Properties

Label 5292.2.l.j.3313.1
Level $5292$
Weight $2$
Character 5292.3313
Analytic conductor $42.257$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5292,2,Mod(361,5292)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5292.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5292, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5292.l (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2568327497\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 1764)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 3313.1
Character \(\chi\) \(=\) 5292.3313
Dual form 5292.2.l.j.361.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.89246 q^{5} -4.37557 q^{11} +(-0.792201 - 1.37213i) q^{13} +(-2.66678 - 4.61900i) q^{17} +(2.32161 - 4.02115i) q^{19} -0.367799 q^{23} +10.1513 q^{25} +(5.08750 - 8.81180i) q^{29} +(1.14776 - 1.98798i) q^{31} +(-5.44017 + 9.42265i) q^{37} +(0.690443 + 1.19588i) q^{41} +(3.81699 - 6.61122i) q^{43} +(-3.80432 - 6.58928i) q^{47} +(-0.462847 - 0.801674i) q^{53} +17.0317 q^{55} +(-0.460475 + 0.797565i) q^{59} +(-3.27780 - 5.67731i) q^{61} +(3.08361 + 5.34097i) q^{65} +(-7.50420 + 12.9976i) q^{67} +4.91059 q^{71} +(-3.78353 - 6.55327i) q^{73} +(-0.987715 - 1.71077i) q^{79} +(0.253011 - 0.438227i) q^{83} +(10.3803 + 17.9793i) q^{85} +(-6.10987 + 10.5826i) q^{89} +(-9.03679 + 15.6522i) q^{95} +(4.45315 - 7.71308i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{11} - 16 q^{23} + 24 q^{25} + 32 q^{29} - 12 q^{37} + 16 q^{53} + 36 q^{65} + 12 q^{67} - 48 q^{71} + 12 q^{79} + 12 q^{85} - 32 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(2647\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.89246 −1.74076 −0.870381 0.492378i \(-0.836128\pi\)
−0.870381 + 0.492378i \(0.836128\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.37557 −1.31928 −0.659642 0.751580i \(-0.729292\pi\)
−0.659642 + 0.751580i \(0.729292\pi\)
\(12\) 0 0
\(13\) −0.792201 1.37213i −0.219717 0.380561i 0.735004 0.678062i \(-0.237180\pi\)
−0.954721 + 0.297501i \(0.903847\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.66678 4.61900i −0.646789 1.12027i −0.983885 0.178801i \(-0.942778\pi\)
0.337096 0.941470i \(-0.390555\pi\)
\(18\) 0 0
\(19\) 2.32161 4.02115i 0.532614 0.922515i −0.466660 0.884437i \(-0.654543\pi\)
0.999275 0.0380786i \(-0.0121237\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.367799 −0.0766914 −0.0383457 0.999265i \(-0.512209\pi\)
−0.0383457 + 0.999265i \(0.512209\pi\)
\(24\) 0 0
\(25\) 10.1513 2.03025
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.08750 8.81180i 0.944724 1.63631i 0.188422 0.982088i \(-0.439663\pi\)
0.756302 0.654222i \(-0.227004\pi\)
\(30\) 0 0
\(31\) 1.14776 1.98798i 0.206144 0.357052i −0.744353 0.667787i \(-0.767242\pi\)
0.950497 + 0.310735i \(0.100575\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5.44017 + 9.42265i −0.894359 + 1.54907i −0.0597623 + 0.998213i \(0.519034\pi\)
−0.834596 + 0.550862i \(0.814299\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.690443 + 1.19588i 0.107829 + 0.186766i 0.914891 0.403702i \(-0.132277\pi\)
−0.807061 + 0.590467i \(0.798943\pi\)
\(42\) 0 0
\(43\) 3.81699 6.61122i 0.582086 1.00820i −0.413146 0.910665i \(-0.635570\pi\)
0.995232 0.0975372i \(-0.0310965\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.80432 6.58928i −0.554918 0.961145i −0.997910 0.0646200i \(-0.979416\pi\)
0.442992 0.896525i \(-0.353917\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −0.462847 0.801674i −0.0635769 0.110118i 0.832485 0.554048i \(-0.186917\pi\)
−0.896062 + 0.443929i \(0.853584\pi\)
\(54\) 0 0
\(55\) 17.0317 2.29656
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −0.460475 + 0.797565i −0.0599487 + 0.103834i −0.894442 0.447184i \(-0.852427\pi\)
0.834493 + 0.551018i \(0.185760\pi\)
\(60\) 0 0
\(61\) −3.27780 5.67731i −0.419679 0.726905i 0.576228 0.817289i \(-0.304524\pi\)
−0.995907 + 0.0903836i \(0.971191\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.08361 + 5.34097i 0.382475 + 0.662466i
\(66\) 0 0
\(67\) −7.50420 + 12.9976i −0.916783 + 1.58792i −0.112514 + 0.993650i \(0.535890\pi\)
−0.804269 + 0.594265i \(0.797443\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.91059 0.582780 0.291390 0.956604i \(-0.405882\pi\)
0.291390 + 0.956604i \(0.405882\pi\)
\(72\) 0 0
\(73\) −3.78353 6.55327i −0.442829 0.767003i 0.555069 0.831804i \(-0.312692\pi\)
−0.997898 + 0.0648016i \(0.979359\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −0.987715 1.71077i −0.111127 0.192477i 0.805098 0.593142i \(-0.202113\pi\)
