Properties

Label 575.2.p.b.49.1
Level $575$
Weight $2$
Character 575.49
Analytic conductor $4.591$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [575,2,Mod(49,575)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(575, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([11, 16])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("575.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 575 = 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 575.p (of order \(22\), degree \(10\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.59139811622\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{22})\)
Coefficient field: \(\Q(\zeta_{44})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{18} + x^{16} - x^{14} + x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 23)
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 49.1
Root \(0.281733 + 0.959493i\) of defining polynomial
Character \(\chi\) \(=\) 575.49
Dual form 575.2.p.b.399.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.18119 + 0.313607i) q^{2} +(-2.28621 - 1.04408i) q^{3} +(2.74024 - 0.804606i) q^{4} +(5.31408 + 1.56036i) q^{6} +(1.28282 + 1.99611i) q^{7} +(-1.71568 + 0.783524i) q^{8} +(2.17208 + 2.50672i) q^{9} +(0.272084 - 1.89238i) q^{11} +(-7.10483 - 1.02152i) q^{12} +(-0.106222 + 0.165284i) q^{13} +(-3.42408 - 3.95159i) q^{14} +(-1.30862 + 0.840996i) q^{16} +(0.439476 - 1.49672i) q^{17} +(-5.52384 - 4.78644i) q^{18} +(-7.66103 + 2.24948i) q^{19} +(-0.848710 - 5.90291i) q^{21} +4.21297i q^{22} +(-1.10192 - 4.66752i) q^{23} +4.74046 q^{24} +(0.179855 - 0.393828i) q^{26} +(-0.224367 - 0.764125i) q^{27} +(5.12133 + 4.43766i) q^{28} +(4.77570 + 1.40227i) q^{29} +(0.740552 + 1.62158i) q^{31} +(5.44146 - 4.71506i) q^{32} +(-2.59784 + 4.04231i) q^{33} +(-0.489198 + 3.40244i) q^{34} +(7.96894 + 5.12133i) q^{36} +(-2.93475 + 2.54297i) q^{37} +(16.0047 - 7.30909i) q^{38} +(0.415415 - 0.266971i) q^{39} +(-0.279295 + 0.322324i) q^{41} +(3.70239 + 12.6092i) q^{42} +(4.05075 + 1.84991i) q^{43} +(-0.777050 - 5.40450i) q^{44} +(3.86725 + 9.83517i) q^{46} +2.58842i q^{47} +(3.86984 - 0.556399i) q^{48} +(0.569072 - 1.24609i) q^{49} +(-2.56743 + 2.96297i) q^{51} +(-0.158084 + 0.538385i) q^{52} +(5.30876 + 8.26060i) q^{53} +(0.729022 + 1.59634i) q^{54} +(-3.76492 - 2.41956i) q^{56} +(19.8634 + 2.85592i) q^{57} +(-10.8565 - 1.56092i) q^{58} +(6.07293 + 3.90283i) q^{59} +(3.08639 + 6.75826i) q^{61} +(-2.12382 - 3.30473i) q^{62} +(-2.21729 + 7.55141i) q^{63} +(-8.35283 + 9.63968i) q^{64} +(4.39867 - 9.63174i) q^{66} +(-7.19254 + 1.03413i) q^{67} -4.45497i q^{68} +(-2.35404 + 11.8214i) q^{69} +(0.103930 + 0.722850i) q^{71} +(-5.69067 - 2.59884i) q^{72} +(1.81558 + 6.18330i) q^{73} +(5.60373 - 6.46705i) q^{74} +(-19.1831 + 12.3282i) q^{76} +(4.12645 - 1.88449i) q^{77} +(-0.822373 + 0.712591i) q^{78} +(4.77671 + 3.06980i) q^{79} +(1.13126 - 7.86810i) q^{81} +(0.508112 - 0.790638i) q^{82} +(-9.74141 + 8.44098i) q^{83} +(-7.07518 - 15.4925i) q^{84} +(-9.41558 - 2.76466i) q^{86} +(-9.45418 - 8.19209i) q^{87} +(1.01592 + 3.45991i) q^{88} +(5.77436 - 12.6441i) q^{89} -0.466190 q^{91} +(-6.77503 - 11.9035i) q^{92} -4.48047i q^{93} +(-0.811746 - 5.64582i) q^{94} +(-17.3632 + 5.09830i) q^{96} +(3.26769 + 2.83147i) q^{97} +(-0.850468 + 2.89643i) q^{98} +(5.33466 - 3.42838i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{4} + 12 q^{6} + 4 q^{9} + 14 q^{11} - 18 q^{14} + 2 q^{16} - 4 q^{19} - 4 q^{21} + 76 q^{24} + 24 q^{26} - 28 q^{29} + 20 q^{31} - 58 q^{34} + 54 q^{36} - 2 q^{39} + 14 q^{41} + 68 q^{44} - 58 q^{46}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/575\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(277\)
\(\chi(n)\) \(e\left(\frac{8}{11}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.18119 + 0.313607i −1.54233 + 0.221754i −0.860384 0.509647i \(-0.829776\pi\)
−0.681948 + 0.731401i \(0.738867\pi\)
\(3\) −2.28621 1.04408i −1.31995 0.602799i −0.374091 0.927392i \(-0.622045\pi\)
−0.945854 + 0.324593i \(0.894773\pi\)
\(4\) 2.74024 0.804606i 1.37012 0.402303i
\(5\) 0 0
\(6\) 5.31408 + 1.56036i 2.16947 + 0.637013i
\(7\) 1.28282 + 1.99611i 0.484862 + 0.754460i 0.994365 0.106009i \(-0.0338071\pi\)
−0.509503 + 0.860469i \(0.670171\pi\)
\(8\) −1.71568 + 0.783524i −0.606584 + 0.277017i
\(9\) 2.17208 + 2.50672i 0.724028 + 0.835573i
\(10\) 0 0
\(11\) 0.272084 1.89238i 0.0820363 0.570575i −0.906799 0.421563i \(-0.861482\pi\)
0.988835 0.149012i \(-0.0476093\pi\)
\(12\) −7.10483 1.02152i −2.05099 0.294888i
\(13\) −0.106222 + 0.165284i −0.0294606 + 0.0458416i −0.855672 0.517519i \(-0.826856\pi\)
0.826211 + 0.563361i \(0.190492\pi\)
\(14\) −3.42408 3.95159i −0.915123 1.05611i
\(15\) 0 0
\(16\) −1.30862 + 0.840996i −0.327154 + 0.210249i
