Properties

Label 529.2.a.j.1.5
Level 529529
Weight 22
Character 529.1
Self dual yes
Analytic conductor 4.2244.224
Analytic rank 00
Dimension 55
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [529,2,Mod(1,529)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("529.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(529, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: N N == 529=232 529 = 23^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 529.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,2,2,4,7,-8,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 4.224086266934.22408626693
Analytic rank: 00
Dimension: 55
Coefficient field: Q(ζ22)+\Q(\zeta_{22})^+
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x5x44x3+3x2+3x1 x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 23)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.5
Root 0.830830-0.830830 of defining polynomial
Character χ\chi == 529.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+2.20362q22.51334q3+2.85592q4+1.23648q55.53843q6+2.37279q7+1.88612q8+3.31686q9+2.72472q10+1.91184q117.17789q12+0.196474q13+5.22871q143.10769q151.55555q16+1.55991q17+7.30909q18+7.98446q19+3.53129q205.96361q21+4.21297q224.74046q243.47112q25+0.432953q260.796384q27+6.77649q28+4.97732q296.84815q30+1.78268q317.20009q324.80511q33+3.43743q34+2.93390q35+9.47270q363.88323q37+17.5947q380.493805q39+2.33215q40+0.426496q4113.1415q424.45317q43+5.46008q44+4.10123q452.58842q47+3.90963q481.36989q497.64901q503.92057q51+0.561114q529.81939q531.75493q54+2.36395q55+4.47536q5620.0676q57+10.9681q587.21890q598.87531q607.42966q61+3.92834q62+7.87021q6312.7551q64+0.242936q6510.5886q667.26650q67+4.45497q68+6.46519q700.730284q71+6.25601q726.44434q738.55714q74+8.72409q75+22.8030q76+4.53640q771.08816q78+5.67808q791.92341q807.94901q81+0.939833q82+12.8897q8317.0316q84+1.92879q859.81308q8612.5097q87+3.60597q88+13.9002q89+9.03754q90+0.466190q914.48047q935.70388q94+9.87261q95+18.0963q964.32377q973.01871q98+6.34133q99+O(q100)q+2.20362 q^{2} -2.51334 q^{3} +2.85592 q^{4} +1.23648 q^{5} -5.53843 q^{6} +2.37279 q^{7} +1.88612 q^{8} +3.31686 q^{9} +2.72472 q^{10} +1.91184 q^{11} -7.17789 q^{12} +0.196474 q^{13} +5.22871 q^{14} -3.10769 q^{15} -1.55555 q^{16} +1.55991 q^{17} +7.30909 q^{18} +7.98446 q^{19} +3.53129 q^{20} -5.96361 q^{21} +4.21297 q^{22} -4.74046 q^{24} -3.47112 q^{25} +0.432953 q^{26} -0.796384 q^{27} +6.77649 q^{28} +4.97732 q^{29} -6.84815 q^{30} +1.78268 q^{31} -7.20009 q^{32} -4.80511 q^{33} +3.43743 q^{34} +2.93390 q^{35} +9.47270 q^{36} -3.88323 q^{37} +17.5947 q^{38} -0.493805 q^{39} +2.33215 q^{40} +0.426496 q^{41} -13.1415 q^{42} -4.45317 q^{43} +5.46008 q^{44} +4.10123 q^{45} -2.58842 q^{47} +3.90963 q^{48} -1.36989 q^{49} -7.64901 q^{50} -3.92057 q^{51} +0.561114 q^{52} -9.81939 q^{53} -1.75493 q^{54} +2.36395 q^{55} +4.47536 q^{56} -20.0676 q^{57} +10.9681 q^{58} -7.21890 q^{59} -8.87531 q^{60} -7.42966 q^{61} +3.92834 q^{62} +7.87021 q^{63} -12.7551 q^{64} +0.242936 q^{65} -10.5886 q^{66} -7.26650 q^{67} +4.45497 q^{68} +6.46519 q^{70} -0.730284 q^{71} +6.25601 q^{72} -6.44434 q^{73} -8.55714 q^{74} +8.72409 q^{75} +22.8030 q^{76} +4.53640 q^{77} -1.08816 q^{78} +5.67808 q^{79} -1.92341 q^{80} -7.94901 q^{81} +0.939833 q^{82} +12.8897 q^{83} -17.0316 q^{84} +1.92879 q^{85} -9.81308 q^{86} -12.5097 q^{87} +3.60597 q^{88} +13.9002 q^{89} +9.03754 q^{90} +0.466190 q^{91} -4.48047 q^{93} -5.70388 q^{94} +9.87261 q^{95} +18.0963 q^{96} -4.32377 q^{97} -3.01871 q^{98} +6.34133 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 5q+2q2+2q3+4q4+7q58q6+8q79q8q9+5q10+13q115q12+4q13+12q14+5q15+6q16+16q17+4q18+10q19+10q20+18q99+O(q100) 5 q + 2 q^{2} + 2 q^{3} + 4 q^{4} + 7 q^{5} - 8 q^{6} + 8 q^{7} - 9 q^{8} - q^{9} + 5 q^{10} + 13 q^{11} - 5 q^{12} + 4 q^{13} + 12 q^{14} + 5 q^{15} + 6 q^{16} + 16 q^{17} + 4 q^{18} + 10 q^{19} + 10 q^{20}+ \cdots - 18 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 2.20362 1.55819 0.779096 0.626905i 0.215679π-0.215679\pi
0.779096 + 0.626905i 0.215679π0.215679\pi
33 −2.51334 −1.45108 −0.725538 0.688182i 0.758409π-0.758409\pi
−0.725538 + 0.688182i 0.758409π0.758409\pi
44 2.85592 1.42796
55 1.23648 0.552970 0.276485 0.961018i 0.410830π-0.410830\pi
0.276485 + 0.961018i 0.410830π0.410830\pi
66 −5.53843 −2.26105
77 2.37279 0.896829 0.448414 0.893826i 0.351989π-0.351989\pi
0.448414 + 0.893826i 0.351989π0.351989\pi
88 1.88612 0.666845
99 3.31686 1.10562
1010 2.72472 0.861633
1111 1.91184 0.576443 0.288221 0.957564i 0.406936π-0.406936\pi
0.288221 + 0.957564i 0.406936π0.406936\pi
1212 −7.17789 −2.07208
1313 0.196474 0.0544920 0.0272460 0.999629i 0.491326π-0.491326\pi
0.0272460 + 0.999629i 0.491326π0.491326\pi
1414 5.22871 1.39743
1515 −3.10769 −0.802402
1616 −1.55555 −0.388889
1717 1.55991 0.378333 0.189166 0.981945i 0.439421π-0.439421\pi
0.189166 + 0.981945i 0.439421π0.439421\pi
1818 7.30909 1.72277
1919 7.98446 1.83176 0.915880 0.401452i 0.131494π-0.131494\pi
0.915880 + 0.401452i 0.131494π0.131494\pi
2020 3.53129 0.789620
2121 −5.96361 −1.30137
2222 4.21297 0.898208
2323 0 0
2424 −4.74046 −0.967643
2525 −3.47112 −0.694224
2626 0.432953 0.0849090
2727 −0.796384 −0.153264
2828 6.77649 1.28064
2929 4.97732 0.924264 0.462132 0.886811i 0.347085π-0.347085\pi
0.462132 + 0.886811i 0.347085π0.347085\pi
3030 −6.84815 −1.25030
3131 1.78268 0.320179 0.160089 0.987103i 0.448822π-0.448822\pi
0.160089 + 0.987103i 0.448822π0.448822\pi
3232 −7.20009 −1.27281
3333 −4.80511 −0.836462
3434 3.43743 0.589515
3535 2.93390 0.495919
3636 9.47270 1.57878
3737 −3.88323 −0.638398 −0.319199 0.947688i 0.603414π-0.603414\pi