−0.916225 + 0.400665i \(0.868779\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.253011 0.438227i 0.0277715 0.0481017i −0.851806 0.523858i \(-0.824492\pi\)
0.879577 + 0.475756i \(0.157826\pi\)
\(84\) 0 0
\(85\) 10.3803 + 17.9793i 1.12591 + 1.95013i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.10987 + 10.5826i −0.647645 + 1.12175i 0.336039 + 0.941848i \(0.390913\pi\)
−0.983684 + 0.179906i \(0.942421\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −9.03679 + 15.6522i −0.927155 + 1.60588i
\(96\) 0 0
\(97\) 4.45315 7.71308i 0.452149 0.783145i −0.546370 0.837544i \(-0.683991\pi\)
0.998519 + 0.0543987i \(0.0173242\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −11.0236 −1.09689 −0.548445 0.836187i \(-0.684780\pi\)
−0.548445 + 0.836187i \(0.684780\pi\)
\(102\) 0 0
\(103\) 2.73085 0.269079 0.134540 0.990908i \(-0.457044\pi\)
0.134540 + 0.990908i \(0.457044\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.39605 + 9.34623i −0.521655 + 0.903534i 0.478027 + 0.878345i \(0.341352\pi\)
−0.999683 + 0.0251887i \(0.991981\pi\)
\(108\) 0 0
\(109\) 4.99187 + 8.64617i 0.478134 + 0.828153i 0.999686 0.0250668i \(-0.00797984\pi\)
−0.521551 + 0.853220i \(0.674647\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.12019 + 10.6005i 0.575739 + 0.997209i 0.995961 + 0.0897875i \(0.0286188\pi\)
−0.420222 + 0.907421i \(0.638048\pi\)
\(114\) 0 0
\(115\) 1.43164 0.133502
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 8.14559 0.740509
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −20.0511 −1.79343
\(126\) 0 0
\(127\) −13.2005 −1.17135 −0.585677 0.810544i \(-0.699171\pi\)
−0.585677 + 0.810544i \(0.699171\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.08683 −0.444438 −0.222219 0.974997i \(-0.571330\pi\)
−0.222219 + 0.974997i \(0.571330\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −13.3442 −1.14007 −0.570034 0.821621i \(-0.693070\pi\)
−0.570034 + 0.821621i \(0.693070\pi\)
\(138\) 0 0
\(139\) −4.85642 8.41157i −0.411916 0.713460i 0.583183 0.812341i \(-0.301807\pi\)
−0.995099 + 0.0988809i \(0.968474\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.46633 + 6.00386i 0.289869 + 0.502068i
\(144\) 0 0
\(145\) −19.8029 + 34.2996i −1.64454 + 2.84843i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −13.8423 −1.13401 −0.567004 0.823715i \(-0.691898\pi\)
−0.567004 + 0.823715i \(0.691898\pi\)
\(150\) 0 0
\(151\) 22.8759 1.86162 0.930809 0.365506i \(-0.119104\pi\)
0.930809 + 0.365506i \(0.119104\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.46762 + 7.73815i −0.358848 + 0.621543i
\(156\) 0 0
\(157\) −5.78991 + 10.0284i −0.462085 + 0.800355i −0.999065 0.0432404i \(-0.986232\pi\)
0.536980 + 0.843595i \(0.319565\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −1.70577 + 2.95449i −0.133607 + 0.231413i −0.925064 0.379811i \(-0.875989\pi\)
0.791458 + 0.611224i \(0.209323\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.69996 + 8.14057i 0.363694 + 0.629936i 0.988566 0.150791i \(-0.0481821\pi\)
−0.624872 + 0.780727i \(0.714849\pi\)
\(168\) 0 0
\(169\) 5.24484 9.08432i 0.403449 0.698794i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3.20256 5.54700i −0.243486 0.421730i 0.718219 0.695817i \(-0.244958\pi\)
−0.961705 + 0.274087i \(0.911624\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 8.54038 + 14.7924i 0.638338 + 1.10563i 0.985797 + 0.167938i \(0.0537110\pi\)
−0.347460 + 0.937695i \(0.612956\pi\)
\(180\) 0 0
\(181\) 1.35988 0.101079 0.0505395 0.998722i \(-0.483906\pi\)
0.0505395 + 0.998722i \(0.483906\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 21.1757 36.6773i 1.55687 2.69657i
\(186\) 0 0
\(187\) 11.6687 + 20.2107i 0.853298 + 1.47796i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.94048 15.4854i −0.646911 1.12048i −0.983857 0.178958i \(-0.942727\pi\)
0.336946 0.941524i \(-0.390606\pi\)
\(192\) 0 0
\(193\) 6.50664 11.2698i 0.468358 0.811220i −0.530988 0.847380i \(-0.678179\pi\)
0.999346 + 0.0361591i \(0.0115123\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −6.36486 −0.453478 −0.226739 0.973956i \(-0.572806\pi\)
−0.226739 + 0.973956i \(0.572806\pi\)
\(198\) 0 0
\(199\) −11.5764 20.0510i −0.820631 1.42137i −0.905213 0.424958i \(-0.860289\pi\)
0.0845818 0.996417i \(-0.473045\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −2.68753 4.65493i −0.187705 0.325114i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −10.1584 + 17.5948i −0.702669 + 1.21706i