\(17\) 0.439476 1.49672i 0.106589 0.363008i −0.888875 0.458150i \(-0.848512\pi\)
0.995464 + 0.0951421i \(0.0303306\pi\)
\(18\) −5.52384 4.78644i −1.30198 1.12817i
\(19\) −7.66103 + 2.24948i −1.75756 + 0.516066i −0.991883 0.127157i \(-0.959415\pi\)
−0.765678 + 0.643224i \(0.777597\pi\)
\(20\) 0 0
\(21\) −0.848710 5.90291i −0.185204 1.28812i
\(22\) 4.21297i 0.898208i
\(23\) −1.10192 4.66752i −0.229765 0.973246i
\(24\) 4.74046 0.967643
\(25\) 0 0
\(26\) 0.179855 0.393828i 0.0352725 0.0772359i
\(27\) −0.224367 0.764125i −0.0431795 0.147056i
\(28\) 5.12133 + 4.43766i 0.967840 + 0.838638i
\(29\) 4.77570 + 1.40227i 0.886825 + 0.260395i 0.693256 0.720691i \(-0.256175\pi\)
0.193569 + 0.981087i \(0.437994\pi\)
\(30\) 0 0
\(31\) 0.740552 + 1.62158i 0.133007 + 0.291245i 0.964404 0.264435i \(-0.0851854\pi\)
−0.831397 + 0.555680i \(0.812458\pi\)
\(32\) 5.44146 4.71506i 0.961924 0.833512i
\(33\) −2.59784 + 4.04231i −0.452226 + 0.703677i
\(34\) −0.489198 + 3.40244i −0.0838967 + 0.583514i
\(35\) 0 0
\(36\) 7.96894 + 5.12133i 1.32816 + 0.853555i
\(37\) −2.93475 + 2.54297i −0.482469 + 0.418062i −0.861838 0.507184i \(-0.830687\pi\)
0.379369 + 0.925246i \(0.376141\pi\)
\(38\) 16.0047 7.30909i 2.59630 1.18569i
\(39\) 0.415415 0.266971i 0.0665196 0.0427496i
\(40\) 0 0
\(41\) −0.279295 + 0.322324i −0.0436186 + 0.0503386i −0.777140 0.629328i \(-0.783330\pi\)
0.733521 + 0.679667i \(0.237876\pi\)
\(42\) 3.70239 + 12.6092i 0.571291 + 1.94564i
\(43\) 4.05075 + 1.84991i 0.617733 + 0.282109i 0.699601 0.714534i \(-0.253361\pi\)
−0.0818677 + 0.996643i \(0.526089\pi\)
\(44\) −0.777050 5.40450i −0.117145 0.814759i
\(45\) 0 0
\(46\) 3.86725 + 9.83517i 0.570195 + 1.45012i
\(47\) 2.58842i 0.377559i 0.982019 + 0.188780i \(0.0604532\pi\)
−0.982019 + 0.188780i \(0.939547\pi\)
\(48\) 3.86984 0.556399i 0.558563 0.0803092i
\(49\) 0.569072 1.24609i 0.0812960 0.178013i
\(50\) 0 0
\(51\) −2.56743 + 2.96297i −0.359512 + 0.414898i
\(52\) −0.158084 + 0.538385i −0.0219223 + 0.0746605i
\(53\) 5.30876 + 8.26060i 0.729215 + 1.13468i 0.985762 + 0.168149i \(0.0537789\pi\)
−0.256547 + 0.966532i \(0.582585\pi\)
\(54\) 0.729022 + 1.59634i 0.0992074 + 0.217234i
\(55\) 0 0
\(56\) −3.76492 2.41956i −0.503108 0.323328i
\(57\) 19.8634 + 2.85592i 2.63097 + 0.378276i
\(58\) −10.8565 1.56092i −1.42552 0.204959i
\(59\) 6.07293 + 3.90283i 0.790628 + 0.508106i 0.872545 0.488533i \(-0.162468\pi\)
−0.0819173 + 0.996639i \(0.526104\pi\)
\(60\) 0 0
\(61\) 3.08639 + 6.75826i 0.395172 + 0.865306i 0.997737 + 0.0672363i \(0.0214181\pi\)
−0.602565 + 0.798070i \(0.705855\pi\)
\(62\) −2.12382 3.30473i −0.269726 0.419701i
\(63\) −2.21729 + 7.55141i −0.279353 + 0.951388i
\(64\) −8.35283 + 9.63968i −1.04410 + 1.20496i
\(65\) 0 0
\(66\) 4.39867 9.63174i 0.541439 1.18559i
\(67\) −7.19254 + 1.03413i −0.878708 + 0.126339i −0.566881 0.823800i \(-0.691850\pi\)
−0.311827 + 0.950139i \(0.600941\pi\)
\(68\) 4.45497i 0.540244i
\(69\) −2.35404 + 11.8214i −0.283394 + 1.42313i
\(70\) 0 0
\(71\) 0.103930 + 0.722850i 0.0123342 + 0.0857866i 0.995059 0.0992879i \(-0.0316565\pi\)
−0.982725 + 0.185074i \(0.940747\pi\)
\(72\) −5.69067 2.59884i −0.670652 0.306276i
\(73\) 1.81558 + 6.18330i 0.212498 + 0.723700i 0.994895 + 0.100920i \(0.0321787\pi\)
−0.782397 + 0.622780i \(0.786003\pi\)
\(74\) 5.60373 6.46705i 0.651421 0.751780i
\(75\) 0 0
\(76\) −19.1831 + 12.3282i −2.20045 + 1.41414i
\(77\) 4.12645 1.88449i 0.470253 0.214757i
\(78\) −0.822373 + 0.712591i −0.0931154 + 0.0806850i
\(79\) 4.77671 + 3.06980i 0.537422 + 0.345380i 0.781030 0.624494i \(-0.214695\pi\)
−0.243608 + 0.969874i \(0.578331\pi\)
\(80\) 0 0
\(81\) 1.13126 7.86810i 0.125696 0.874233i
\(82\) 0.508112 0.790638i 0.0561116 0.0873113i
\(83\) −9.74141 + 8.44098i −1.06926 + 0.926518i −0.997483 0.0709025i \(-0.977412\pi\)
−0.0717758 + 0.997421i \(0.522867\pi\)
\(84\) −7.07518 15.4925i −0.771966 1.69037i
\(85\) 0 0
\(86\) −9.41558 2.76466i −1.01531 0.298121i
\(87\) −9.45418 8.19209i −1.01359 0.878284i
\(88\) 1.01592 + 3.45991i 0.108297 + 0.368827i
\(89\) 5.77436 12.6441i 0.612081 1.34027i −0.309060 0.951043i \(-0.600014\pi\)
0.921141 0.389228i \(-0.127258\pi\)
\(90\) 0 0
\(91\) −0.466190 −0.0488700
\(92\) −6.77503 11.9035i −0.706346 1.24103i
\(93\) 4.48047i 0.464603i
\(94\) −0.811746 5.64582i −0.0837252 0.582322i
\(95\) 0 0
\(96\) −17.3632 + 5.09830i −1.77213 + 0.520343i
\(97\) 3.26769 + 2.83147i 0.331783 + 0.287492i 0.804781 0.593572i \(-0.202283\pi\)
−0.472998 + 0.881064i \(0.656828\pi\)
\(98\) −0.850468 + 2.89643i −0.0859103 + 0.292583i
\(99\) 5.33466 3.42838i 0.536154 0.344565i
\(100\) 0 0
\(101\) 1.19203 + 1.37567i 0.118611 + 0.136885i 0.811950 0.583727i \(-0.198406\pi\)
−0.693338 + 0.720612i \(0.743861\pi\)
\(102\) 4.67083 7.26795i 0.462481 0.719634i