−0.319199 + 0.947688i 0.603414π0.603414\pi
3838 17.5947 2.85423
3939 −0.493805 −0.0790720
4040 2.33215 0.368745
4141 0.426496 0.0666075 0.0333037 0.999445i 0.489397π-0.489397\pi
0.0333037 + 0.999445i 0.489397π0.489397\pi
4242 −13.1415 −2.02778
4343 −4.45317 −0.679102 −0.339551 0.940588i 0.610275π-0.610275\pi
−0.339551 + 0.940588i 0.610275π0.610275\pi
4444 5.46008 0.823138
4545 4.10123 0.611375
4646 0 0
4747 −2.58842 −0.377559 −0.188780 0.982019i 0.560453π-0.560453\pi
−0.188780 + 0.982019i 0.560453π0.560453\pi
4848 3.90963 0.564307
4949 −1.36989 −0.195698
5050 −7.64901 −1.08173
5151 −3.92057 −0.548989
5252 0.561114 0.0778125
5353 −9.81939 −1.34880 −0.674399 0.738367i 0.735597π-0.735597\pi
−0.674399 + 0.738367i 0.735597π0.735597\pi
5454 −1.75493 −0.238815
5555 2.36395 0.318756
5656 4.47536 0.598046
5757 −20.0676 −2.65802
5858 10.9681 1.44018
5959 −7.21890 −0.939821 −0.469911 0.882714i 0.655714π-0.655714\pi
−0.469911 + 0.882714i 0.655714π0.655714\pi
6060 −8.87531 −1.14580
6161 −7.42966 −0.951271 −0.475635 0.879643i 0.657782π-0.657782\pi
−0.475635 + 0.879643i 0.657782π0.657782\pi
6262 3.92834 0.498900
6363 7.87021 0.991553
6464 −12.7551 −1.59439
6565 0.242936 0.0301325
6666 −10.5886 −1.30337
6767 −7.26650 −0.887744 −0.443872 0.896090i 0.646396π-0.646396\pi
−0.443872 + 0.896090i 0.646396π0.646396\pi
6868 4.45497 0.540244
6969 0 0
7070 6.46519 0.772738
7171 −0.730284 −0.0866687 −0.0433344 0.999061i 0.513798π-0.513798\pi
−0.0433344 + 0.999061i 0.513798π0.513798\pi
7272 6.25601 0.737278
7373 −6.44434 −0.754253 −0.377126 0.926162i 0.623088π-0.623088\pi
−0.377126 + 0.926162i 0.623088π0.623088\pi
7474 −8.55714 −0.994747
7575 8.72409 1.00737
7676 22.8030 2.61568
7777 4.53640 0.516970
7878 −1.08816 −0.123209
7979 5.67808 0.638834 0.319417 0.947614i 0.396513π-0.396513\pi
0.319417 + 0.947614i 0.396513π0.396513\pi
8080 −1.92341 −0.215044
8181 −7.94901 −0.883223
8282 0.939833 0.103787
8383 12.8897 1.41483 0.707416 0.706797i 0.249861π-0.249861\pi
0.707416 + 0.706797i 0.249861π0.249861\pi
8484 −17.0316 −1.85830
8585 1.92879 0.209207
8686 −9.81308 −1.05817
8787 −12.5097 −1.34118
8888 3.60597 0.384398
8989 13.9002 1.47342 0.736711 0.676208i 0.236378π-0.236378\pi
0.736711 + 0.676208i 0.236378π0.236378\pi
9090 9.03754 0.952640
9191 0.466190 0.0488700
9292 0 0
9393 −4.48047 −0.464603
9494 −5.70388 −0.588310
9595 9.87261 1.01291
9696 18.0963 1.84694
9797 −4.32377 −0.439012 −0.219506 0.975611i 0.570445π-0.570445\pi
−0.219506 + 0.975611i 0.570445π0.570445\pi
9898 −3.01871 −0.304936
9999 6.34133 0.637327
100100 −9.91325 −0.991325
101101 −1.82028 −0.181124 −0.0905622 0.995891i 0.528866π-0.528866\pi
−0.0905622 + 0.995891i 0.528866π0.528866\pi
102102 −8.63943 −0.855431
103103 15.3132 1.50886 0.754429 0.656382i 0.227914π-0.227914\pi
0.754429 + 0.656382i 0.227914π0.227914\pi
104104 0.370574 0.0363377
105105 −7.37388 −0.719617
106106 −21.6382 −2.10168
107107 −1.98833 −0.192219 −0.0961094 0.995371i 0.530640π-0.530640\pi
−0.0961094 + 0.995371i 0.530640π0.530640\pi
108108 −2.27441 −0.218855
109109 −15.5948 −1.49371 −0.746855 0.664987i 0.768437π-0.768437\pi
−0.746855 + 0.664987i 0.768437π0.768437\pi
110110 5.20925 0.496682
111111 9.75985 0.926364
112112 −3.69100 −0.348766
113113 1.48825 0.140002 0.0700012 0.997547i 0.477700π-0.477700\pi
0.0700012 + 0.997547i 0.477700π0.477700\pi
114114 −44.2213 −4.14171
115115 0 0
116116 14.2148 1.31981
117117 0.651677 0.0602475
118118 −15.9077 −1.46442
119119 3.70132 0.339300
120120 −5.86148 −0.535078
121121 −7.34485 −0.667714
122122 −16.3721 −1.48226
123123 −1.07193 −0.0966525
124124 5.09119 0.457203
125125 −10.4744 −0.936855
126126 17.3429 1.54503
127127 5.99437 0.531914 0.265957 0.963985i 0.414312π-0.414312\pi
0.265957 + 0.963985i 0.414312π0.414312\pi
128128 −13.7072 −1.21156
129129 11.1923 0.985429
130130 0.535337 0.0469521
131131 −12.7688 −1.11562 −0.557809 0.829970i 0.688358π-0.688358\pi
−0.557809 + 0.829970i 0.688358π0.688358\pi
132132 −13.7230 −1.19444
133133 18.9454 1.64277
134134 −16.0126 −1.38328
135135 −0.984712 −0.0847506
136136 2.94217 0.252289
137137 −0.697560 −0.0595966 −0.0297983 0.999556i 0.509486π-0.509486\pi
−0.0297983 + 0.999556i 0.509486π0.509486\pi
138138 0 0
139139 13.9559 1.18372 0.591862 0.806039i 0.298393π-0.298393\pi
0.591862 + 0.806039i 0.298393π0.298393\pi
140140 8.37899 0.708154
141141 6.50557 0.547867
142142 −1.60926 −0.135046
143143 0.375627 0.0314115
144144 −5.15956 −0.429963
145145 6.15435 0.511091
146146 −14.2008 −1.17527
147147 3.44299 0.283973
148148 −11.0902 −0.911608
149149 16.6390 1.36312 0.681561 0.731761i 0.261301π-0.261301\pi
0.681561 + 0.731761i 0.261301π0.261301\pi
150150 19.2246 1.56968
151151 13.1900 1.07338 0.536692 0.843778i 0.319674π-0.319674\pi
0.536692 + 0.843778i 0.319674π0.319674\pi
152152 15.0597 1.22150
153153 5.17399 0.418293
154154 9.99647 0.805539
155155 2.20425 0.177049
156156 −1.41027 −0.112912
157157 −4.12867 −0.329504 −0.164752 0.986335i 0.552682π-0.552682\pi
−0.164752 + 0.986335i 0.552682π0.552682\pi
158158 12.5123 0.995426
159159 24.6794 1.95721
160160 −8.90276 −0.703825
161161 0 0
162162 −17.5166 −1.37623
163163 −14.7893 −1.15839 −0.579194 0.815190i 0.696633π-0.696633\pi
−0.579194 + 0.815190i 0.696633π0.696633\pi
164164 1.21804 0.0951129
165165 −5.94142 −0.462539
166166 28.4040 2.20458
167167 1.32974 0.102899 0.0514493 0.998676i 0.483616π-0.483616\pi
0.0514493 + 0.998676i 0.483616π0.483616\pi
168168 −11.2481 −0.867810
169169 −12.9614 −0.997031
170170 4.25031 0.325984
171171 26.4834 2.02523
172172 −12.7179 −0.969731
173173 −16.9361 −1.28762 −0.643812 0.765184i 0.722648π-0.722648\pi