\(210\) 0 0
\(211\) −5.67737 9.83349i −0.390846 0.676965i 0.601715 0.798711i \(-0.294484\pi\)
−0.992561 + 0.121745i \(0.961151\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −14.8575 + 25.7339i −1.01327 + 1.75504i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.22525 + 7.31835i −0.284221 + 0.492285i
\(222\) 0 0
\(223\) −13.3206 + 23.0719i −0.892011 + 1.54501i −0.0545504 + 0.998511i \(0.517373\pi\)
−0.837461 + 0.546498i \(0.815961\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 16.6027 1.10196 0.550981 0.834518i \(-0.314254\pi\)
0.550981 + 0.834518i \(0.314254\pi\)
\(228\) 0 0
\(229\) −14.5014 −0.958282 −0.479141 0.877738i \(-0.659052\pi\)
−0.479141 + 0.877738i \(0.659052\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7.99020 13.8394i 0.523456 0.906652i −0.476172 0.879352i \(-0.657976\pi\)
0.999627 0.0272993i \(-0.00869073\pi\)
\(234\) 0 0
\(235\) 14.8082 + 25.6485i 0.965980 + 1.67313i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 9.58994 + 16.6103i 0.620322 + 1.07443i 0.989426 + 0.145040i \(0.0463312\pi\)
−0.369104 + 0.929388i \(0.620335\pi\)
\(240\) 0 0
\(241\) 23.3569 1.50455 0.752276 0.658848i \(-0.228956\pi\)
0.752276 + 0.658848i \(0.228956\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −7.35673 −0.468098
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 30.4619 1.92274 0.961371 0.275257i \(-0.0887631\pi\)
0.961371 + 0.275257i \(0.0887631\pi\)
\(252\) 0 0
\(253\) 1.60933 0.101178
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.80877 0.424719 0.212360 0.977192i \(-0.431885\pi\)
0.212360 + 0.977192i \(0.431885\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.60001 0.283649 0.141824 0.989892i \(-0.454703\pi\)
0.141824 + 0.989892i \(0.454703\pi\)
\(264\) 0 0
\(265\) 1.80161 + 3.12049i 0.110672 + 0.191690i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4.25090 7.36277i −0.259182 0.448916i 0.706841 0.707372i \(-0.250120\pi\)
−0.966023 + 0.258456i \(0.916786\pi\)
\(270\) 0 0
\(271\) −3.29191 + 5.70175i −0.199969 + 0.346357i −0.948518 0.316723i \(-0.897417\pi\)
0.748549 + 0.663079i \(0.230751\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −44.4176 −2.67848
\(276\) 0 0
\(277\) −11.2697 −0.677129 −0.338564 0.940943i \(-0.609941\pi\)
−0.338564 + 0.940943i \(0.609941\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −7.50741 + 13.0032i −0.447854 + 0.775707i −0.998246 0.0592000i \(-0.981145\pi\)
0.550392 + 0.834907i \(0.314478\pi\)
\(282\) 0 0
\(283\) −7.33657 + 12.7073i −0.436114 + 0.755371i −0.997386 0.0722602i \(-0.976979\pi\)
0.561272 + 0.827631i \(0.310312\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −5.72343 + 9.91327i −0.336672 + 0.583133i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9.38981 + 16.2636i 0.548559 + 0.950132i 0.998374 + 0.0570099i \(0.0181567\pi\)
−0.449815 + 0.893122i \(0.648510\pi\)
\(294\) 0 0
\(295\) 1.79238 3.10449i 0.104356 0.180751i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.291371 + 0.504669i 0.0168504 + 0.0291858i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 12.7587 + 22.0987i 0.730562 + 1.26537i
\(306\) 0 0
\(307\) −28.9425 −1.65184 −0.825919 0.563789i \(-0.809343\pi\)
−0.825919 + 0.563789i \(0.809343\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −6.79681 + 11.7724i −0.385412 + 0.667553i −0.991826 0.127596i \(-0.959274\pi\)
0.606414 + 0.795149i \(0.292607\pi\)
\(312\) 0 0
\(313\) 6.93222 + 12.0070i 0.391832 + 0.678673i 0.992691 0.120682i \(-0.0385080\pi\)
−0.600859 + 0.799355i \(0.705175\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11.5428 + 19.9927i 0.648309 + 1.12290i 0.983527 + 0.180764i \(0.0578569\pi\)
−0.335217 + 0.942141i \(0.608810\pi\)
\(318\) 0 0
\(319\) −22.2607 + 38.5566i −1.24636 + 2.15876i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −24.7649 −1.37796
\(324\) 0 0
\(325\) −8.04184 13.9289i −0.446081 0.772635i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 7.82647 + 13.5558i 0.430182 + 0.745097i 0.996889 0.0788227i \(-0.0251161\pi\)
−0.566707 + 0.823920i \(0.691783\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 29.2098 50.5929i 1.59590 2.76418i
\(336\) 0 0
\(337\) 3.56686 + 6.17799i 0.194299 + 0.336537i 0.946671 0.322203i \(-0.104423\pi\)
−0.752371 + 0.658739i \(0.771090\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −5.02211 + 8.69855i −0.271962 + 0.471053i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.77827 4.81211i 0.149146 0.258328i −0.781766 0.623571i \(-0.785681\pi\)
