Properties

Label 5292.2.l.j
Level $5292$
Weight $2$
Character orbit 5292.l
Analytic conductor $42.257$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5292,2,Mod(361,5292)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5292.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5292, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5292.l (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2568327497\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 1764)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q - 8 q^{11} - 16 q^{23} + 24 q^{25} + 32 q^{29} - 12 q^{37} + 16 q^{53} + 36 q^{65} + 12 q^{67} - 48 q^{71} + 12 q^{79} + 12 q^{85} - 32 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1 0 0 0 −3.89246 0 0 0 0 0
361.2 0 0 0 −3.47961 0 0 0 0 0
361.3 0 0 0 −2.38486 0 0 0 0 0
361.4 0 0 0 −1.47387 0 0 0 0 0
361.5 0 0 0 −0.938454 0 0 0 0 0
361.6 0 0 0 −0.0223826 0 0 0 0 0
361.7 0 0 0 0.0223826 0 0 0 0 0
361.8 0 0 0 0.938454 0 0 0 0 0
361.9 0 0 0 1.47387 0 0 0 0 0
361.10 0 0 0 2.38486 0 0 0 0 0
361.11 0 0 0 3.47961 0 0 0 0 0
361.12 0 0 0 3.89246 0 0 0 0 0
3313.1 0 0 0 −3.89246 0 0 0 0 0
3313.2 0 0 0 −3.47961 0 0 0 0 0
3313.3 0 0 0 −2.38486 0 0 0 0 0
3313.4 0 0 0 −1.47387 0 0 0 0 0
3313.5 0 0 0 −0.938454 0 0 0 0 0
3313.6 0 0 0 −0.0223826 0 0 0 0 0
3313.7 0 0 0 0.0223826 0 0 0 0 0
3313.8 0 0 0 0.938454 0 0 0 0 0
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 361.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
63.g even 3 1 inner
63.k odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5292.2.l.j 24
3.b odd 2 1 1764.2.l.j 24
7.b odd 2 1 inner 5292.2.l.j 24
7.c even 3 1 5292.2.i.j 24
7.c even 3 1 5292.2.j.i 24
7.d odd 6 1 5292.2.i.j 24
7.d odd 6 1 5292.2.j.i 24
9.c even 3 1 5292.2.i.j 24
9.d odd 6 1 1764.2.i.j 24
21.c even 2 1 1764.2.l.j 24
21.g even 6 1 1764.2.i.j 24
21.g even 6 1 1764.2.j.i 24
21.h odd 6 1 1764.2.i.j 24
21.h odd 6 1 1764.2.j.i 24
63.g even 3 1 inner 5292.2.l.j 24
63.h even 3 1 5292.2.j.i 24
63.i even 6 1 1764.2.j.i 24
63.j odd 6 1 1764.2.j.i 24
63.k odd 6 1 inner 5292.2.l.j 24
63.l odd 6 1 5292.2.i.j 24
63.n odd 6 1 1764.2.l.j 24
63.o even 6 1 1764.2.i.j 24
63.s even 6 1 1764.2.l.j 24
63.t odd 6 1 5292.2.j.i 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1764.2.i.j 24 9.d odd 6 1
1764.2.i.j 24 21.g even 6 1
1764.2.i.j 24 21.h odd 6 1
1764.2.i.j 24 63.o even 6 1
1764.2.j.i 24 21.g even 6 1
1764.2.j.i 24 21.h odd 6 1
1764.2.j.i 24 63.i even 6 1
1764.2.j.i 24 63.j odd 6 1
1764.2.l.j 24 3.b odd 2 1
1764.2.l.j 24 21.c even 2 1
1764.2.l.j 24 63.n odd 6 1
1764.2.l.j 24 63.s even 6 1
5292.2.i.j 24 7.c even 3 1
5292.2.i.j 24 7.d odd 6 1
5292.2.i.j 24 9.c even 3 1
5292.2.i.j 24 63.l odd 6 1
5292.2.j.i 24 7.c even 3 1
5292.2.j.i 24 7.d odd 6 1
5292.2.j.i 24 63.h even 3 1
5292.2.j.i 24 63.t odd 6 1
5292.2.l.j 24 1.a even 1 1 trivial
5292.2.l.j 24 7.b odd 2 1 inner
5292.2.l.j 24 63.g even 3 1 inner
5292.2.l.j 24 63.k odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{12} - 36T_{5}^{10} + 441T_{5}^{8} - 2140T_{5}^{6} + 3834T_{5}^{4} - 1998T_{5}^{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(5292, [\chi])\). Copy content Toggle raw display