−0.643812 + 0.765184i 0.722648π0.722648\pi
174174 −27.5665 −2.08981
175175 −8.23622 −0.622600
176176 −2.97398 −0.224172
177177 18.1435 1.36375
178178 30.6308 2.29587
179179 −1.43135 −0.106984 −0.0534920 0.998568i 0.517035π-0.517035\pi
−0.0534920 + 0.998568i 0.517035π0.517035\pi
180180 11.7128 0.873020
181181 16.1314 1.19903 0.599517 0.800362i 0.295359π-0.295359\pi
0.599517 + 0.800362i 0.295359π0.295359\pi
182182 1.02730 0.0761488
183183 18.6732 1.38037
184184 0 0
185185 −4.80153 −0.353015
186186 −9.87324 −0.723941
187187 2.98230 0.218087
188188 −7.39232 −0.539140
189189 −1.88965 −0.137452
190190 21.7554 1.57831
191191 20.7445 1.50102 0.750509 0.660860i 0.229808π-0.229808\pi
0.750509 + 0.660860i 0.229808π0.229808\pi
192192 32.0579 2.31358
193193 14.6523 1.05469 0.527346 0.849651i 0.323187π-0.323187\pi
0.527346 + 0.849651i 0.323187π0.323187\pi
194194 −9.52793 −0.684065
195195 −0.610579 −0.0437245
196196 −3.91229 −0.279450
197197 11.6779 0.832016 0.416008 0.909361i 0.363429π-0.363429\pi
0.416008 + 0.909361i 0.363429π0.363429\pi
198198 13.9738 0.993078
199199 5.72341 0.405722 0.202861 0.979208i 0.434976π-0.434976\pi
0.202861 + 0.979208i 0.434976π0.434976\pi
200200 −6.54696 −0.462940
201201 18.2632 1.28818
202202 −4.01119 −0.282226
203203 11.8101 0.828907
204204 −11.1968 −0.783935
205205 0.527353 0.0368319
206206 33.7445 2.35109
207207 0 0
208208 −0.305626 −0.0211913
209209 15.2650 1.05590
210210 −16.2492 −1.12130
211211 −14.0677 −0.968463 −0.484232 0.874940i 0.660901π-0.660901\pi
−0.484232 + 0.874940i 0.660901π0.660901\pi
212212 −28.0434 −1.92603
213213 1.83545 0.125763
214214 −4.38151 −0.299514
215215 −5.50625 −0.375523
216216 −1.50208 −0.102204
217217 4.22992 0.287145
218218 −34.3649 −2.32748
219219 16.1968 1.09448
220220 6.75127 0.455171
221221 0.306480 0.0206161
222222 21.5070 1.44345
223223 −4.20359 −0.281493 −0.140746 0.990046i 0.544950π-0.544950\pi
−0.140746 + 0.990046i 0.544950π0.544950\pi
224224 −17.0843 −1.14149
225225 −11.5132 −0.767549
226226 3.27952 0.218150
227227 −18.4308 −1.22329 −0.611647 0.791131i 0.709493π-0.709493\pi
−0.611647 + 0.791131i 0.709493π0.709493\pi
228228 −57.3116 −3.79555
229229 −10.9247 −0.721923 −0.360961 0.932581i 0.617551π-0.617551\pi
−0.360961 + 0.932581i 0.617551π0.617551\pi
230230 0 0
231231 −11.4015 −0.750163
232232 9.38783 0.616341
233233 4.16483 0.272847 0.136423 0.990651i 0.456439π-0.456439\pi
0.136423 + 0.990651i 0.456439π0.456439\pi
234234 1.43604 0.0938772
235235 −3.20052 −0.208779
236236 −20.6166 −1.34203
237237 −14.2709 −0.926997
238238 8.15629 0.528694
239239 −22.5171 −1.45651 −0.728257 0.685305i 0.759669π-0.759669\pi
−0.728257 + 0.685305i 0.759669π0.759669\pi
240240 4.83418 0.312045
241241 −5.92913 −0.381929 −0.190965 0.981597i 0.561162π-0.561162\pi
−0.190965 + 0.981597i 0.561162π0.561162\pi
242242 −16.1852 −1.04043
243243 22.3677 1.43489
244244 −21.2185 −1.35838
245245 −1.69384 −0.108215
246246 −2.36212 −0.150603
247247 1.56874 0.0998163
248248 3.36235 0.213510
249249 −32.3963 −2.05303
250250 −23.0815 −1.45980
251251 1.55061 0.0978738 0.0489369 0.998802i 0.484417π-0.484417\pi
0.0489369 + 0.998802i 0.484417π0.484417\pi
252252 22.4767 1.41590
253253 0 0
254254 13.2093 0.828824
255255 −4.84770 −0.303575
256256 −4.69517 −0.293448
257257 27.4579 1.71278 0.856388 0.516333i 0.172703π-0.172703\pi
0.856388 + 0.516333i 0.172703π0.172703\pi
258258 24.6636 1.53549
259259 −9.21406 −0.572534
260260 0.693805 0.0430280
261261 16.5091 1.02189
262262 −28.1376 −1.73835
263263 12.9407 0.797958 0.398979 0.916960i 0.369365π-0.369365\pi
0.398979 + 0.916960i 0.369365π0.369365\pi
264264 −9.06302 −0.557791
265265 −12.1415 −0.745845
266266 41.7484 2.55976
267267 −34.9360 −2.13805
268268 −20.7526 −1.26766
269269 −9.99766 −0.609568 −0.304784 0.952421i 0.598584π-0.598584\pi
−0.304784 + 0.952421i 0.598584π0.598584\pi
270270 −2.16993 −0.132058
271271 4.41139 0.267973 0.133986 0.990983i 0.457222π-0.457222\pi
0.133986 + 0.990983i 0.457222π0.457222\pi
272272 −2.42652 −0.147129
273273 −1.17169 −0.0709141
274274 −1.53715 −0.0928629
275275 −6.63624 −0.400180
276276 0 0
277277 −30.8042 −1.85085 −0.925423 0.378935i 0.876290π-0.876290\pi
−0.925423 + 0.378935i 0.876290π0.876290\pi
278278 30.7535 1.84447
279279 5.91290 0.353996
280280 5.53369 0.330701
281281 3.57931 0.213524 0.106762 0.994285i 0.465952π-0.465952\pi
0.106762 + 0.994285i 0.465952π0.465952\pi
282282 14.3358 0.853682
283283 −14.7804 −0.878604 −0.439302 0.898339i 0.644774π-0.644774\pi
−0.439302 + 0.898339i 0.644774π0.644774\pi
284284 −2.08563 −0.123760
285285 −24.8132 −1.46981
286286 0.827738 0.0489452
287287 1.01198 0.0597355
288288 −23.8817 −1.40724
289289 −14.5667 −0.856864
290290 13.5618 0.796377
291291 10.8671 0.637040
292292 −18.4045 −1.07704
293293 −21.5135 −1.25683 −0.628415 0.777878i 0.716296π-0.716296\pi
−0.628415 + 0.777878i 0.716296π0.716296\pi
294294 7.58703 0.442485
295295 −8.92602 −0.519693
296296 −7.32424 −0.425713
297297 −1.52256 −0.0883481
298298 36.6660 2.12401
299299 0 0
300300 24.9153 1.43849
301301 −10.5664 −0.609038
302302 29.0656 1.67254
303303 4.57497 0.262825
304304 −12.4203 −0.712351
305305 −9.18662 −0.526024
306306 11.4015 0.651780
307307 14.1449 0.807294 0.403647 0.914915i 0.367742π-0.367742\pi
0.403647 + 0.914915i 0.367742π0.367742\pi
308308 12.9556 0.738213
309309 −38.4873 −2.18947
310310 4.85731 0.275877
311311 0.570139 0.0323296 0.0161648 0.999869i 0.494854π-0.494854\pi
0.0161648 + 0.999869i 0.494854π0.494854\pi
312312 −0.931376 −0.0527288
313313 21.1327 1.19449 0.597247 0.802058i 0.296261π-0.296261\pi
