i \(0.359979\pi\)
\(858\) 0 0
\(859\) 9.06753 0.309380 0.154690 0.987963i \(-0.450562\pi\)
0.154690 + 0.987963i \(0.450562\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 25.9801 44.9989i 0.884374 1.53178i 0.0379438 0.999280i \(-0.487919\pi\)
0.846430 0.532500i \(-0.178747\pi\)
\(864\) 0 0
\(865\) −5.62621 9.74488i −0.191297 0.331336i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 14.5335 + 25.1728i 0.493015 + 0.853927i
\(870\) 0 0
\(871\) 39.5067 1.33863
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −47.6003 −1.60735 −0.803674 0.595070i \(-0.797124\pi\)
−0.803674 + 0.595070i \(0.797124\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −44.3793 −1.49518 −0.747588 0.664163i \(-0.768788\pi\)
−0.747588 + 0.664163i \(0.768788\pi\)
\(882\) 0 0
\(883\) −2.68771 −0.0904488 −0.0452244 0.998977i \(-0.514400\pi\)
−0.0452244 + 0.998977i \(0.514400\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 5.50614 0.184878 0.0924391 0.995718i \(-0.470534\pi\)
0.0924391 + 0.995718i \(0.470534\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −2.89828 −0.0969871
\(894\) 0 0
\(895\) 11.1980 + 19.3955i 0.374308 + 0.648321i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 9.05926 + 15.6911i 0.302143 + 0.523328i
\(900\) 0 0
\(901\) −2.45799 + 4.25737i −0.0818876 + 0.141834i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −13.2313 −0.439823
\(906\) 0 0
\(907\) 53.8249 1.78723 0.893613 0.448837i \(-0.148162\pi\)
0.893613 + 0.448837i \(0.148162\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −6.48779 + 11.2372i −0.214950 + 0.372305i −0.953257 0.302160i \(-0.902292\pi\)
0.738307 + 0.674465i \(0.235626\pi\)
\(912\) 0 0
\(913\) 3.28536 5.69042i 0.108730 0.188325i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0.839322 1.45375i 0.0276867 0.0479547i −0.851850 0.523786i \(-0.824519\pi\)
0.879537 + 0.475831i \(0.157853\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −40.0780 69.4171i −1.31918 2.28489i
\(924\) 0 0
\(925\) 4.75527 8.23637i 0.156352 0.270810i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 7.66371 + 13.2739i 0.251438 + 0.435504i 0.963922 0.266185i \(-0.0857632\pi\)
−0.712484 + 0.701688i \(0.752430\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −4.76784 8.25813i −0.155925 0.270070i
\(936\) 0 0
\(937\) 38.8140 1.26800 0.633999 0.773334i \(-0.281412\pi\)
0.633999 + 0.773334i \(0.281412\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −7.26496 + 12.5833i −0.236831 + 0.410203i −0.959803 0.280674i \(-0.909442\pi\)
0.722972 + 0.690877i \(0.242775\pi\)
\(942\) 0 0
\(943\) −26.1090 45.2222i −0.850227 1.47264i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 19.6532 + 34.0403i 0.638642 + 1.10616i 0.985731 + 0.168328i \(0.0538367\pi\)
−0.347089 + 0.937832i \(0.612830\pi\)
\(948\) 0 0
\(949\) 15.5848 26.9937i 0.505905 0.876252i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −35.9078 −1.16317 −0.581583 0.813487i \(-0.697567\pi\)
−0.581583 + 0.813487i \(0.697567\pi\)
\(954\) 0 0