\(103\) 15.1574 + 2.17930i 1.49350 + 0.214733i 0.840163 0.542335i \(-0.182459\pi\)
0.653337 + 0.757067i \(0.273369\pi\)
\(104\) 0.0527381 0.366802i 0.00517140 0.0359679i
\(105\) 0 0
\(106\) −14.1700 16.3530i −1.37631 1.58835i
\(107\) 1.80865 0.825981i 0.174848 0.0798506i −0.326068 0.945346i \(-0.605724\pi\)
0.500916 + 0.865496i \(0.332996\pi\)
\(108\) −1.22964 1.91336i −0.118322 0.184113i
\(109\) 14.9631 + 4.39356i 1.43320 + 0.420826i 0.903950 0.427638i \(-0.140654\pi\)
0.529253 + 0.848464i \(0.322472\pi\)
\(110\) 0 0
\(111\) 9.36451 2.74967i 0.888840 0.260987i
\(112\) −3.35745 1.53330i −0.317249 0.144883i
\(113\) −1.47310 + 0.211799i −0.138577 + 0.0199244i −0.211254 0.977431i \(-0.567755\pi\)
0.0726771 + 0.997356i \(0.476846\pi\)
\(114\) −44.2213 −4.14171
\(115\) 0 0
\(116\) 14.2148 1.31981
\(117\) −0.645043 + 0.0927432i −0.0596343 + 0.00857412i
\(118\) −14.4701 6.60829i −1.33208 0.608343i
\(119\) 3.55139 1.04278i 0.325556 0.0955917i
\(120\) 0 0
\(121\) 7.04733 + 2.06928i 0.640667 + 0.188117i
\(122\) −8.85143 13.7731i −0.801371 1.24696i
\(123\) 0.975060 0.445295i 0.0879182 0.0401509i
\(124\) 3.33402 + 3.84767i 0.299404 + 0.345531i
\(125\) 0 0
\(126\) 2.46815 17.1664i 0.219881 1.52930i
\(127\) 5.93335 + 0.853087i 0.526500 + 0.0756993i 0.400439 0.916323i \(-0.368858\pi\)
0.126061 + 0.992023i \(0.459767\pi\)
\(128\) 7.41067 11.5312i 0.655017 1.01923i
\(129\) −7.32941 8.45859i −0.645319 0.744737i
\(130\) 0 0
\(131\) −10.7418 + 6.90335i −0.938517 + 0.603148i −0.917974 0.396641i \(-0.870176\pi\)
−0.0205431 + 0.999789i \(0.506540\pi\)
\(132\) −3.86622 + 13.1671i −0.336511 + 1.14605i
\(133\) −14.3180 12.4066i −1.24153 1.07579i
\(134\) 15.3640 4.51126i 1.32724 0.389714i
\(135\) 0 0
\(136\) 0.418715 + 2.91223i 0.0359045 + 0.249721i
\(137\) 0.697560i 0.0595966i −0.999556 0.0297983i \(-0.990514\pi\)
0.999556 0.0297983i \(-0.00948649\pi\)
\(138\) 1.42732 26.5230i 0.121502 2.25779i
\(139\) −13.9559 −1.18372 −0.591862 0.806039i \(-0.701607\pi\)
−0.591862 + 0.806039i \(0.701607\pi\)
\(140\) 0 0
\(141\) 2.70251 5.91767i 0.227592 0.498358i
\(142\) −0.453382 1.54408i −0.0380470 0.129576i
\(143\) 0.283880 + 0.245983i 0.0237392 + 0.0205702i
\(144\) −4.95056 1.45362i −0.412547 0.121135i
\(145\) 0 0
\(146\) −5.89924 12.9175i −0.488225 1.06906i
\(147\) −2.60204 + 2.25468i −0.214613 + 0.185963i
\(148\) −5.99581 + 9.32966i −0.492852 + 0.766893i
\(149\) −2.36798 + 16.4697i −0.193993 + 1.34925i 0.627317 + 0.778764i \(0.284153\pi\)
−0.821309 + 0.570483i \(0.806756\pi\)
\(150\) 0 0
\(151\) 11.0961 + 7.13103i 0.902988 + 0.580315i 0.907675 0.419674i \(-0.137855\pi\)
−0.00468679 + 0.999989i \(0.501492\pi\)
\(152\) 11.3813 9.86198i 0.923148 0.799913i
\(153\) 4.70643 2.14935i 0.380492 0.173765i
\(154\) −8.40957 + 5.40450i −0.677662 + 0.435507i
\(155\) 0 0
\(156\) 0.923529 1.06581i 0.0739415 0.0853330i
\(157\) 1.16318 + 3.96143i 0.0928320 + 0.316157i 0.992798 0.119804i \(-0.0382267\pi\)
−0.899965 + 0.435961i \(0.856409\pi\)
\(158\) −11.3816 5.19780i −0.905471 0.413515i
\(159\) −3.51225 24.4282i −0.278540 1.93729i
\(160\) 0 0
\(161\) 7.90335 8.18717i 0.622871 0.645239i
\(162\) 17.5166i 1.37623i
\(163\) −14.6388 + 2.10474i −1.14660 + 0.164856i −0.689312 0.724464i \(-0.742087\pi\)
−0.457285 + 0.889320i \(0.651178\pi\)
\(164\) −0.505992 + 1.10797i −0.0395113 + 0.0865177i
\(165\) 0 0
\(166\) 18.6007 21.4663i 1.44369 1.66611i
\(167\) −0.374632 + 1.27588i −0.0289899 + 0.0987306i −0.972717 0.231994i \(-0.925475\pi\)
0.943727 + 0.330725i \(0.107293\pi\)
\(168\) 6.08118 + 9.46250i 0.469173 + 0.730048i
\(169\) 5.38436 + 11.7901i 0.414181 + 0.906931i
\(170\) 0 0
\(171\) −22.2792 14.3180i −1.70373 1.09492i
\(172\) 12.5885 + 1.80995i 0.959861 + 0.138007i
\(173\) 16.7637 + 2.41025i 1.27452 + 0.183248i 0.746156 0.665771i \(-0.231897\pi\)
0.528362 + 0.849019i \(0.322806\pi\)
\(174\) 23.1904 + 14.9036i 1.75806 + 1.12984i
\(175\) 0 0
\(176\) 1.23543 + 2.70522i 0.0931244 + 0.203914i
\(177\) −9.80914 15.2633i −0.737300 1.14726i
\(178\) −8.62968 + 29.3900i −0.646822 + 2.20287i
\(179\) −0.937335 + 1.08174i −0.0700597 + 0.0808532i −0.789697 0.613497i \(-0.789762\pi\)
0.719638 + 0.694350i \(0.244308\pi\)
\(180\) 0 0
\(181\) −6.70121 + 14.6736i −0.498097 + 1.09068i 0.478986 + 0.877822i \(0.341004\pi\)
−0.977083 + 0.212858i \(0.931723\pi\)
\(182\) 1.01685 0.146201i 0.0753737 0.0108371i
\(183\) 18.6732i 1.38037i
\(184\) 5.54765 + 7.14459i 0.408978 + 0.526706i
\(185\) 0 0
\(186\) 1.40511 + 9.77275i 0.103028 + 0.716573i
\(187\) −2.71279 1.23889i −0.198379 0.0905967i
\(188\) 2.08266 + 7.09288i 0.151893 + 0.517301i
\(189\) 1.23746 1.42810i 0.0900118 0.103879i
\(190\) 0 0
\(191\) −17.4514 + 11.2153i −1.26274 + 0.811512i −0.988656 0.150195i \(-0.952010\pi\)
−0.274081 + 0.961707i \(0.588374\pi\)
\(192\) 29.1609 13.3173i 2.10451 0.961096i