0.597247 + 0.802058i 0.296261π0.296261\pi
314314 −9.09801 −0.513431
315315 9.73134 0.548299
316316 16.2162 0.912230
317317 −8.81213 −0.494939 −0.247469 0.968896i 0.579599π-0.579599\pi
−0.247469 + 0.968896i 0.579599π0.579599\pi
318318 54.3840 3.04970
319319 9.51585 0.532785
320320 −15.7714 −0.881650
321321 4.99734 0.278924
322322 0 0
323323 12.4550 0.693015
324324 −22.7017 −1.26121
325325 −0.681984 −0.0378297
326326 −32.5900 −1.80499
327327 39.1949 2.16749
328328 0.804424 0.0444169
329329 −6.14176 −0.338606
330330 −13.0926 −0.720724
331331 30.1875 1.65925 0.829627 0.558317i 0.188553π-0.188553\pi
0.829627 + 0.558317i 0.188553π0.188553\pi
332332 36.8121 2.02033
333333 −12.8801 −0.705827
334334 2.93024 0.160336
335335 −8.98487 −0.490896
336336 9.27672 0.506086
337337 4.95577 0.269958 0.134979 0.990848i 0.456903π-0.456903\pi
0.134979 + 0.990848i 0.456903π0.456903\pi
338338 −28.5619 −1.55356
339339 −3.74046 −0.203154
340340 5.50847 0.298739
341341 3.40820 0.184565
342342 58.3591 3.15570
343343 −19.8600 −1.07234
344344 −8.39923 −0.452856
345345 0 0
346346 −37.3205 −2.00636
347347 −6.76696 −0.363269 −0.181635 0.983366i 0.558139π-0.558139\pi
−0.181635 + 0.983366i 0.558139π0.558139\pi
348348 −35.7266 −1.91515
349349 10.0918 0.540204 0.270102 0.962832i 0.412943π-0.412943\pi
0.270102 + 0.962832i 0.412943π0.412943\pi
350350 −18.1495 −0.970130
351351 −0.156469 −0.00835168
352352 −13.7654 −0.733701
353353 24.4693 1.30237 0.651184 0.758920i 0.274273π-0.274273\pi
0.651184 + 0.758920i 0.274273π0.274273\pi
354354 39.9814 2.12499
355355 −0.902980 −0.0479252
356356 39.6980 2.10399
357357 −9.30267 −0.492349
358358 −3.15414 −0.166702
359359 −0.418813 −0.0221041 −0.0110520 0.999939i 0.503518π-0.503518\pi
−0.0110520 + 0.999939i 0.503518π0.503518\pi
360360 7.73543 0.407693
361361 44.7516 2.35534
362362 35.5473 1.86833
363363 18.4601 0.968903
364364 1.33140 0.0697845
365365 −7.96829 −0.417079
366366 41.1486 2.15087
367367 −28.5682 −1.49125 −0.745624 0.666367i 0.767849π-0.767849\pi
−0.745624 + 0.666367i 0.767849π0.767849\pi
368368 0 0
369369 1.41463 0.0736426
370370 −10.5807 −0.550065
371371 −23.2993 −1.20964
372372 −12.7959 −0.663436
373373 −14.4078 −0.746006 −0.373003 0.927830i 0.621672π-0.621672\pi
−0.373003 + 0.927830i 0.621672π0.621672\pi
374374 6.57183 0.339821
375375 26.3256 1.35945
376376 −4.88207 −0.251774
377377 0.977912 0.0503650
378378 −4.16406 −0.214176
379379 5.62712 0.289046 0.144523 0.989501i 0.453835π-0.453835\pi
0.144523 + 0.989501i 0.453835π0.453835\pi
380380 28.1954 1.44639
381381 −15.0659 −0.771848
382382 45.7129 2.33887
383383 −0.231660 −0.0118373 −0.00591864 0.999982i 0.501884π-0.501884\pi
−0.00591864 + 0.999982i 0.501884π0.501884\pi
384384 34.4508 1.75806
385385 5.60916 0.285869
386386 32.2879 1.64341
387387 −14.7706 −0.750830
388388 −12.3484 −0.626893
389389 30.1698 1.52967 0.764835 0.644226i 0.222820π-0.222820\pi
0.764835 + 0.644226i 0.222820π0.222820\pi
390390 −1.34548 −0.0681311
391391 0 0
392392 −2.58378 −0.130500
393393 32.0924 1.61885
394394 25.7336 1.29644
395395 7.02083 0.353256
396396 18.1103 0.910078
397397 −13.0453 −0.654723 −0.327362 0.944899i 0.606160π-0.606160\pi
−0.327362 + 0.944899i 0.606160π0.606160\pi
398398 12.6122 0.632192
399399 −47.6162 −2.38379
400400 5.39952 0.269976
401401 21.3257 1.06496 0.532479 0.846444i 0.321261π-0.321261\pi
0.532479 + 0.846444i 0.321261π0.321261\pi
402402 40.2450 2.00724
403403 0.350250 0.0174472
404404 −5.19857 −0.258639
405405 −9.82878 −0.488396
406406 26.0249 1.29160
407407 −7.42412 −0.368000
408408 −7.39467 −0.366091
409409 −9.14902 −0.452390 −0.226195 0.974082i 0.572629π-0.572629\pi
−0.226195 + 0.974082i 0.572629π0.572629\pi
410410 1.16208 0.0573912
411411 1.75320 0.0864791
412412 43.7334 2.15459
413413 −17.1289 −0.842859
414414 0 0
415415 15.9379 0.782360
416416 −1.41463 −0.0693579
417417 −35.0759 −1.71767
418418 33.6383 1.64530
419419 8.97420 0.438418 0.219209 0.975678i 0.429652π-0.429652\pi
0.219209 + 0.975678i 0.429652π0.429652\pi
420420 −21.0592 −1.02758
421421 −31.4723 −1.53387 −0.766933 0.641728i 0.778218π-0.778218\pi
−0.766933 + 0.641728i 0.778218π0.778218\pi
422422 −30.9999 −1.50905
423423 −8.58543 −0.417438
424424 −18.5206 −0.899439
425425 −5.41462 −0.262648
426426 4.04462 0.195963
427427 −17.6290 −0.853127
428428 −5.67851 −0.274481
429429 −0.944078 −0.0455805
430430 −12.1337 −0.585137
431431 22.1024 1.06464 0.532318 0.846545i 0.321321π-0.321321\pi
0.532318 + 0.846545i 0.321321π0.321321\pi
432432 1.23882 0.0596027
433433 −12.6952 −0.610095 −0.305047 0.952337i 0.598672π-0.598672\pi
−0.305047 + 0.952337i 0.598672π0.598672\pi
434434 9.32111 0.447428
435435 −15.4679 −0.741631
436436 −44.5375 −2.13296
437437 0 0
438438 35.6915 1.70541
439439 18.4210 0.879187 0.439593 0.898197i 0.355123π-0.355123\pi
0.439593 + 0.898197i 0.355123π0.355123\pi
440440 4.45871 0.212561
441441 −4.54373 −0.216368
442442 0.675365 0.0321238
443443 −13.9128 −0.661016 −0.330508 0.943803i 0.607220π-0.607220\pi
−0.330508 + 0.943803i 0.607220π0.607220\pi
444444 27.8734 1.32281
445445 17.1873 0.814758
446446 −9.26309 −0.438620
447447 −41.8195 −1.97799
448448 −30.2652 −1.42989
449449 30.0925 1.42015 0.710076 0.704125i 0.248661π-0.248661\pi
0.710076 + 0.704125i 0.248661π0.248661\pi
450450 −25.3707 −1.19599
451451 0.815394 0.0383954
452452 4.25031 0.199918
453453 −33.1508 −1.55756
454454 −40.6143 −1.90612
455455 0.576434 0.0270237
456456 −37.8500 −1.77249
457457 −38.0475 −1.77979 −0.889894 0.456166i 0.849222π-0.849222\pi
−0.889894 + 0.456166i 0.849222π0.849222\pi
458458 −24.0738 −1.12489
459459 −1.24228 −0.0579849
460460 0 0