0.930912 + 0.365244i \(0.119014\pi\)
\(348\) 0 0
\(349\) −5.33296 + 9.23696i −0.285467 + 0.494443i −0.972722 0.231973i \(-0.925482\pi\)
0.687256 + 0.726416i \(0.258815\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.8426 0.683545 0.341772 0.939783i \(-0.388973\pi\)
0.341772 + 0.939783i \(0.388973\pi\)
\(354\) 0 0
\(355\) −19.1143 −1.01448
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12.8417 22.2426i 0.677761 1.17392i −0.297892 0.954600i \(-0.596284\pi\)
0.975653 0.219318i \(-0.0703831\pi\)
\(360\) 0 0
\(361\) −1.27977 2.21663i −0.0673563 0.116665i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 14.7273 + 25.5084i 0.770861 + 1.33517i
\(366\) 0 0
\(367\) −16.9839 −0.886554 −0.443277 0.896385i \(-0.646184\pi\)
−0.443277 + 0.896385i \(0.646184\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −8.77005 −0.454096 −0.227048 0.973884i \(-0.572907\pi\)
−0.227048 + 0.973884i \(0.572907\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −16.1213 −0.830288
\(378\) 0 0
\(379\) 11.7002 0.601001 0.300500 0.953782i \(-0.402846\pi\)
0.300500 + 0.953782i \(0.402846\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 9.00720 0.460246 0.230123 0.973162i \(-0.426087\pi\)
0.230123 + 0.973162i \(0.426087\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 9.78781 0.496262 0.248131 0.968727i \(-0.420184\pi\)
0.248131 + 0.968727i \(0.420184\pi\)
\(390\) 0 0
\(391\) 0.980839 + 1.69886i 0.0496032 + 0.0859152i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.84465 + 6.65912i 0.193445 + 0.335057i
\(396\) 0 0
\(397\) −6.95929 + 12.0538i −0.349277 + 0.604965i −0.986121 0.166027i \(-0.946906\pi\)
0.636844 + 0.770992i \(0.280239\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 23.4828 1.17267 0.586336 0.810068i \(-0.300570\pi\)
0.586336 + 0.810068i \(0.300570\pi\)
\(402\) 0 0
\(403\) −3.63703 −0.181173
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 23.8038 41.2295i 1.17991 2.04367i
\(408\) 0 0
\(409\) 6.81225 11.7992i 0.336844 0.583431i −0.646993 0.762496i \(-0.723974\pi\)
0.983837 + 0.179064i \(0.0573071\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −0.984835 + 1.70578i −0.0483436 + 0.0837336i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 3.97733 + 6.88894i 0.194305 + 0.336547i 0.946673 0.322197i \(-0.104421\pi\)
−0.752367 + 0.658744i \(0.771088\pi\)
\(420\) 0 0
\(421\) 1.30584 2.26178i 0.0636426 0.110232i −0.832448 0.554102i \(-0.813062\pi\)
0.896091 + 0.443870i \(0.146395\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −27.0712 46.8887i −1.31315 2.27444i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −0.791065 1.37017i −0.0381043 0.0659985i 0.846344 0.532636i \(-0.178799\pi\)
−0.884449 + 0.466638i \(0.845465\pi\)
\(432\) 0 0
\(433\) 5.17110 0.248507 0.124254 0.992250i \(-0.460346\pi\)
0.124254 + 0.992250i \(0.460346\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.853887 + 1.47898i −0.0408470 + 0.0707490i
\(438\) 0 0
\(439\) 12.4806 + 21.6170i 0.595665 + 1.03172i 0.993453 + 0.114244i \(0.0364446\pi\)
−0.397788 + 0.917477i \(0.630222\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0.542263 + 0.939227i 0.0257637 + 0.0446240i 0.878620 0.477522i \(-0.158465\pi\)
−0.852856 + 0.522146i \(0.825132\pi\)
\(444\) 0 0
\(445\) 23.7825 41.1924i 1.12740 1.95271i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −4.23372 −0.199802 −0.0999008 0.994997i \(-0.531853\pi\)
−0.0999008 + 0.994997i \(0.531853\pi\)
\(450\) 0 0
\(451\) −3.02108 5.23267i −0.142257 0.246397i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 18.1513 + 31.4390i 0.849083 + 1.47065i 0.882028 + 0.471197i \(0.156178\pi\)
−0.0329453 + 0.999457i \(0.510489\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.71236 2.96589i 0.0797524 0.138135i −0.823391 0.567475i \(-0.807920\pi\)
0.903143 + 0.429340i \(0.141254\pi\)
\(462\) 0 0
\(463\) 2.38499 + 4.13092i 0.110840 + 0.191980i 0.916109 0.400929i \(-0.131313\pi\)
−0.805269 + 0.592909i \(0.797979\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −10.0490 + 17.4053i −0.465010 + 0.805422i −0.999202 0.0399417i \(-0.987283\pi\)
0.534192 + 0.845363i \(0.320616\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −16.7015 + 28.9279i −0.767936 + 1.33010i
\(474\) 0 0
\(475\) 23.5673 40.8198i 1.08134 1.87294i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −16.8506 −0.769922 −0.384961 0.922933i \(-0.625785\pi\)
−0.384961 + 0.922933i \(0.625785\pi\)