\(193\) 11.0734 9.59519i 0.797083 0.690677i −0.157861 0.987461i \(-0.550460\pi\)
0.954944 + 0.296785i \(0.0959144\pi\)
\(194\) −8.01540 5.15119i −0.575472 0.369834i
\(195\) 0 0
\(196\) 0.556778 3.87247i 0.0397698 0.276605i
\(197\) 6.31355 9.82407i 0.449822 0.699936i −0.540092 0.841606i \(-0.681611\pi\)
0.989914 + 0.141669i \(0.0452470\pi\)
\(198\) −10.5607 + 9.15092i −0.750518 + 0.650328i
\(199\) 2.37759 + 5.20620i 0.168543 + 0.369057i 0.974990 0.222249i \(-0.0713397\pi\)
−0.806447 + 0.591306i \(0.798612\pi\)
\(200\) 0 0
\(201\) 17.5234 + 5.14533i 1.23600 + 0.362923i
\(202\) −3.03146 2.62677i −0.213293 0.184819i
\(203\) 3.32729 + 11.3317i 0.233530 + 0.795330i
\(204\) −4.65133 + 10.1850i −0.325659 + 0.713093i
\(205\) 0 0
\(206\) −33.7445 −2.35109
\(207\) 9.30671 12.9004i 0.646861 0.896643i
\(208\) 0.305626i 0.0211913i
\(209\) 2.17244 + 15.1097i 0.150271 + 1.04516i
\(210\) 0 0
\(211\) 13.4979 3.96334i 0.929234 0.272848i 0.218118 0.975922i \(-0.430008\pi\)
0.711116 + 0.703075i \(0.248190\pi\)
\(212\) 21.1938 + 18.3645i 1.45560 + 1.26128i
\(213\) 0.517106 1.76110i 0.0354315 0.120669i
\(214\) −3.68596 + 2.36882i −0.251967 + 0.161929i
\(215\) 0 0
\(216\) 0.983652 + 1.13520i 0.0669291 + 0.0772403i
\(217\) −2.28687 + 3.55843i −0.155243 + 0.241562i
\(218\) −34.0151 4.89064i −2.30379 0.331236i
\(219\) 2.30504 16.0319i 0.155760 1.08334i
\(220\) 0 0
\(221\) 0.200702 + 0.231623i 0.0135007 + 0.0155806i
\(222\) −19.5634 + 8.93432i −1.31301 + 0.599632i
\(223\) −2.27263 3.53628i −0.152187 0.236807i 0.756786 0.653663i \(-0.226768\pi\)
−0.908973 + 0.416856i \(0.863132\pi\)
\(224\) 16.3922 + 4.81319i 1.09525 + 0.321595i
\(225\) 0 0
\(226\) 3.14668 0.923948i 0.209314 0.0614601i
\(227\) −16.7652 7.65642i −1.11275 0.508174i −0.227726 0.973725i \(-0.573129\pi\)
−0.885021 + 0.465551i \(0.845856\pi\)
\(228\) 56.7282 8.15629i 3.75692 0.540163i
\(229\) −10.9247 −0.721923 −0.360961 0.932581i \(-0.617551\pi\)
−0.360961 + 0.932581i \(0.617551\pi\)
\(230\) 0 0
\(231\) −11.4015 −0.750163
\(232\) −9.29227 + 1.33603i −0.610068 + 0.0877145i
\(233\) 3.78846 + 1.73013i 0.248190 + 0.113345i 0.535626 0.844455i \(-0.320076\pi\)
−0.287436 + 0.957800i \(0.592803\pi\)
\(234\) 1.37787 0.404581i 0.0900745 0.0264483i
\(235\) 0 0
\(236\) 19.7815 + 5.80837i 1.28767 + 0.378093i
\(237\) −7.71545 12.0055i −0.501172 0.779839i
\(238\) −7.41922 + 3.38825i −0.480917 + 0.219627i
\(239\) −14.7456 17.0173i −0.953813 1.10076i −0.994825 0.101601i \(-0.967604\pi\)
0.0410120 0.999159i \(-0.486942\pi\)
\(240\) 0 0
\(241\) −0.843804 + 5.86878i −0.0543542 + 0.378042i 0.944429 + 0.328717i \(0.106616\pi\)
−0.998783 + 0.0493250i \(0.984293\pi\)
\(242\) −16.0205 2.30340i −1.02984 0.148068i
\(243\) −12.0929 + 18.8169i −0.775759 + 1.20710i
\(244\) 13.8952 + 16.0359i 0.889548 + 1.02659i
\(245\) 0 0
\(246\) −1.98714 + 1.27706i −0.126695 + 0.0814222i
\(247\) 0.441964 1.50519i 0.0281215 0.0957730i
\(248\) −2.54110 2.20187i −0.161360 0.139819i
\(249\) 31.0840 9.12708i 1.96987 0.578405i
\(250\) 0 0
\(251\) 0.220675 + 1.53483i 0.0139289 + 0.0968775i 0.995600 0.0937056i \(-0.0298712\pi\)
−0.981671 + 0.190583i \(0.938962\pi\)
\(252\) 22.4767i 1.41590i
\(253\) −9.13256 + 0.815292i −0.574159 + 0.0512570i
\(254\) −13.2093 −0.828824
\(255\) 0 0
\(256\) −1.95044 + 4.27088i −0.121903 + 0.266930i
\(257\) 7.73578 + 26.3456i 0.482545 + 1.64340i 0.736690 + 0.676230i \(0.236388\pi\)
−0.254145 + 0.967166i \(0.581794\pi\)
\(258\) 18.6395 + 16.1512i 1.16044 + 1.00553i
\(259\) −8.84083 2.59590i −0.549342 0.161301i
\(260\) 0 0
\(261\) 6.85812 + 15.0172i 0.424507 + 0.929540i
\(262\) 21.2650 18.4262i 1.31375 1.13837i
\(263\) 6.99627 10.8864i 0.431408 0.671285i −0.555692 0.831388i \(-0.687547\pi\)
0.987100 + 0.160104i \(0.0511829\pi\)
\(264\) 1.28980 8.97078i 0.0793819 0.552113i
\(265\) 0 0
\(266\) 35.1210 + 22.5709i 2.15341 + 1.38391i
\(267\) −26.4028 + 22.8782i −1.61583 + 1.40012i
\(268\) −18.8772 + 8.62092i −1.15311 + 0.526607i
\(269\) 8.41057 5.40514i 0.512801 0.329557i −0.258517 0.966007i \(-0.583234\pi\)
0.771319 + 0.636449i \(0.219598\pi\)
\(270\) 0 0
\(271\) −2.88885 + 3.33391i −0.175485 + 0.202520i −0.836678 0.547696i \(-0.815505\pi\)
0.661193 + 0.750216i \(0.270051\pi\)
\(272\) 0.683629 + 2.32823i 0.0414511 + 0.141169i
\(273\) 1.06581 + 0.486739i 0.0645057 + 0.0294588i
\(274\) 0.218760 + 1.52151i 0.0132158 + 0.0919177i
\(275\) 0 0
\(276\) 3.06096 + 34.2876i 0.184248 + 2.06387i
\(277\) 30.8042i 1.85085i 0.378935 + 0.925423i \(0.376290\pi\)
−0.378935 + 0.925423i \(0.623710\pi\)
\(278\) 30.4404 4.37667i 1.82570 0.262495i
\(279\) −2.45631 + 5.37857i −0.147055 + 0.322006i
\(280\) 0 0
\(281\) 2.34395 2.70506i 0.139828 0.161370i −0.681516 0.731803i \(-0.738679\pi\)
0.821344 + 0.570433i \(0.193225\pi\)