461461 8.76016 0.408001 0.204001 0.978971i 0.434606π-0.434606\pi
0.204001 + 0.978971i 0.434606π0.434606\pi
462462 −25.1245 −1.16890
463463 −27.8367 −1.29368 −0.646841 0.762625i 0.723910π-0.723910\pi
−0.646841 + 0.762625i 0.723910π0.723910\pi
464464 −7.74248 −0.359436
465465 −5.54001 −0.256912
466466 9.17768 0.425148
467467 17.3663 0.803619 0.401809 0.915723i 0.368381π-0.368381\pi
0.401809 + 0.915723i 0.368381π0.368381\pi
468468 1.86114 0.0860311
469469 −17.2418 −0.796155
470470 −7.05272 −0.325318
471471 10.3768 0.478135
472472 −13.6157 −0.626715
473473 −8.51377 −0.391463
474474 −31.4477 −1.44444
475475 −27.7150 −1.27165
476476 10.5707 0.484507
477477 −32.5696 −1.49126
478478 −49.6191 −2.26953
479479 25.4778 1.16411 0.582055 0.813150i 0.302249π-0.302249\pi
0.582055 + 0.813150i 0.302249π0.302249\pi
480480 22.3756 1.02130
481481 −0.762952 −0.0347876
482482 −13.0655 −0.595119
483483 0 0
484484 −20.9763 −0.953469
485485 −5.34625 −0.242761
486486 49.2898 2.23583
487487 −6.16107 −0.279185 −0.139592 0.990209i 0.544579π-0.544579\pi
−0.139592 + 0.990209i 0.544579π0.544579\pi
488488 −14.0133 −0.634350
489489 37.1705 1.68091
490490 −3.73257 −0.168620
491491 −32.6476 −1.47337 −0.736683 0.676238i 0.763609π-0.763609\pi
−0.736683 + 0.676238i 0.763609π0.763609\pi
492492 −3.06134 −0.138016
493493 7.76414 0.349679
494494 3.45689 0.155533
495495 7.84092 0.352423
496496 −2.77305 −0.124514
497497 −1.73281 −0.0777270
498498 −71.3889 −3.19901
499499 −8.57369 −0.383811 −0.191906 0.981413i 0.561467π-0.561467\pi
−0.191906 + 0.981413i 0.561467π0.561467\pi
500500 −29.9140 −1.33779
501501 −3.34209 −0.149314
502502 3.41695 0.152506
503503 −6.75554 −0.301214 −0.150607 0.988594i 0.548123π-0.548123\pi
−0.150607 + 0.988594i 0.548123π0.548123\pi
504504 14.8442 0.661212
505505 −2.25073 −0.100156
506506 0 0
507507 32.5764 1.44677
508508 17.1194 0.759553
509509 40.9726 1.81608 0.908038 0.418887i 0.137580π-0.137580\pi
0.908038 + 0.418887i 0.137580π0.137580\pi
510510 −10.6825 −0.473028
511511 −15.2910 −0.676436
512512 17.0681 0.754309
513513 −6.35870 −0.280743
514514 60.5066 2.66883
515515 18.9345 0.834353
516516 31.9644 1.40715
517517 −4.94865 −0.217641
518518 −20.3043 −0.892118
519519 42.5660 1.86844
520520 0.458206 0.0200937
521521 18.7268 0.820438 0.410219 0.911987i 0.365452π-0.365452\pi
0.410219 + 0.911987i 0.365452π0.365452\pi
522522 36.3797 1.59229
523523 −23.5640 −1.03038 −0.515191 0.857075i 0.672279π-0.672279\pi
−0.515191 + 0.857075i 0.672279π0.672279\pi
524524 −36.4668 −1.59306
525525 20.7004 0.903440
526526 28.5163 1.24337
527527 2.78081 0.121134
528528 7.47461 0.325291
529529 0 0
530530 −26.7551 −1.16217
531531 −23.9441 −1.03909
532532 54.1066 2.34582
533533 0.0837952 0.00362957
534534 −76.9854 −3.33148
535535 −2.45853 −0.106291
536536 −13.7055 −0.591988
537537 3.59746 0.155242
538538 −22.0310 −0.949824
539539 −2.61901 −0.112809
540540 −2.81226 −0.121020
541541 0.953288 0.0409850 0.0204925 0.999790i 0.493477π-0.493477\pi
0.0204925 + 0.999790i 0.493477π0.493477\pi
542542 9.72101 0.417553
543543 −40.5435 −1.73989
544544 −11.2315 −0.481545
545545 −19.2826 −0.825977
546546 −2.58196 −0.110498
547547 29.7860 1.27356 0.636779 0.771046i 0.280266π-0.280266\pi
0.636779 + 0.771046i 0.280266π0.280266\pi
548548 −1.99218 −0.0851016
549549 −24.6432 −1.05174
550550 −14.6237 −0.623558
551551 39.7412 1.69303
552552 0 0
553553 13.4729 0.572925
554554 −67.8807 −2.88397
555555 12.0679 0.512252
556556 39.8570 1.69031
557557 6.00871 0.254597 0.127299 0.991864i 0.459369π-0.459369\pi
0.127299 + 0.991864i 0.459369π0.459369\pi
558558 13.0298 0.551594
559559 −0.874931 −0.0370056
560560 −4.56384 −0.192857
561561 −7.49552 −0.316461
562562 7.88742 0.332711
563563 −0.0891900 −0.00375891 −0.00187946 0.999998i 0.500598π-0.500598\pi
−0.00187946 + 0.999998i 0.500598π0.500598\pi
564564 18.5794 0.782333
565565 1.84018 0.0774171
566566 −32.5703 −1.36903
567567 −18.8613 −0.792100
568568 −1.37740 −0.0577946
569569 41.3596 1.73388 0.866942 0.498410i 0.166082π-0.166082\pi
0.866942 + 0.498410i 0.166082π0.166082\pi
570570 −54.6788 −2.29024
571571 −25.7905 −1.07930 −0.539649 0.841890i 0.681443π-0.681443\pi
−0.539649 + 0.841890i 0.681443π0.681443\pi
572572 1.07276 0.0448544
573573 −52.1379 −2.17809
574574 2.23002 0.0930793
575575 0 0
576576 −42.3070 −1.76279
577577 27.1442 1.13003 0.565014 0.825081i 0.308871π-0.308871\pi
0.565014 + 0.825081i 0.308871π0.308871\pi
578578 −32.0994 −1.33516
579579 −36.8261 −1.53044
580580 17.5763 0.729817
581581 30.5846 1.26886
582582 23.9469 0.992631
583583 −18.7731 −0.777504
584584 −12.1548 −0.502970
585585 0.805784 0.0333151
586586 −47.4074 −1.95838
587587 31.6348 1.30571 0.652854 0.757484i 0.273572π-0.273572\pi
0.652854 + 0.757484i 0.273572π0.273572\pi
588588 9.83291 0.405503
589589 14.2337 0.586490
590590 −19.6695 −0.809781
591591 −29.3505 −1.20732
592592 6.04057 0.248266
593593 −25.7460 −1.05726 −0.528630 0.848852i 0.677294π-0.677294\pi
−0.528630 + 0.848852i 0.677294π0.677294\pi
594594 −3.35514 −0.137663
595595 4.57661 0.187623
596596 47.5198 1.94649
597597 −14.3849 −0.588733
598598 0 0
599599 16.9434 0.692289 0.346144 0.938181i 0.387491π-0.387491\pi
0.346144 + 0.938181i 0.387491π0.387491\pi
600600 16.4547 0.671761
601601 −9.65496 −0.393834 −0.196917 0.980420i 0.563093π-0.563093\pi
−0.196917 + 0.980420i 0.563093π0.563093\pi
602602 −23.2843 −0.948998
603603 −24.1020 −0.981509
604604 37.6695 1.53275
605605 −9.08175 −0.369226
606606 10.0815 0.409532
607607 3.24527 0.131721 0.0658607 0.997829i 0.479021π-0.479021\pi
0.0658607 + 0.997829i 0.479021π0.479021\pi
608608 −57.4888 −2.33148
609609 −29.6828 −1.20281