\(480\) 0 0
\(481\) 17.2388 0.786023
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −17.3337 + 30.0229i −0.787084 + 1.36327i
\(486\) 0 0
\(487\) −11.9916 20.7700i −0.543389 0.941178i −0.998706 0.0508486i \(-0.983807\pi\)
0.455317 0.890329i \(-0.349526\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.07281 + 1.85816i 0.0484153 + 0.0838577i 0.889217 0.457485i \(-0.151250\pi\)
−0.840802 + 0.541342i \(0.817916\pi\)
\(492\) 0 0
\(493\) −54.2689 −2.44415
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −27.7154 −1.24071 −0.620357 0.784320i \(-0.713012\pi\)
−0.620357 + 0.784320i \(0.713012\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −22.4265 −0.999949 −0.499974 0.866040i \(-0.666657\pi\)
−0.499974 + 0.866040i \(0.666657\pi\)
\(504\) 0 0
\(505\) 42.9090 1.90943
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −29.3689 −1.30175 −0.650876 0.759184i \(-0.725598\pi\)
−0.650876 + 0.759184i \(0.725598\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −10.6298 −0.468403
\(516\) 0 0
\(517\) 16.6461 + 28.8318i 0.732093 + 1.26802i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8.25389 + 14.2962i 0.361610 + 0.626326i 0.988226 0.153002i \(-0.0488940\pi\)
−0.626616 + 0.779328i \(0.715561\pi\)
\(522\) 0 0
\(523\) 22.3476 38.7072i 0.977193 1.69255i 0.304695 0.952450i \(-0.401446\pi\)
0.672499 0.740098i \(-0.265221\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −12.2433 −0.533327
\(528\) 0 0
\(529\) −22.8647 −0.994118
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.09394 1.89476i 0.0473838 0.0820711i
\(534\) 0 0
\(535\) 21.0039 36.3798i 0.908078 1.57284i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 10.0369 17.3844i 0.431519 0.747412i −0.565486 0.824758i \(-0.691311\pi\)
0.997004 + 0.0773460i \(0.0246446\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −19.4307 33.6549i −0.832319 1.44162i
\(546\) 0 0
\(547\) 6.35012 10.9987i 0.271512 0.470272i −0.697738 0.716353i \(-0.745810\pi\)
0.969249 + 0.246082i \(0.0791432\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −23.6224 40.9152i −1.00635 1.74305i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 7.34743 + 12.7261i 0.311321 + 0.539223i 0.978649 0.205541i \(-0.0658953\pi\)
−0.667328 + 0.744764i \(0.732562\pi\)
\(558\) 0 0
\(559\) −12.0953 −0.511576
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 13.3930 23.1974i 0.564448 0.977653i −0.432653 0.901561i \(-0.642422\pi\)
0.997101 0.0760922i \(-0.0242443\pi\)
\(564\) 0 0
\(565\) −23.8226 41.2620i −1.00222 1.73590i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.24168 + 5.61475i 0.135898 + 0.235383i 0.925940 0.377670i \(-0.123275\pi\)
−0.790042 + 0.613053i \(0.789941\pi\)
\(570\) 0 0
\(571\) −7.81632 + 13.5383i −0.327103 + 0.566559i −0.981936 0.189215i \(-0.939406\pi\)
0.654833 + 0.755774i \(0.272739\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3.73363 −0.155703
\(576\) 0 0
\(577\) 14.5800 + 25.2533i 0.606974 + 1.05131i 0.991736 + 0.128294i \(0.0409500\pi\)
−0.384763 + 0.923016i \(0.625717\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 2.02522 + 3.50778i 0.0838759 + 0.145277i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.33110 4.03758i 0.0962146 0.166649i −0.813900 0.581005i \(-0.802660\pi\)
0.910115 + 0.414356i \(0.135993\pi\)
\(588\) 0 0
\(589\) −5.32932 9.23065i −0.219591 0.380342i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 15.8322 27.4222i 0.650150 1.12609i −0.332936 0.942950i \(-0.608039\pi\)
0.983086 0.183144i \(-0.0586275\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −5.15268 + 8.92470i −0.210533 + 0.364653i −0.951881 0.306467i \(-0.900853\pi\)
0.741349 + 0.671120i \(0.234187\pi\)
\(600\) 0 0
\(601\) −4.64993 + 8.05391i −0.189674 + 0.328526i −0.945142 0.326661i \(-0.894077\pi\)
0.755467 + 0.655186i \(0.227410\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −31.7064 −1.28905
\(606\) 0 0
\(607\) 20.4968 0.831938 0.415969 0.909379i \(-0.363442\pi\)
0.415969 + 0.909379i \(0.363442\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −6.02757 + 10.4401i −0.243850 + 0.422360i
\(612\) 0 0
\(613\) 7.17240 + 12.4230i 0.289691 + 0.501759i 0.973736 0.227681i \(-0.0731143\pi\)
−0.684045 + 0.729440i \(0.739781\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.47499 + 11.2150i 0.260673 + 0.451499i 0.966421 0.256964i \(-0.0827221\pi\)
−0.705748 + 0.708463i \(0.749389\pi\)
\(618\) 0 0
\(619\) −35.3980 −1.42277 −0.711383 0.702804i \(-0.751931\pi\)