\(282\) −4.03885 + 13.7551i −0.240510 + 0.819102i
\(283\) 7.99089 + 12.4341i 0.475009 + 0.739129i 0.993236 0.116115i \(-0.0370440\pi\)
−0.518227 + 0.855243i \(0.673408\pi\)
\(284\) 0.866403 + 1.89716i 0.0514116 + 0.112576i
\(285\) 0 0
\(286\) −0.696337 0.447509i −0.0411753 0.0264618i
\(287\) −1.00168 0.144020i −0.0591275 0.00850125i
\(288\) 23.6386 + 3.39872i 1.39292 + 0.200272i
\(289\) 12.2543 + 7.87535i 0.720840 + 0.463256i
\(290\) 0 0
\(291\) −4.51435 9.88506i −0.264636 0.579472i
\(292\) 9.95024 + 15.4829i 0.582294 + 0.906067i
\(293\) 6.06104 20.6420i 0.354090 1.20592i −0.569324 0.822113i \(-0.692795\pi\)
0.923414 0.383806i \(-0.125387\pi\)
\(294\) 4.96845 5.73389i 0.289766 0.334408i
\(295\) 0 0
\(296\) 3.04260 6.66236i 0.176847 0.387242i
\(297\) −1.50707 + 0.216683i −0.0874488 + 0.0125732i
\(298\) 36.6660i 2.12401i
\(299\) 0.888516 + 0.313663i 0.0513842 + 0.0181396i
\(300\) 0 0
\(301\) 1.50376 + 10.4589i 0.0866752 + 0.602839i
\(302\) −26.4390 12.0743i −1.52139 0.694797i
\(303\) −1.28892 4.38965i −0.0740464 0.252179i
\(304\) 8.13354 9.38660i 0.466490 0.538359i
\(305\) 0 0
\(306\) −9.59155 + 6.16411i −0.548312 + 0.352379i
\(307\) 12.8667 5.87602i 0.734341 0.335362i −0.0128989 0.999917i \(-0.504106\pi\)
0.747240 + 0.664555i \(0.231379\pi\)
\(308\) 9.79118 8.48411i 0.557904 0.483427i
\(309\) −32.3776 20.8078i −1.84190 1.18371i
\(310\) 0 0
\(311\) −0.0811393 + 0.564336i −0.00460099 + 0.0320006i −0.991993 0.126296i \(-0.959691\pi\)
0.987392 + 0.158297i \(0.0506002\pi\)
\(312\) −0.503540 + 0.783524i −0.0285073 + 0.0443583i
\(313\) −15.9711 + 13.8390i −0.902738 + 0.782227i −0.976605 0.215041i \(-0.931011\pi\)
0.0738672 + 0.997268i \(0.476466\pi\)
\(314\) −3.77945 8.27584i −0.213287 0.467033i
\(315\) 0 0
\(316\) 15.5593 + 4.56862i 0.875279 + 0.257005i
\(317\) −6.65977 5.77072i −0.374050 0.324116i 0.447467 0.894301i \(-0.352326\pi\)
−0.821517 + 0.570185i \(0.806872\pi\)
\(318\) 15.3217 + 52.1811i 0.859201 + 2.92617i
\(319\) 3.95303 8.65592i 0.221327 0.484639i
\(320\) 0 0
\(321\) −4.99734 −0.278924
\(322\) −14.6711 + 20.3363i −0.817589 + 1.13330i
\(323\) 12.4550i 0.693015i
\(324\) −3.23080 22.4707i −0.179489 1.24837i
\(325\) 0 0
\(326\) 31.2698 9.18165i 1.73188 0.508525i
\(327\) −29.6216 25.6672i −1.63808 1.41940i
\(328\) 0.226632 0.771839i 0.0125137 0.0426177i
\(329\) −5.16678 + 3.32049i −0.284854 + 0.183064i
\(330\) 0 0
\(331\) −19.7686 22.8142i −1.08658 1.25398i −0.965239 0.261371i \(-0.915826\pi\)
−0.121342 0.992611i \(-0.538720\pi\)
\(332\) −19.9021 + 30.9683i −1.09227 + 1.69961i
\(333\) −12.7490 1.83303i −0.698642 0.100450i
\(334\) 0.417017 2.90042i 0.0228182 0.158704i
\(335\) 0 0
\(336\) 6.07496 + 7.01088i 0.331416 + 0.382475i
\(337\) −4.50792 + 2.05870i −0.245562 + 0.112145i −0.534394 0.845235i \(-0.679460\pi\)
0.288832 + 0.957380i \(0.406733\pi\)
\(338\) −15.4418 24.0278i −0.839920 1.30694i
\(339\) 3.58895 + 1.05381i 0.194925 + 0.0572351i
\(340\) 0 0
\(341\) 3.27015 0.960202i 0.177088 0.0519979i
\(342\) 53.0853 + 24.2433i 2.87053 + 1.31093i
\(343\) 19.6578 2.82637i 1.06142 0.152609i
\(344\) −8.39923 −0.452856
\(345\) 0 0
\(346\) −37.3205 −2.00636
\(347\) 6.69808 0.963038i 0.359572 0.0516986i 0.0398383 0.999206i \(-0.487316\pi\)
0.319733 + 0.947508i \(0.396407\pi\)
\(348\) −32.4981 14.8414i −1.74208 0.795582i
\(349\) 9.68306 2.84320i 0.518322 0.152193i −0.0121000 0.999927i \(-0.503852\pi\)
0.530422 + 0.847734i \(0.322033\pi\)
\(350\) 0 0
\(351\) 0.150131 + 0.0440823i 0.00801338 + 0.00235294i
\(352\) −7.44216 11.5802i −0.396669 0.617228i
\(353\) −22.2580 + 10.1649i −1.18468 + 0.541023i −0.907604 0.419827i \(-0.862091\pi\)
−0.277071 + 0.960850i \(0.589364\pi\)
\(354\) 26.1822 + 30.2159i 1.39157 + 1.60596i
\(355\) 0 0
\(356\) 5.64961 39.2939i 0.299429 2.08257i
\(357\) −9.20798 1.32391i −0.487338 0.0700686i
\(358\) 1.70526 2.65343i 0.0901257 0.140238i
\(359\) 0.274264 + 0.316518i 0.0144751 + 0.0167052i 0.762941 0.646468i \(-0.223755\pi\)
−0.748466 + 0.663173i \(0.769209\pi\)
\(360\) 0 0
\(361\) 37.6474 24.1945i 1.98144 1.27340i
\(362\) 10.0148 34.1074i 0.526368 1.79265i
\(363\) −13.9512 12.0888i −0.732248 0.634497i
\(364\) −1.27747 + 0.375099i −0.0669577 + 0.0196606i
\(365\) 0 0
\(366\) 5.85606 + 40.7298i 0.306101 + 2.12898i
\(367\) 28.5682i 1.49125i −0.666367 0.745624i \(-0.732151\pi\)
0.666367 0.745624i \(-0.267849\pi\)
\(368\) 5.36735 + 5.18129i 0.279793 + 0.270093i
\(369\) −1.41463 −0.0736426
\(370\) 0 0
\(371\) −9.67888 + 21.1938i −0.502503 + 1.10033i
\(372\) −3.60502 12.2776i −0.186911 0.636562i
\(373\) −10.8887 9.43508i −0.563794 0.488530i 0.325703 0.945472i \(-0.394399\pi\)
−0.889496 + 0.456942i \(0.848945\pi\)
\(374\) 6.30563 + 1.85150i 0.326056 + 0.0957388i
\(375\) 0 0
\(376\) −2.02809 4.44089i −0.104591 0.229021i