610610 −20.2438 −0.819647
611611 −0.508556 −0.0205740
612612 14.7765 0.597305
613613 32.9143 1.32940 0.664698 0.747112i 0.268560π-0.268560\pi
0.664698 + 0.747112i 0.268560π0.268560\pi
614614 31.1700 1.25792
615615 −1.32542 −0.0534459
616616 8.55620 0.344739
617617 −3.02442 −0.121759 −0.0608794 0.998145i 0.519390π-0.519390\pi
−0.0608794 + 0.998145i 0.519390π0.519390\pi
618618 −84.8112 −3.41161
619619 −10.4224 −0.418911 −0.209455 0.977818i 0.567169π-0.567169\pi
−0.209455 + 0.977818i 0.567169π0.567169\pi
620620 6.29515 0.252819
621621 0 0
622622 1.25637 0.0503758
623623 32.9823 1.32141
624624 0.768140 0.0307502
625625 4.40427 0.176171
626626 46.5684 1.86125
627627 −38.3662 −1.53220
628628 −11.7912 −0.470519
629629 −6.05746 −0.241527
630630 21.4441 0.854355
631631 −34.1013 −1.35755 −0.678776 0.734346i 0.737489π-0.737489\pi
−0.678776 + 0.734346i 0.737489π0.737489\pi
632632 10.7096 0.426003
633633 35.3570 1.40531
634634 −19.4186 −0.771209
635635 7.41191 0.294133
636636 70.4826 2.79482
637637 −0.269147 −0.0106640
638638 20.9693 0.830182
639639 −2.42225 −0.0958228
640640 −16.9487 −0.669955
641641 9.00567 0.355702 0.177851 0.984057i 0.443085π-0.443085\pi
0.177851 + 0.984057i 0.443085π0.443085\pi
642642 11.0122 0.434617
643643 22.9522 0.905146 0.452573 0.891727i 0.350506π-0.350506\pi
0.452573 + 0.891727i 0.350506π0.350506\pi
644644 0 0
645645 13.8391 0.544913
646646 27.4460 1.07985
647647 −44.9543 −1.76734 −0.883669 0.468113i 0.844934π-0.844934\pi
−0.883669 + 0.468113i 0.844934π0.844934\pi
648648 −14.9928 −0.588973
649649 −13.8014 −0.541753
650650 −1.50283 −0.0589459
651651 −10.6312 −0.416670
652652 −42.2371 −1.65413
653653 −29.3634 −1.14908 −0.574539 0.818477i 0.694819π-0.694819\pi
−0.574539 + 0.818477i 0.694819π0.694819\pi
654654 86.3706 3.37736
655655 −15.7884 −0.616903
656656 −0.663437 −0.0259029
657657 −21.3750 −0.833918
658658 −13.5341 −0.527613
659659 40.1537 1.56417 0.782083 0.623174i 0.214157π-0.214157\pi
0.782083 + 0.623174i 0.214157π0.214157\pi
660660 −16.9682 −0.660487
661661 −9.96660 −0.387656 −0.193828 0.981036i 0.562090π-0.562090\pi
−0.193828 + 0.981036i 0.562090π0.562090\pi
662662 66.5216 2.58544
663663 −0.770289 −0.0299155
664664 24.3116 0.943474
665665 23.4256 0.908406
666666 −28.3829 −1.09981
667667 0 0
668668 3.79764 0.146935
669669 10.5650 0.408468
670670 −19.7992 −0.764910
671671 −14.2044 −0.548353
672672 42.9385 1.65639
673673 −34.0567 −1.31279 −0.656395 0.754417i 0.727920π-0.727920\pi
−0.656395 + 0.754417i 0.727920π0.727920\pi
674674 10.9206 0.420646
675675 2.76435 0.106400
676676 −37.0167 −1.42372
677677 24.9911 0.960486 0.480243 0.877135i 0.340548π-0.340548\pi
0.480243 + 0.877135i 0.340548π0.340548\pi
678678 −8.24254 −0.316553
679679 −10.2594 −0.393719
680680 3.63793 0.139508
681681 46.3227 1.77509
682682 7.51037 0.287587
683683 34.4762 1.31919 0.659597 0.751619i 0.270727π-0.270727\pi
0.659597 + 0.751619i 0.270727π0.270727\pi
684684 75.6344 2.89195
685685 −0.862518 −0.0329551
686686 −43.7637 −1.67091
687687 27.4574 1.04756
688688 6.92715 0.264095
689689 −1.92925 −0.0734987
690690 0 0
691691 −21.2259 −0.807470 −0.403735 0.914876i 0.632288π-0.632288\pi
−0.403735 + 0.914876i 0.632288π0.632288\pi
692692 −48.3680 −1.83868
693693 15.0466 0.571573
694694 −14.9118 −0.566043
695695 17.2562 0.654565
696696 −23.5948 −0.894358
697697 0.665293 0.0251998
698698 22.2386 0.841742
699699 −10.4676 −0.395922
700700 −23.5220 −0.889048
701701 24.1261 0.911232 0.455616 0.890176i 0.349419π-0.349419\pi
0.455616 + 0.890176i 0.349419π0.349419\pi
702702 −0.344797 −0.0130135
703703 −31.0054 −1.16939
704704 −24.3858 −0.919074
705705 8.04399 0.302954
706706 53.9208 2.02934
707707 −4.31913 −0.162438
708708 51.8165 1.94738
709709 −7.03693 −0.264277 −0.132139 0.991231i 0.542184π-0.542184\pi
−0.132139 + 0.991231i 0.542184π0.542184\pi
710710 −1.98982 −0.0746767
711711 18.8334 0.706309
712712 26.2175 0.982544
713713 0 0
714714 −20.4995 −0.767175
715715 0.464455 0.0173696
716716 −4.08782 −0.152769
717717 56.5932 2.11351
718718 −0.922903 −0.0344424
719719 26.5682 0.990829 0.495414 0.868657i 0.335016π-0.335016\pi
0.495414 + 0.868657i 0.335016π0.335016\pi
720720 −6.37969 −0.237757
721721 36.3350 1.35319
722722 98.6152 3.67008
723723 14.9019 0.554208
724724 46.0699 1.71217
725725 −17.2769 −0.641646
726726 40.6789 1.50974
727727 5.22756 0.193879 0.0969397 0.995290i 0.469095π-0.469095\pi
0.0969397 + 0.995290i 0.469095π0.469095\pi
728728 0.879292 0.0325887
729729 −32.3705 −1.19891
730730 −17.5590 −0.649889
731731 −6.94652 −0.256926
732732 53.3293 1.97111
733733 26.6889 0.985776 0.492888 0.870093i 0.335941π-0.335941\pi
0.492888 + 0.870093i 0.335941π0.335941\pi
734734 −62.9533 −2.32365
735735 4.25719 0.157029
736736 0 0
737737 −13.8924 −0.511734
738738 3.11730 0.114749
739739 −2.23955 −0.0823831 −0.0411916 0.999151i 0.513115π-0.513115\pi
−0.0411916 + 0.999151i 0.513115π0.513115\pi
740740 −13.7128 −0.504092
741741 −3.94276 −0.144841
742742 −51.3427 −1.88485
743743 −18.1401 −0.665497 −0.332748 0.943016i 0.607976π-0.607976\pi
−0.332748 + 0.943016i 0.607976π0.607976\pi
744744 −8.45072 −0.309819
745745 20.5738 0.753766
746746 −31.7492 −1.16242
747747 42.7535 1.56427
748748 8.51720 0.311420
749749 −4.71788 −0.172387
750750 58.0115 2.11828
751751 −28.2267 −1.03001 −0.515003 0.857188i 0.672209π-0.672209\pi
−0.515003 + 0.857188i 0.672209π0.672209\pi
752752 4.02642 0.146829
753753 −3.89721 −0.142022
754754 2.15494 0.0784783
755755 16.3091 0.593549
756756 −5.39669 −0.196276
757757 −0.122014 −0.00443466 −0.00221733 0.999998i 0.500706π-0.500706\pi
−0.00221733 + 0.999998i 0.500706π0.500706\pi