−0.711383 + 0.702804i \(0.751931\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 27.2920 1.09168
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 58.0310 2.31385
\(630\) 0 0
\(631\) 33.1936 1.32141 0.660707 0.750644i \(-0.270256\pi\)
0.660707 + 0.750644i \(0.270256\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 51.3824 2.03905
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0.239269 0.00945056 0.00472528 0.999989i \(-0.498496\pi\)
0.00472528 + 0.999989i \(0.498496\pi\)
\(642\) 0 0
\(643\) −4.57211 7.91913i −0.180307 0.312300i 0.761678 0.647955i \(-0.224376\pi\)
−0.941985 + 0.335655i \(0.891042\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3.15607 + 5.46648i 0.124078 + 0.214909i 0.921372 0.388682i \(-0.127069\pi\)
−0.797294 + 0.603591i \(0.793736\pi\)
\(648\) 0 0
\(649\) 2.01484 3.48980i 0.0790893 0.136987i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 4.55775 0.178359 0.0891793 0.996016i \(-0.471576\pi\)
0.0891793 + 0.996016i \(0.471576\pi\)
\(654\) 0 0
\(655\) 19.8003 0.773662
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 16.4631 28.5149i 0.641311 1.11078i −0.343829 0.939032i \(-0.611724\pi\)
0.985140 0.171751i \(-0.0549425\pi\)
\(660\) 0 0
\(661\) −0.270668 + 0.468811i −0.0105278 + 0.0182346i −0.871241 0.490855i \(-0.836684\pi\)
0.860714 + 0.509090i \(0.170018\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.87118 + 3.24097i −0.0724523 + 0.125491i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 14.3422 + 24.8415i 0.553676 + 0.958994i
\(672\) 0 0
\(673\) −11.8205 + 20.4737i −0.455647 + 0.789204i −0.998725 0.0504780i \(-0.983926\pi\)
0.543078 + 0.839682i \(0.317259\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1.36494 2.36415i −0.0524591 0.0908618i 0.838603 0.544742i \(-0.183373\pi\)
−0.891062 + 0.453881i \(0.850039\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −15.9640 27.6504i −0.610844 1.05801i −0.991098 0.133131i \(-0.957497\pi\)
0.380254 0.924882i \(-0.375836\pi\)
\(684\) 0 0
\(685\) 51.9417 1.98459
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −0.733335 + 1.27017i −0.0279378 + 0.0483897i
\(690\) 0 0
\(691\) 1.19103 + 2.06292i 0.0453089 + 0.0784773i 0.887790 0.460248i \(-0.152239\pi\)
−0.842482 + 0.538725i \(0.818906\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 18.9034 + 32.7417i 0.717048 + 1.24196i
\(696\) 0 0
\(697\) 3.68252 6.37831i 0.139485 0.241596i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −50.3767 −1.90270 −0.951350 0.308111i \(-0.900303\pi\)
−0.951350 + 0.308111i \(0.900303\pi\)
\(702\) 0 0
\(703\) 25.2599 + 43.7515i 0.952697 + 1.65012i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −20.1600 34.9182i −0.757126 1.31138i −0.944310 0.329056i \(-0.893269\pi\)
0.187184 0.982325i \(-0.440064\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.422146 + 0.731178i −0.0158095 + 0.0273828i
\(714\) 0 0
\(715\) −13.4926 23.3698i −0.504593 0.873981i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −17.0446 + 29.5222i −0.635658 + 1.10099i 0.350718 + 0.936481i \(0.385938\pi\)
−0.986375 + 0.164510i \(0.947396\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 51.6446 89.4510i 1.91803 3.32213i
\(726\) 0 0
\(727\) 10.9453 18.9578i 0.405938 0.703105i −0.588492 0.808503i \(-0.700278\pi\)
0.994430 + 0.105398i \(0.0336117\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −40.7163 −1.50595
\(732\) 0 0
\(733\) −8.68831 −0.320910 −0.160455 0.987043i \(-0.551296\pi\)
−0.160455 + 0.987043i \(0.551296\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 32.8351 56.8721i 1.20950 2.09491i
\(738\) 0 0
\(739\) −3.34692 5.79704i −0.123119 0.213248i 0.797877 0.602820i \(-0.205956\pi\)
−0.920996 + 0.389572i \(0.872623\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −21.5001 37.2392i −0.788761 1.36617i −0.926726 0.375737i \(-0.877389\pi\)
0.137965 0.990437i \(-0.455944\pi\)
\(744\) 0 0
\(745\) 53.8807 1.97404
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −16.7274 −0.610391 −0.305196 0.952290i \(-0.598722\pi\)
−0.305196 + 0.952290i \(0.598722\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −89.0438 −3.24064
\(756\) 0 0
\(757\) −4.68561 −0.170301 −0.0851507 0.996368i \(-0.527137\pi\)
−0.0851507 + 0.996368i \(0.527137\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 51.6484 1.87225 0.936127 0.351663i \(-0.114384\pi\)
0.936127 + 0.351663i \(0.114384\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.45915 0.0526870
\(768\) 0 0