\(377\) −0.739056 + 0.640396i −0.0380633 + 0.0329821i
\(378\) −2.25126 + 3.50303i −0.115792 + 0.180176i
\(379\) −0.800823 + 5.56985i −0.0411355 + 0.286104i 0.958862 + 0.283873i \(0.0916193\pi\)
−0.999998 + 0.00223119i \(0.999290\pi\)
\(380\) 0 0
\(381\) −12.6742 8.14522i −0.649320 0.417292i
\(382\) 34.5475 29.9356i 1.76760 1.53164i
\(383\) −0.210725 + 0.0962350i −0.0107676 + 0.00491738i −0.420792 0.907157i \(-0.638248\pi\)
0.410024 + 0.912075i \(0.365520\pi\)
\(384\) −28.9819 + 18.6255i −1.47898 + 0.950480i
\(385\) 0 0
\(386\) −21.1441 + 24.4016i −1.07621 + 1.24201i
\(387\) 4.16135 + 14.1722i 0.211533 + 0.720416i
\(388\) 11.2325 + 5.12969i 0.570241 + 0.260421i
\(389\) −4.29361 29.8627i −0.217695 1.51410i −0.746516 0.665367i \(-0.768275\pi\)
0.528821 0.848733i \(-0.322634\pi\)
\(390\) 0 0
\(391\) −7.47023 0.402007i −0.377786 0.0203304i
\(392\) 2.58378i 0.130500i
\(393\) 31.7657 4.56722i 1.60237 0.230386i
\(394\) −10.6901 + 23.4081i −0.538561 + 1.17928i
\(395\) 0 0
\(396\) 11.8597 13.6869i 0.595975 0.687791i
\(397\) 3.67528 12.5168i 0.184457 0.628202i −0.814396 0.580310i \(-0.802931\pi\)
0.998853 0.0478924i \(-0.0152504\pi\)
\(398\) −6.81867 10.6101i −0.341789 0.531834i
\(399\) 19.7805 + 43.3132i 0.990263 + 2.16837i
\(400\) 0 0
\(401\) −17.9404 11.5296i −0.895899 0.575759i 0.00967246 0.999953i \(-0.496921\pi\)
−0.905571 + 0.424194i \(0.860557\pi\)
\(402\) −39.8354 5.72746i −1.98681 0.285660i
\(403\) −0.346685 0.0498457i −0.0172696 0.00248299i
\(404\) 4.37332 + 2.81056i 0.217581 + 0.139831i
\(405\) 0 0
\(406\) −10.8111 23.6731i −0.536548 1.17488i
\(407\) 4.01378 + 6.24557i 0.198956 + 0.309581i
\(408\) 2.08332 7.09514i 0.103140 0.351262i
\(409\) −5.99134 + 6.91437i −0.296253 + 0.341894i −0.884288 0.466941i \(-0.845356\pi\)
0.588036 + 0.808835i \(0.299901\pi\)
\(410\) 0 0
\(411\) −0.728307 + 1.59477i −0.0359247 + 0.0786642i
\(412\) 43.2882 6.22391i 2.13266 0.306630i
\(413\) 17.1289i 0.842859i
\(414\) −16.2540 + 31.0569i −0.798840 + 1.52636i
\(415\) 0 0
\(416\) 0.201323 + 1.40023i 0.00987065 + 0.0686519i
\(417\) 31.9062 + 14.5711i 1.56245 + 0.713548i
\(418\) −9.47700 32.2757i −0.463535 1.57866i
\(419\) −5.87685 + 6.78225i −0.287103 + 0.331334i −0.880920 0.473266i \(-0.843075\pi\)
0.593817 + 0.804600i \(0.297620\pi\)
\(420\) 0 0
\(421\) 26.4762 17.0152i 1.29037 0.829270i 0.298241 0.954491i \(-0.403600\pi\)
0.992129 + 0.125221i \(0.0399638\pi\)
\(422\) −28.1985 + 12.8778i −1.37268 + 0.626882i
\(423\) −6.48843 + 5.62226i −0.315478 + 0.273364i
\(424\) −15.5805 10.0130i −0.756656 0.486273i
\(425\) 0 0
\(426\) −0.575610 + 4.00346i −0.0278884 + 0.193968i
\(427\) −9.53095 + 14.8305i −0.461235 + 0.717696i
\(428\) 4.29153 3.71863i 0.207439 0.179747i
\(429\) −0.392184 0.858763i −0.0189348 0.0414615i
\(430\) 0 0
\(431\) 21.2071 + 6.22697i 1.02151 + 0.299942i 0.749254 0.662283i \(-0.230412\pi\)
0.272256 + 0.962225i \(0.412230\pi\)
\(432\) 0.936237 + 0.811254i 0.0450447 + 0.0390315i
\(433\) −3.57666 12.1810i −0.171884 0.585382i −0.999703 0.0243864i \(-0.992237\pi\)
0.827819 0.560995i \(-0.189581\pi\)
\(434\) 3.87213 8.47878i 0.185868 0.406994i
\(435\) 0 0
\(436\) 44.5375 2.13296
\(437\) 18.9413 + 33.2793i 0.906086 + 1.59196i
\(438\) 35.6915i 1.70541i
\(439\) 2.62158 + 18.2335i 0.125121 + 0.870238i 0.951615 + 0.307292i \(0.0994229\pi\)
−0.826494 + 0.562946i \(0.809668\pi\)
\(440\) 0 0
\(441\) 4.35968 1.28012i 0.207604 0.0609580i
\(442\) −0.510407 0.442270i −0.0242776 0.0210366i
\(443\) −3.91968 + 13.3492i −0.186230 + 0.634240i 0.812458 + 0.583020i \(0.198129\pi\)
−0.998687 + 0.0512201i \(0.983689\pi\)
\(444\) 23.4486 15.0695i 1.11282 0.715166i
\(445\) 0 0
\(446\) 6.06603 + 7.00057i 0.287235 + 0.331487i
\(447\) 22.6093 35.1808i 1.06938 1.66399i
\(448\) −29.9571 4.30718i −1.41534 0.203495i
\(449\) 4.28260 29.7862i 0.202109 1.40570i −0.595904 0.803056i \(-0.703206\pi\)
0.798013 0.602641i \(-0.205885\pi\)
\(450\) 0 0
\(451\) 0.533969 + 0.616233i 0.0251436 + 0.0290173i
\(452\) −3.86622 + 1.76564i −0.181852 + 0.0830489i
\(453\) −17.9227 27.8883i −0.842082 1.31030i
\(454\) 38.9692 + 11.4424i 1.82891 + 0.537017i
\(455\) 0 0
\(456\) −36.3168 + 10.6636i −1.70069 + 0.499368i
\(457\) −34.6093 15.8055i −1.61895 0.739351i −0.619978 0.784619i \(-0.712859\pi\)
−0.998975 + 0.0452680i \(0.985586\pi\)
\(458\) 23.8287 3.42606i 1.11344 0.160089i
\(459\) −1.24228 −0.0579849
\(460\) 0 0
\(461\) 8.76016 0.408001 0.204001 0.978971i \(-0.434606\pi\)
0.204001 + 0.978971i \(0.434606\pi\)
\(462\) 24.8688 3.57559i 1.15700 0.166352i
\(463\) −25.3212 11.5638i −1.17677 0.537415i −0.271581 0.962416i \(-0.587547\pi\)
−0.905193 + 0.425001i \(0.860274\pi\)
\(464\) −7.42886 + 2.18131i −0.344876 + 0.101265i
\(465\) 0 0
\(466\) −8.80592 2.58565i −0.407926 0.119778i