758758 12.4000 0.450389
759759 0 0
760760 18.6210 0.675453
761761 −26.7054 −0.968070 −0.484035 0.875049i 0.660829π-0.660829\pi
−0.484035 + 0.875049i 0.660829π0.660829\pi
762762 −33.1994 −1.20269
763763 −37.0031 −1.33960
764764 59.2446 2.14340
765765 6.39753 0.231303
766766 −0.510490 −0.0184447
767767 −1.41833 −0.0512127
768768 11.8005 0.425815
769769 7.85104 0.283116 0.141558 0.989930i 0.454789π-0.454789\pi
0.141558 + 0.989930i 0.454789π0.454789\pi
770770 12.3604 0.445439
771771 −69.0109 −2.48537
772772 41.8457 1.50606
773773 34.2817 1.23303 0.616513 0.787345i 0.288545π-0.288545\pi
0.616513 + 0.787345i 0.288545π0.288545\pi
774774 −32.5486 −1.16994
775775 −6.18789 −0.222276
776776 −8.15516 −0.292753
777777 23.1580 0.830790
778778 66.4827 2.38352
779779 3.40534 0.122009
780780 −1.74377 −0.0624369
781781 −1.39619 −0.0499596
782782 0 0
783783 −3.96386 −0.141657
784784 2.13094 0.0761049
785785 −5.10502 −0.182206
786786 70.7192 2.52247
787787 −16.0125 −0.570785 −0.285392 0.958411i 0.592124π-0.592124\pi
−0.285392 + 0.958411i 0.592124π0.592124\pi
788788 33.3512 1.18809
789789 −32.5243 −1.15790
790790 15.4712 0.550441
791791 3.53129 0.125558
792792 11.9605 0.424998
793793 −1.45973 −0.0518367
794794 −28.7468 −1.02018
795795 30.5156 1.08228
796796 16.3456 0.579355
797797 −21.5237 −0.762409 −0.381205 0.924491i 0.624491π-0.624491\pi
−0.381205 + 0.924491i 0.624491π0.624491\pi
798798 −104.928 −3.71440
799799 −4.03769 −0.142843
800800 24.9924 0.883614
801801 46.1052 1.62905
802802 46.9938 1.65941
803803 −12.3206 −0.434784
804804 52.1582 1.83948
805805 0 0
806806 0.771816 0.0271860
807807 25.1275 0.884530
808808 −3.43327 −0.120782
809809 24.1251 0.848194 0.424097 0.905617i 0.360592π-0.360592\pi
0.424097 + 0.905617i 0.360592π0.360592\pi
810810 −21.6589 −0.761015
811811 14.3383 0.503486 0.251743 0.967794i 0.418996π-0.418996\pi
0.251743 + 0.967794i 0.418996π0.418996\pi
812812 33.7287 1.18365
813813 −11.0873 −0.388849
814814 −16.3599 −0.573415
815815 −18.2867 −0.640554
816816 6.09866 0.213496
817817 −35.5561 −1.24395
818818 −20.1609 −0.704910
819819 1.54629 0.0540317
820820 1.50608 0.0525946
821821 14.2085 0.495879 0.247939 0.968776i 0.420247π-0.420247\pi
0.247939 + 0.968776i 0.420247π0.420247\pi
822822 3.86339 0.134751
823823 16.0231 0.558530 0.279265 0.960214i 0.409909π-0.409909\pi
0.279265 + 0.960214i 0.409909π0.409909\pi
824824 28.8826 1.00617
825825 16.6791 0.580692
826826 −37.7455 −1.31334
827827 −35.1240 −1.22138 −0.610690 0.791870i 0.709108π-0.709108\pi
−0.610690 + 0.791870i 0.709108π0.709108\pi
828828 0 0
829829 −2.29604 −0.0797447 −0.0398723 0.999205i 0.512695π-0.512695\pi
−0.0398723 + 0.999205i 0.512695π0.512695\pi
830830 35.1210 1.21907
831831 77.4214 2.68572
832832 −2.50605 −0.0868815
833833 −2.13690 −0.0740391
834834 −77.2938 −2.67647
835835 1.64420 0.0568999
836836 43.5958 1.50779
837837 −1.41970 −0.0490719
838838 19.7757 0.683140
839839 −38.6117 −1.33302 −0.666511 0.745495i 0.732213π-0.732213\pi
−0.666511 + 0.745495i 0.732213π0.732213\pi
840840 −13.9080 −0.479873
841841 −4.22633 −0.145736
842842 −69.3528 −2.39006
843843 −8.99601 −0.309839
844844 −40.1764 −1.38293
845845 −16.0265 −0.551328
846846 −18.9190 −0.650448
847847 −17.4278 −0.598825
848848 15.2746 0.524532
849849 37.1481 1.27492
850850 −11.9317 −0.409255
851851 0 0
852852 5.24190 0.179584
853853 −38.4294 −1.31580 −0.657898 0.753107i 0.728554π-0.728554\pi
−0.657898 + 0.753107i 0.728554π0.728554\pi
854854 −38.8475 −1.32933
855855 32.7461 1.11989
856856 −3.75023 −0.128180
857857 −50.8895 −1.73835 −0.869176 0.494504i 0.835350π-0.835350\pi
−0.869176 + 0.494504i 0.835350π0.835350\pi
858858 −2.08038 −0.0710232
859859 9.14711 0.312095 0.156048 0.987750i 0.450125π-0.450125\pi
0.156048 + 0.987750i 0.450125π0.450125\pi
860860 −15.7254 −0.536232
861861 −2.54346 −0.0866807
862862 48.7052 1.65891
863863 12.3389 0.420019 0.210010 0.977699i 0.432650π-0.432650\pi
0.210010 + 0.977699i 0.432650π0.432650\pi
864864 5.73404 0.195076
865865 −20.9411 −0.712018
866866 −27.9754 −0.950644
867867 36.6110 1.24338
868868 12.0803 0.410032
869869 10.8556 0.368251
870870 −34.0854 −1.15560
871871 −1.42768 −0.0483750
872872 −29.4137 −0.996073
873873 −14.3414 −0.485381
874874 0 0
875875 −24.8534 −0.840199
876876 46.2568 1.56287
877877 2.30720 0.0779086 0.0389543 0.999241i 0.487597π-0.487597\pi
0.0389543 + 0.999241i 0.487597π0.487597\pi
878878 40.5928 1.36994
879879 54.0706 1.82376
880880 −3.67726 −0.123960
881881 35.6004 1.19941 0.599703 0.800222i 0.295285π-0.295285\pi
0.599703 + 0.800222i 0.295285π0.295285\pi
882882 −10.0126 −0.337143
883883 30.4745 1.02555 0.512775 0.858523i 0.328618π-0.328618\pi
0.512775 + 0.858523i 0.328618π0.328618\pi
884884 0.875284 0.0294390
885885 22.4341 0.754114
886886 −30.6584 −1.02999
887887 20.7912 0.698099 0.349049 0.937104i 0.386505π-0.386505\pi
0.349049 + 0.937104i 0.386505π0.386505\pi
888888 18.4083 0.617742
889889 14.2233 0.477036
890890 37.8743 1.26955
891891 −15.1973 −0.509127
892892 −12.0051 −0.401961
893893 −20.6671 −0.691598
894894 −92.1541 −3.08209
895895 −1.76983 −0.0591590
896896 −32.5243 −1.08656
897897 0 0
898898 66.3122 2.21287
899899 8.87296 0.295930
900900 −32.8809 −1.09603
901901 −15.3173 −0.510294
902902 1.79681 0.0598274
903903 26.5570 0.883761
904904 2.80701 0.0933599
905905 19.9461 0.663030
906906 −73.0517 −2.42698
907907 22.7118 0.754133 0.377067 0.926186i 0.376933π-0.376933\pi
0.377067 + 0.926186i 0.376933π0.376933\pi
908908 −52.6368 −1.74681
909909 −6.03761 −0.200255
910910 1.27024 0.0421080
911911 −0.834044 −0.0276331 −0.0138165 0.999905i 0.504398π-0.504398\pi