\(769\) 15.3910 + 26.6580i 0.555014 + 0.961313i 0.997902 + 0.0647361i \(0.0206205\pi\)
−0.442888 + 0.896577i \(0.646046\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 13.5259 + 23.4275i 0.486491 + 0.842627i 0.999879 0.0155292i \(-0.00494329\pi\)
−0.513388 + 0.858156i \(0.671610\pi\)
\(774\) 0 0
\(775\) 11.6512 20.1805i 0.418525 0.724907i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 6.41177 0.229725
\(780\) 0 0
\(781\) −21.4866 −0.768852
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 22.5370 39.0352i 0.804380 1.39323i
\(786\) 0 0
\(787\) 17.5997 30.4837i 0.627363 1.08662i −0.360716 0.932676i \(-0.617468\pi\)
0.988079 0.153949i \(-0.0491992\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −5.19335 + 8.99514i −0.184421 + 0.319427i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 23.8268 + 41.2692i 0.843988 + 1.46183i 0.886497 + 0.462735i \(0.153132\pi\)
−0.0425084 + 0.999096i \(0.513535\pi\)
\(798\) 0 0
\(799\) −20.2906 + 35.1443i −0.717829 + 1.24332i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 16.5551 + 28.6743i 0.584217 + 1.01189i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 9.87711 + 17.1077i 0.347261 + 0.601473i 0.985762 0.168148i \(-0.0537786\pi\)
−0.638501 + 0.769621i \(0.720445\pi\)
\(810\) 0 0
\(811\) −49.2424 −1.72913 −0.864567 0.502518i \(-0.832407\pi\)
−0.864567 + 0.502518i \(0.832407\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 6.63967 11.5002i 0.232577 0.402836i
\(816\) 0 0
\(817\) −17.7231 30.6974i −0.620054 1.07397i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5.00013 + 8.66048i 0.174506 + 0.302253i 0.939990 0.341202i \(-0.110834\pi\)
−0.765484 + 0.643455i \(0.777501\pi\)
\(822\) 0 0
\(823\) 17.5138 30.3348i 0.610493 1.05741i −0.380664 0.924713i \(-0.624305\pi\)
0.991157 0.132692i \(-0.0423621\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 22.7079 0.789631 0.394816 0.918760i \(-0.370808\pi\)
0.394816 + 0.918760i \(0.370808\pi\)
\(828\) 0 0
\(829\) 6.22083 + 10.7748i 0.216058 + 0.374224i 0.953599 0.301078i \(-0.0973465\pi\)
−0.737541 + 0.675302i \(0.764013\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −18.2944 31.6869i −0.633105 1.09657i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 13.8249 23.9455i 0.477290 0.826690i −0.522372 0.852718i \(-0.674953\pi\)
0.999661 + 0.0260281i \(0.00828595\pi\)
\(840\) 0 0
\(841\) −37.2652 64.5453i −1.28501 2.22570i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −20.4153 + 35.3604i −0.702309 + 1.21643i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.00089 3.46564i 0.0685896 0.118801i
\(852\) 0 0
\(853\) −22.0459 + 38.1847i −0.754839 + 1.30742i 0.190616 + 0.981665i \(0.438952\pi\)
−0.945454 + 0.325754i \(0.894382\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 26.7676 0.914363 0.457182 0.889373i \(-0.348859\pi\)
0.457182 + 0.889373i \(0.348859\pi\)
\(858\) 0 0
\(859\) −20.1901 −0.688879 −0.344439 0.938809i \(-0.611931\pi\)
−0.344439 + 0.938809i \(0.611931\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 4.74538 8.21923i 0.161534 0.279786i −0.773885 0.633327i \(-0.781689\pi\)
0.935419 + 0.353541i \(0.115022\pi\)
\(864\) 0 0
\(865\) 12.4659 + 21.5915i 0.423852 + 0.734133i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4.32182 + 7.48560i 0.146608 + 0.253932i
\(870\) 0 0
\(871\) 23.7793 0.805731
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 29.2455 0.987549 0.493774 0.869590i \(-0.335617\pi\)
0.493774 + 0.869590i \(0.335617\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −37.2768 −1.25589 −0.627944 0.778259i \(-0.716103\pi\)
−0.627944 + 0.778259i \(0.716103\pi\)
\(882\) 0 0
\(883\) −56.9436 −1.91630 −0.958152 0.286260i \(-0.907588\pi\)
−0.958152 + 0.286260i \(0.907588\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 9.92253 0.333166 0.166583 0.986027i \(-0.446727\pi\)
0.166583 + 0.986027i \(0.446727\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −35.3287 −1.18223
\(894\) 0 0
\(895\) −33.2431 57.5787i −1.11119 1.92465i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −11.6785 20.2277i −0.389499 0.674632i
\(900\) 0 0
\(901\) −2.46862 + 4.27577i −0.0822416 + 0.142447i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −5.29328 −0.175955
\(906\) 0 0
\(907\) −24.5775 −0.816081 −0.408040 0.912964i \(-0.633788\pi\)
−0.408040 + 0.912964i \(0.633788\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −9.73496 + 16.8614i −0.322534 + 0.558645i −0.981010 0.193957i \(-0.937868\pi\)
0.658476 + 0.752601i \(0.271201\pi\)