\(955\) −8.42222 14.5877i −0.272537 0.472047i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 4.61307 + 7.99007i 0.148809 + 0.257744i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 9.86495 17.0866i 0.317564 0.550037i
\(966\) 0 0
\(967\) 9.80707 + 16.9863i 0.315374 + 0.546244i 0.979517 0.201362i \(-0.0645366\pi\)
−0.664143 + 0.747606i \(0.731203\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 25.4938 44.1566i 0.818136 1.41705i −0.0889186 0.996039i \(-0.528341\pi\)
0.907054 0.421014i \(-0.138326\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −20.9989 + 36.3712i −0.671815 + 1.16362i 0.305574 + 0.952168i \(0.401152\pi\)
−0.977389 + 0.211450i \(0.932182\pi\)
\(978\) 0 0
\(979\) 17.8112 30.8499i 0.569248 0.985966i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 58.8956 1.87848 0.939239 0.343263i \(-0.111532\pi\)
0.939239 + 0.343263i \(0.111532\pi\)
\(984\) 0 0
\(985\) 9.06272 0.288762
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −13.5882 + 23.5355i −0.432080 + 0.748385i
\(990\) 0 0
\(991\) 16.1041 + 27.8931i 0.511563 + 0.886053i 0.999910 + 0.0134034i \(0.00426656\pi\)
−0.488347 + 0.872649i \(0.662400\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.51718 + 2.62784i 0.0480980 + 0.0833082i
\(996\) 0 0
\(997\) 13.2030 0.418143 0.209071 0.977900i \(-0.432956\pi\)
0.209071 + 0.977900i \(0.432956\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5292.2.l.j.3313.5 24
3.2 odd 2 1764.2.l.j.961.6 24
7.2 even 3 5292.2.j.i.3529.8 24
7.3 odd 6 5292.2.i.j.2125.5 24
7.4 even 3 5292.2.i.j.2125.8 24
7.5 odd 6 5292.2.j.i.3529.5 24
7.6 odd 2 inner 5292.2.l.j.3313.8 24
9.4 even 3 5292.2.i.j.1549.8 24
9.5 odd 6 1764.2.i.j.373.3 24
21.2 odd 6 1764.2.j.i.1177.11 yes 24
21.5 even 6 1764.2.j.i.1177.2 yes 24
21.11 odd 6 1764.2.i.j.1537.3 24
21.17 even 6 1764.2.i.j.1537.10 24
21.20 even 2 1764.2.l.j.961.7 24
63.4 even 3 inner 5292.2.l.j.361.5 24
63.5 even 6 1764.2.j.i.589.2 24
63.13 odd 6 5292.2.i.j.1549.5 24
63.23 odd 6 1764.2.j.i.589.11 yes 24
63.31 odd 6 inner 5292.2.l.j.361.8 24
63.32 odd 6 1764.2.l.j.949.6 24
63.40 odd 6 5292.2.j.i.1765.5 24
63.41 even 6 1764.2.i.j.373.10 24
63.58 even 3 5292.2.j.i.1765.8 24
63.59 even 6 1764.2.l.j.949.7 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1764.2.i.j.373.3 24 9.5 odd 6
1764.2.i.j.373.10 24 63.41 even 6
1764.2.i.j.1537.3 24 21.11 odd 6
1764.2.i.j.1537.10 24 21.17 even 6
1764.2.j.i.589.2 24 63.5 even 6
1764.2.j.i.589.11 yes 24 63.23 odd 6
1764.2.j.i.1177.2 yes 24 21.5 even 6
1764.2.j.i.1177.11 yes 24 21.2 odd 6
1764.2.l.j.949.6 24 63.32 odd 6
1764.2.l.j.949.7 24 63.59 even 6
1764.2.l.j.961.6 24 3.2 odd 2
1764.2.l.j.961.7 24 21.20 even 2
5292.2.i.j.1549.5 24 63.13 odd 6
5292.2.i.j.1549.8 24 9.4 even 3
5292.2.i.j.2125.5 24 7.3 odd 6
5292.2.i.j.2125.8 24 7.4 even 3
5292.2.j.i.1765.5 24 63.40 odd 6
5292.2.j.i.1765.8 24 63.58 even 3
5292.2.j.i.3529.5 24 7.5 odd 6
5292.2.j.i.3529.8 24 7.2 even 3
5292.2.l.j.361.5 24 63.4 even 3 inner
5292.2.l.j.361.8 24 63.31 odd 6 inner
5292.2.l.j.3313.5 24 1.1 even 1 trivial
5292.2.l.j.3313.8 24 7.6 odd 2 inner