−0.0138165 + 0.999905i 0.504398π0.504398\pi
912912 31.2163 1.03367
913913 24.6432 0.815570
914914 −83.8422 −2.77325
915915 23.0891 0.763301
916916 −31.2000 −1.03088
917917 −30.2977 −1.00052
918918 −2.73752 −0.0903515
919919 45.3320 1.49537 0.747683 0.664056i 0.231166π-0.231166\pi
0.747683 + 0.664056i 0.231166π0.231166\pi
920920 0 0
921921 −35.5510 −1.17145
922922 19.3040 0.635744
923923 −0.143482 −0.00472275
924924 −32.5618 −1.07120
925925 13.4791 0.443191
926926 −61.3414 −2.01580
927927 50.7919 1.66822
928928 −35.8371 −1.17641
929929 −17.7072 −0.580955 −0.290477 0.956882i 0.593814π-0.593814\pi
−0.290477 + 0.956882i 0.593814π0.593814\pi
930930 −12.2081 −0.400318
931931 −10.9378 −0.358472
932932 11.8944 0.389615
933933 −1.43295 −0.0469128
934934 38.2687 1.25219
935935 3.68755 0.120596
936936 1.22914 0.0401758
937937 23.3260 0.762028 0.381014 0.924569i 0.375575π-0.375575\pi
0.381014 + 0.924569i 0.375575π0.375575\pi
938938 −37.9944 −1.24056
939939 −53.1137 −1.73330
940940 −9.14044 −0.298128
941941 −11.6148 −0.378630 −0.189315 0.981916i 0.560627π-0.560627\pi
−0.189315 + 0.981916i 0.560627π0.560627\pi
942942 22.8664 0.745027
943943 0 0
944944 11.2294 0.365486
945945 −2.33651 −0.0760067
946946 −18.7611 −0.609975
947947 5.99794 0.194907 0.0974534 0.995240i 0.468930π-0.468930\pi
0.0974534 + 0.995240i 0.468930π0.468930\pi
948948 −40.7567 −1.32372
949949 −1.26614 −0.0411008
950950 −61.0732 −1.98148
951951 22.1479 0.718194
952952 6.98115 0.226260
953953 17.9067 0.580054 0.290027 0.957018i 0.406336π-0.406336\pi
0.290027 + 0.957018i 0.406336π0.406336\pi
954954 −71.7708 −2.32367
955955 25.6501 0.830019
956956 −64.3072 −2.07984
957957 −23.9165 −0.773112
958958 56.1432 1.81391
959959 −1.65516 −0.0534479
960960 39.6389 1.27934
961961 −27.8221 −0.897486
962962 −1.68125 −0.0542058
963963 −6.59501 −0.212521
964964 −16.9331 −0.545380
965965 18.1172 0.583213
966966 0 0
967967 33.5068 1.07751 0.538753 0.842464i 0.318896π-0.318896\pi
0.538753 + 0.842464i 0.318896π0.318896\pi
968968 −13.8533 −0.445262
969969 −31.3036 −1.00562
970970 −11.7811 −0.378268
971971 −59.2860 −1.90258 −0.951289 0.308300i 0.900240π-0.900240\pi
−0.951289 + 0.308300i 0.900240π0.900240\pi
972972 63.8804 2.04896
973973 33.1144 1.06160
974974 −13.5766 −0.435024
975975 1.71406 0.0548937
976976 11.5572 0.369938
977977 12.6420 0.404452 0.202226 0.979339i 0.435182π-0.435182\pi
0.202226 + 0.979339i 0.435182π0.435182\pi
978978 81.9095 2.61918
979979 26.5751 0.849343
980980 −4.83747 −0.154527
981981 −51.7258 −1.65148
982982 −71.9428 −2.29579
983983 58.3650 1.86156 0.930778 0.365586i 0.119131π-0.119131\pi
0.930778 + 0.365586i 0.119131π0.119131\pi
984984 −2.02179 −0.0644522
985985 14.4395 0.460080
986986 17.1092 0.544867
987987 15.4363 0.491343
988988 4.48019 0.142534
989989 0 0
990990 17.2784 0.549142
991991 −45.7911 −1.45460 −0.727301 0.686319i 0.759225π-0.759225\pi
−0.727301 + 0.686319i 0.759225π0.759225\pi
992992 −12.8354 −0.407526
993993 −75.8714 −2.40770
994994 −3.81844 −0.121114
995995 7.07687 0.224352
996996 −92.5212 −2.93165
997997 −39.3521 −1.24629 −0.623147 0.782105i 0.714146π-0.714146\pi
−0.623147 + 0.782105i 0.714146π0.714146\pi
998998 −18.8931 −0.598051
999999 3.09254 0.0978436
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.2.a.j.1.5 5
3.2 odd 2 4761.2.a.bn.1.1 5
4.3 odd 2 8464.2.a.bt.1.5 5
23.2 even 11 529.2.c.f.487.1 10
23.3 even 11 529.2.c.c.170.1 10
23.4 even 11 529.2.c.e.177.1 10
23.5 odd 22 529.2.c.i.255.1 10
23.6 even 11 529.2.c.e.266.1 10
23.7 odd 22 23.2.c.a.3.1 10
23.8 even 11 529.2.c.c.501.1 10
23.9 even 11 529.2.c.h.334.1 10
23.10 odd 22 23.2.c.a.8.1 yes 10
23.11 odd 22 529.2.c.g.466.1 10
23.12 even 11 529.2.c.f.466.1 10
23.13 even 11 529.2.c.a.399.1 10
23.14 odd 22 529.2.c.i.334.1 10
23.15 odd 22 529.2.c.b.501.1 10
23.16 even 11 529.2.c.a.118.1 10
23.17 odd 22 529.2.c.d.266.1 10
23.18 even 11 529.2.c.h.255.1 10
23.19 odd 22 529.2.c.d.177.1 10
23.20 odd 22 529.2.c.b.170.1 10
23.21 odd 22 529.2.c.g.487.1 10
23.22 odd 2 529.2.a.i.1.5 5
69.53 even 22 207.2.i.c.118.1 10
69.56 even 22 207.2.i.c.100.1 10
69.68 even 2 4761.2.a.bo.1.1 5
92.7 even 22 368.2.m.c.49.1 10
92.79 even 22 368.2.m.c.353.1 10
92.91 even 2 8464.2.a.bs.1.5 5
115.7 even 44 575.2.p.b.49.2 20
115.33 even 44 575.2.p.b.399.2 20
115.53 even 44 575.2.p.b.49.1 20
115.79 odd 22 575.2.k.b.376.1 10
115.99 odd 22 575.2.k.b.26.1 10
115.102 even 44 575.2.p.b.399.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.2.c.a.3.1 10 23.7 odd 22
23.2.c.a.8.1 yes 10 23.10 odd 22
207.2.i.c.100.1 10 69.56 even 22
207.2.i.c.118.1 10 69.53 even 22
368.2.m.c.49.1 10 92.7 even 22
368.2.m.c.353.1 10 92.79 even 22
529.2.a.i.1.5 5 23.22 odd 2
529.2.a.j.1.5 5 1.1 even 1 trivial
529.2.c.a.118.1 10 23.16 even 11
529.2.c.a.399.1 10 23.13 even 11
529.2.c.b.170.1 10 23.20 odd 22
529.2.c.b.501.1 10 23.15 odd 22
529.2.c.c.170.1 10 23.3 even 11
529.2.c.c.501.1 10 23.8 even 11
529.2.c.d.177.1 10 23.19 odd 22
529.2.c.d.266.1 10 23.17 odd 22
529.2.c.e.177.1 10 23.4 even 11
529.2.c.e.266.1 10 23.6 even 11
529.2.c.f.466.1 10 23.12 even 11
529.2.c.f.487.1 10 23.2 even 11
529.2.c.g.466.1 10 23.11 odd 22
529.2.c.g.487.1 10 23.21 odd 22
529.2.c.h.255.1 10 23.18 even 11
529.2.c.h.334.1 10 23.9 even 11
529.2.c.i.255.1 10 23.5 odd 22
529.2.c.i.334.1 10 23.14 odd 22
575.2.k.b.26.1 10 115.99 odd 22
575.2.k.b.376.1 10 115.79 odd 22
575.2.p.b.49.1 20 115.53 even 44
575.2.p.b.49.2 20 115.7 even 44
575.2.p.b.399.1 20 115.102 even 44
575.2.p.b.399.2 20 115.33 even 44
4761.2.a.bn.1.1 5 3.2 odd 2
4761.2.a.bo.1.1 5 69.68 even 2
8464.2.a.bs.1.5 5 92.91 even 2
8464.2.a.bt.1.5 5 4.3 odd 2