\(912\) 0 0
\(913\) −1.10707 + 1.91749i −0.0366385 + 0.0634598i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 6.61992 11.4660i 0.218371 0.378230i −0.735939 0.677048i \(-0.763259\pi\)
0.954310 + 0.298818i \(0.0965923\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −3.89017 6.73798i −0.128047 0.221783i
\(924\) 0 0
\(925\) −55.2247 + 95.6519i −1.81578 + 3.14502i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 15.8682 + 27.4845i 0.520618 + 0.901737i 0.999713 + 0.0239734i \(0.00763170\pi\)
−0.479095 + 0.877763i \(0.659035\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −45.4199 78.6696i −1.48539 2.57277i
\(936\) 0 0
\(937\) −13.5019 −0.441087 −0.220543 0.975377i \(-0.570783\pi\)
−0.220543 + 0.975377i \(0.570783\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −19.8286 + 34.3441i −0.646394 + 1.11959i 0.337584 + 0.941295i \(0.390390\pi\)
−0.983978 + 0.178291i \(0.942943\pi\)
\(942\) 0 0
\(943\) −0.253944 0.439845i −0.00826957 0.0143233i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −30.5172 52.8573i −0.991675 1.71763i −0.607350 0.794434i \(-0.707768\pi\)
−0.384325 0.923198i \(-0.625566\pi\)
\(948\) 0 0
\(949\) −5.99464 + 10.3830i −0.194594 + 0.337047i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −5.22726 −0.169328 −0.0846638 0.996410i \(-0.526982\pi\)
−0.0846638 + 0.996410i \(0.526982\pi\)
\(954\) 0 0
\(955\) 34.8005 + 60.2762i 1.12612 + 1.95049i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 12.8653 + 22.2833i 0.415009 + 0.718817i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −25.3269 + 43.8674i −0.815301 + 1.41214i
\(966\) 0 0
\(967\) 10.2035 + 17.6729i 0.328121 + 0.568323i 0.982139 0.188156i \(-0.0602511\pi\)
−0.654018 + 0.756479i \(0.726918\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0.589402 1.02087i 0.0189148 0.0327614i −0.856413 0.516291i \(-0.827312\pi\)
0.875328 + 0.483530i \(0.160646\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4.10487 7.10984i 0.131326 0.227464i −0.792862 0.609402i \(-0.791410\pi\)
0.924188 + 0.381938i \(0.124743\pi\)
\(978\) 0 0
\(979\) 26.7342 46.3049i 0.854427 1.47991i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1.50696 0.0480646 0.0240323 0.999711i \(-0.492350\pi\)
0.0240323 + 0.999711i \(0.492350\pi\)
\(984\) 0 0
\(985\) 24.7750 0.789397
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.40389 + 2.43160i −0.0446410 + 0.0773204i
\(990\) 0 0
\(991\) −16.2229 28.0990i −0.515339 0.892593i −0.999842 0.0178030i \(-0.994333\pi\)
0.484503 0.874790i \(-0.339001\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 45.0608 + 78.0476i 1.42852 + 2.47428i
\(996\) 0 0
\(997\) −12.5240 −0.396638 −0.198319 0.980138i \(-0.563548\pi\)
−0.198319 + 0.980138i \(0.563548\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5292.2.l.j.3313.1 24
3.2 odd 2 1764.2.l.j.961.2 24
7.2 even 3 5292.2.j.i.3529.12 24
7.3 odd 6 5292.2.i.j.2125.1 24
7.4 even 3 5292.2.i.j.2125.12 24
7.5 odd 6 5292.2.j.i.3529.1 24
7.6 odd 2 inner 5292.2.l.j.3313.12 24
9.4 even 3 5292.2.i.j.1549.12 24
9.5 odd 6 1764.2.i.j.373.7 24
21.2 odd 6 1764.2.j.i.1177.10 yes 24
21.5 even 6 1764.2.j.i.1177.3 yes 24
21.11 odd 6 1764.2.i.j.1537.7 24
21.17 even 6 1764.2.i.j.1537.6 24
21.20 even 2 1764.2.l.j.961.11 24
63.4 even 3 inner 5292.2.l.j.361.1 24
63.5 even 6 1764.2.j.i.589.3 24
63.13 odd 6 5292.2.i.j.1549.1 24
63.23 odd 6 1764.2.j.i.589.10 yes 24
63.31 odd 6 inner 5292.2.l.j.361.12 24
63.32 odd 6 1764.2.l.j.949.2 24
63.40 odd 6 5292.2.j.i.1765.1 24
63.41 even 6 1764.2.i.j.373.6 24
63.58 even 3 5292.2.j.i.1765.12 24
63.59 even 6 1764.2.l.j.949.11 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1764.2.i.j.373.6 24 63.41 even 6
1764.2.i.j.373.7 24 9.5 odd 6
1764.2.i.j.1537.6 24 21.17 even 6
1764.2.i.j.1537.7 24 21.11 odd 6
1764.2.j.i.589.3 24 63.5 even 6
1764.2.j.i.589.10 yes 24 63.23 odd 6
1764.2.j.i.1177.3 yes 24 21.5 even 6
1764.2.j.i.1177.10 yes 24 21.2 odd 6
1764.2.l.j.949.2 24 63.32 odd 6
1764.2.l.j.949.11 24 63.59 even 6
1764.2.l.j.961.2 24 3.2 odd 2
1764.2.l.j.961.11 24 21.20 even 2
5292.2.i.j.1549.1 24 63.13 odd 6
5292.2.i.j.1549.12 24 9.4 even 3
5292.2.i.j.2125.1 24 7.3 odd 6
5292.2.i.j.2125.12 24 7.4 even 3
5292.2.j.i.1765.1 24 63.40 odd 6
5292.2.j.i.1765.12 24 63.58 even 3
5292.2.j.i.3529.1 24 7.5 odd 6
5292.2.j.i.3529.12 24 7.2 even 3
5292.2.l.j.361.1 24 63.4 even 3 inner
5292.2.l.j.361.12 24 63.31 odd 6 inner
5292.2.l.j.3313.1 24 1.1 even 1 trivial
5292.2.l.j.3313.12 24 7.6 odd 2 inner