\(467\) 9.38895 + 14.6095i 0.434469 + 0.676047i 0.987590 0.157054i \(-0.0501997\pi\)
−0.553121 + 0.833101i \(0.686563\pi\)
\(468\) −1.69295 + 0.773144i −0.0782566 + 0.0357386i
\(469\) −11.2910 13.0305i −0.521370 0.601693i
\(470\) 0 0
\(471\) 1.47677 10.2711i 0.0680458 0.473269i
\(472\) −13.4771 1.93772i −0.620336 0.0891909i
\(473\) 4.60289 7.16224i 0.211641 0.329320i
\(474\) 20.5938 + 23.7666i 0.945906 + 1.09163i
\(475\) 0 0
\(476\) 8.89263 5.71494i 0.407593 0.261944i
\(477\) −9.17591 + 31.2503i −0.420136 + 1.43085i
\(478\) 37.4996 + 32.4936i 1.71519 + 1.48622i
\(479\) −24.4458 + 7.17792i −1.11695 + 0.327968i −0.787568 0.616228i \(-0.788660\pi\)
−0.329387 + 0.944195i \(0.606842\pi\)
\(480\) 0 0
\(481\) −0.108579 0.755186i −0.00495079 0.0344335i
\(482\) 13.0655i 0.595119i
\(483\) −26.6168 + 10.4659i −1.21110 + 0.476214i
\(484\) 20.9763 0.953469
\(485\) 0 0
\(486\) 20.4757 44.8356i 0.928797 2.03378i
\(487\) −1.73577 5.91151i −0.0786555 0.267876i 0.910771 0.412912i \(-0.135488\pi\)
−0.989426 + 0.145036i \(0.953670\pi\)
\(488\) −10.5905 9.17673i −0.479410 0.415411i
\(489\) 35.6649 + 10.4721i 1.61282 + 0.473567i
\(490\) 0 0
\(491\) −13.5623 29.6973i −0.612058 1.34022i −0.921157 0.389191i \(-0.872755\pi\)
0.309099 0.951030i \(-0.399973\pi\)
\(492\) 2.31361 2.00475i 0.104306 0.0903812i
\(493\) 4.19761 6.53161i 0.189051 0.294169i
\(494\) −0.491967 + 3.42171i −0.0221346 + 0.153950i
\(495\) 0 0
\(496\) −2.33284 1.49923i −0.104748 0.0673172i
\(497\) −1.30957 + 1.13475i −0.0587421 + 0.0509004i
\(498\) −64.9376 + 29.6560i −2.90992 + 1.32892i
\(499\) 7.21265 4.63529i 0.322882 0.207504i −0.369151 0.929369i \(-0.620351\pi\)
0.692033 + 0.721866i \(0.256715\pi\)
\(500\) 0 0
\(501\) 2.18861 2.52579i 0.0977797 0.112844i
\(502\) −0.962667 3.27854i −0.0429659 0.146329i
\(503\) 6.14505 + 2.80635i 0.273994 + 0.125129i 0.547674 0.836692i \(-0.315513\pi\)
−0.273679 + 0.961821i \(0.588241\pi\)
\(504\) −2.11255 14.6931i −0.0941003 0.654482i
\(505\) 0 0
\(506\) 19.6641 4.64234i 0.874177 0.206377i
\(507\) 32.5764i 1.44677i
\(508\) 16.9452 2.43635i 0.751821 0.108096i
\(509\) −17.0206 + 37.2699i −0.754425 + 1.65196i 0.00382066 + 0.999993i \(0.498784\pi\)
−0.758246 + 0.651968i \(0.773943\pi\)
\(510\) 0 0
\(511\) −10.0135 + 11.5562i −0.442971 + 0.511216i
\(512\) −4.80863 + 16.3767i −0.212513 + 0.723754i
\(513\) 3.43777 + 5.34928i 0.151781 + 0.236176i
\(514\) −25.1354 55.0388i −1.10867 2.42766i
\(515\) 0 0
\(516\) −26.8902 17.2813i −1.18377 0.760765i
\(517\) 4.89828 + 0.704266i 0.215426 + 0.0309736i
\(518\) 20.0976 + 2.88960i 0.883037 + 0.126962i
\(519\) −35.8088 23.0129i −1.57183 1.01016i
\(520\) 0 0
\(521\) −7.77941 17.0345i −0.340822 0.746297i 0.659162 0.752001i \(-0.270911\pi\)
−0.999984 + 0.00570487i \(0.998184\pi\)
\(522\) −19.6683 30.6045i −0.860859 1.33952i
\(523\) 6.63875 22.6095i 0.290292 0.988644i −0.677212 0.735788i \(-0.736812\pi\)
0.967504 0.252856i \(-0.0813699\pi\)
\(524\) −23.8807 + 27.5597i −1.04323 + 1.20395i
\(525\) 0 0
\(526\) −11.8461 + 25.9394i −0.516515 + 1.13101i
\(527\) 2.75251 0.395751i 0.119901 0.0172392i
\(528\) 7.47461i 0.325291i
\(529\) −20.5716 + 10.2864i −0.894416 + 0.447237i
\(530\) 0 0
\(531\) 3.40760 + 23.7004i 0.147877 + 1.02851i
\(532\) −49.2171 22.4767i −2.13383 0.974488i
\(533\) −0.0236078 0.0804009i −0.00102257 0.00348255i
\(534\) 50.4147 58.1817i 2.18166 2.51777i
\(535\) 0 0
\(536\) 11.5298 7.40976i 0.498012 0.320053i
\(537\) 3.27237 1.49444i 0.141213 0.0644899i
\(538\) −16.6499 + 14.4272i −0.717829 + 0.622002i
\(539\) −2.20325 1.41595i −0.0949009 0.0609891i
\(540\) 0 0
\(541\) −0.135667 + 0.943585i −0.00583278 + 0.0405679i −0.992530 0.122001i \(-0.961069\pi\)
0.986697 + 0.162569i \(0.0519780\pi\)
\(542\) 5.25558 8.17784i 0.225746 0.351268i
\(543\) 30.6408 26.5504i 1.31492 1.13939i
\(544\) −4.66572 10.2165i −0.200041 0.438029i
\(545\) 0 0
\(546\) −2.47737 0.727422i −0.106022 0.0311308i
\(547\) 22.5108 + 19.5057i 0.962491 + 0.834003i 0.986173 0.165717i \(-0.0529937\pi\)
−0.0236827 + 0.999720i \(0.507539\pi\)
\(548\) −0.561261 1.91148i −0.0239759 0.0816544i
\(549\) −10.2371 + 22.4162i −0.436911 + 0.956701i
\(550\) 0 0
\(551\) −39.7412 −1.69303
\(552\) −5.22359 22.1262i −0.222331 0.941754i
\(553\) 13.4729i 0.572925i
\(554\) −9.66043 67.1897i −0.410432 2.85462i
\(555\) 0 0
\(556\) −38.2425 + 11.2290i −1.62184 + 0.476216i
\(557\) −4.54108 3.93487i −0.192412 0.166726i 0.553327 0.832964i \(-0.313358\pi\)
−0.745739 + 0.666238i \(0.767903\pi\)
\(558\) 3.67091 12.5020i 0.155402 0.529251i
\(559\) −0.736039 + 0.473023i −0.0311311 + 0.0200068i
\(560\) 0 0
\(561\) 4.90852 + 5.66473i 0.207238 + 0.239165i
\(562\) −4.26426 + 6.63532i −0.179877 + 0.279894i
\(563\) −0.0882822 0.0126931i −0.00372065 0.000534949i 0.140454 0.990087i \(-0.455144\pi\)
−0.144175 + 0.989552i \(0.546053\pi\)
