| L(s) = 1 | − 2.38·5-s + 2.25·11-s + (−2.37 − 4.12i)13-s + (2.15 + 3.72i)17-s + (−4.29 + 7.44i)19-s − 1.32·23-s + 0.687·25-s + (3.87 − 6.71i)29-s + (0.405 − 0.702i)31-s + (2.31 − 4.01i)37-s + (5.00 + 8.66i)41-s + (−1.74 + 3.01i)43-s + (2.18 + 3.78i)47-s + (−5.83 − 10.1i)53-s − 5.38·55-s + ⋯ |
| L(s) = 1 | − 1.06·5-s + 0.681·11-s + (−0.659 − 1.14i)13-s + (0.521 + 0.904i)17-s + (−0.986 + 1.70i)19-s − 0.277·23-s + 0.137·25-s + (0.720 − 1.24i)29-s + (0.0727 − 0.126i)31-s + (0.380 − 0.659i)37-s + (0.781 + 1.35i)41-s + (−0.265 + 0.460i)43-s + (0.318 + 0.551i)47-s + (−0.802 − 1.38i)53-s − 0.726·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5292 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.00214 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5292 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.00214 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.8766507328\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8766507328\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
| good | 5 | \( 1 + 2.38T + 5T^{2} \) |
| 11 | \( 1 - 2.25T + 11T^{2} \) |
| 13 | \( 1 + (2.37 + 4.12i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-2.15 - 3.72i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (4.29 - 7.44i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 1.32T + 23T^{2} \) |
| 29 | \( 1 + (-3.87 + 6.71i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.405 + 0.702i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.31 + 4.01i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-5.00 - 8.66i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.74 - 3.01i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-2.18 - 3.78i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (5.83 + 10.1i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.40 + 4.16i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.575 + 0.997i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.06 + 3.57i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 4.41T + 71T^{2} \) |
| 73 | \( 1 + (6.05 + 10.4i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.23 - 7.33i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.817 + 1.41i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-3.17 + 5.49i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (5.98 - 10.3i)T + (-48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.938096567177069087881309093441, −7.69199021975339271794065220953, −6.37812794768270461896674538118, −6.07166910632970614336107580618, −5.02102906708690991320198357547, −4.05924187272622083292698368792, −3.74695733491934675087217306250, −2.70430488087844083841644677620, −1.55422627634711711586510543043, −0.29505810569427174215793276049,
0.895876447417856461137589422179, 2.23180338567001611009296520295, 3.07729728563457624391071591162, 4.10714359535305166004558348868, 4.51229098428811276512081141522, 5.31615065606725474155468874671, 6.49169121186504559615800334297, 7.03350358637818237008873792901, 7.46252576736830920466793532559, 8.468819764584945182671394499148