\(564\) 2.64412 18.3903i 0.111338 0.774370i
\(565\) 0 0
\(566\) −21.3290 24.6150i −0.896526 1.03465i
\(567\) 17.1568 7.83526i 0.720519 0.329050i
\(568\) −0.744681 1.15875i −0.0312461 0.0486199i
\(569\) −39.6842 11.6523i −1.66365 0.488491i −0.691406 0.722466i \(-0.743009\pi\)
−0.972243 + 0.233975i \(0.924827\pi\)
\(570\) 0 0
\(571\) −24.7458 + 7.26602i −1.03558 + 0.304073i −0.754977 0.655751i \(-0.772352\pi\)
−0.280602 + 0.959824i \(0.590534\pi\)
\(572\) 0.975819 + 0.445641i 0.0408010 + 0.0186332i
\(573\) 51.6072 7.42000i 2.15592 0.309975i
\(574\) 2.23002 0.0930793
\(575\) 0 0
\(576\) −42.3070 −1.76279
\(577\) −26.8679 + 3.86302i −1.11853 + 0.160820i −0.676684 0.736273i \(-0.736584\pi\)
−0.441842 + 0.897093i \(0.645675\pi\)
\(578\) −29.1986 13.3346i −1.21450 0.554645i
\(579\) −35.3343 + 10.3751i −1.46845 + 0.431174i
\(580\) 0 0
\(581\) −29.3457 8.61667i −1.21746 0.357480i
\(582\) 12.9467 + 20.1454i 0.536657 + 0.835054i
\(583\) 17.0767 7.79865i 0.707243 0.322987i
\(584\) −7.95971 9.18600i −0.329375 0.380119i
\(585\) 0 0
\(586\) −6.74678 + 46.9249i −0.278707 + 1.93845i
\(587\) 31.3128 + 4.50210i 1.29242 + 0.185822i 0.754010 0.656863i \(-0.228117\pi\)
0.538407 + 0.842685i \(0.319026\pi\)
\(588\) −5.31608 + 8.27197i −0.219231 + 0.341130i
\(589\) −9.32111 10.7571i −0.384070 0.443240i
\(590\) 0 0
\(591\) −24.6912 + 15.8681i −1.01566 + 0.652726i
\(592\) 1.70182 5.79588i 0.0699446 0.238209i
\(593\) 19.4575 + 16.8600i 0.799024 + 0.692358i 0.955392 0.295341i \(-0.0954331\pi\)
−0.156368 + 0.987699i \(0.549979\pi\)
\(594\) 3.21924 0.945253i 0.132087 0.0387842i
\(595\) 0 0
\(596\) 6.76277 + 47.0361i 0.277014 + 1.92667i
\(597\) 14.3849i 0.588733i
\(598\) −2.03638 0.405513i −0.0832740 0.0165826i
\(599\) −16.9434 −0.692289 −0.346144 0.938181i \(-0.612509\pi\)
−0.346144 + 0.938181i \(0.612509\pi\)
\(600\) 0 0
\(601\) −4.01081 + 8.78246i −0.163605 + 0.358244i −0.973624 0.228159i \(-0.926729\pi\)
0.810019 + 0.586403i \(0.199457\pi\)
\(602\) −6.55995 22.3411i −0.267364 0.910557i
\(603\) −18.2151 15.7834i −0.741775 0.642752i
\(604\) 36.1436 + 10.6127i 1.47066 + 0.431826i
\(605\) 0 0
\(606\) 4.18800 + 9.17043i 0.170126 + 0.372523i
\(607\) −2.45261 + 2.12520i −0.0995484 + 0.0862592i −0.703213 0.710979i \(-0.748252\pi\)
0.603665 + 0.797238i \(0.293707\pi\)
\(608\) −31.0808 + 48.3627i −1.26049 + 1.96136i
\(609\) 4.22430 29.3806i 0.171177 1.19056i
\(610\) 0 0
\(611\) −0.427825 0.274946i −0.0173079 0.0111231i
\(612\) 11.1673 9.67656i 0.451413 0.391152i
\(613\) 29.9399 13.6731i 1.20926 0.552251i 0.294269 0.955723i \(-0.404924\pi\)
0.914992 + 0.403471i \(0.132197\pi\)
\(614\) −26.2219 + 16.8518i −1.05823 + 0.680083i
\(615\) 0 0
\(616\) −5.60312 + 6.46634i −0.225756 + 0.260536i
\(617\) 0.852079 + 2.90191i 0.0343034 + 0.116827i 0.974865 0.222797i \(-0.0715186\pi\)
−0.940562 + 0.339623i \(0.889700\pi\)
\(618\) 77.1470 + 35.2319i 3.10331 + 1.41723i
\(619\) 1.48326 + 10.3163i 0.0596172 + 0.414647i 0.997674 + 0.0681655i \(0.0217146\pi\)
−0.938057 + 0.346482i \(0.887376\pi\)
\(620\) 0 0
\(621\) −3.31934 + 1.88924i −0.133200 + 0.0758127i
\(622\) 1.25637i 0.0503758i
\(623\) 32.6465 4.69386i 1.30796 0.188056i
\(624\) −0.319097 + 0.698725i −0.0127741 + 0.0279714i
\(625\) 0 0
\(626\) 30.4958 35.1941i 1.21886 1.40664i
\(627\) 10.8090 36.8121i 0.431670 1.47013i
\(628\) 6.37479 + 9.91937i 0.254382 + 0.395826i
\(629\) 2.51636 + 5.51006i 0.100334 + 0.219701i
\(630\) 0 0
\(631\) 28.6878 + 18.4366i 1.14205 + 0.733948i 0.968040 0.250797i \(-0.0806926\pi\)
0.174005 + 0.984745i \(0.444329\pi\)
\(632\) −10.6006 1.52413i −0.421667 0.0606266i
\(633\) −34.9971 5.03182i −1.39101 0.199997i
\(634\) 16.3359 + 10.4985i 0.648783 + 0.416947i
\(635\) 0 0
\(636\) −29.2795 64.1132i −1.16101 2.54225i
\(637\) 0.145512 + 0.226421i 0.00576539 + 0.00897113i
\(638\) −5.90773 + 20.1199i −0.233889 + 0.796553i
\(639\) −1.58624 + 1.83062i −0.0627506 + 0.0724180i
\(640\) 0 0
\(641\) −3.74109 + 8.19184i −0.147764 + 0.323558i −0.969012 0.247013i \(-0.920551\pi\)
0.821248 + 0.570571i \(0.193278\pi\)
\(642\) 10.9001 1.56720i 0.430194 0.0618525i
\(643\) 22.9522i 0.905146i −0.891727 0.452573i \(-0.850506\pi\)
0.891727 0.452573i \(-0.149494\pi\)
\(644\) 15.0696 28.7939i 0.593825 1.13464i
\(645\) 0 0
\(646\) −3.90598 27.1667i −0.153679 1.06886i
\(647\) 40.8919 + 18.6747i 1.60763 + 0.734178i 0.998274 0.0587216i \(-0.0187024\pi\)
0.609352 + 0.792900i \(0.291430\pi\)
\(648\) 4.22396 + 14.3855i 0.165933 + 0.565115i
\(649\) 9.03801 10.4304i 0.354773 0.409430i
\(650\) 0 0
\(651\) 8.94354 5.74766i 0.350525 0.225269i
\(652\) −38.4202 + 17.5459i −1.50465 + 0.687152i
\(653\) −22.1914 + 19.2289i −0.868415 + 0.752486i −0.970196 0.242321i \(-0.922091\pi\)
0.101781 + 0.994807i \(0.467546\pi\)
\(654\) 72.6596 + 46.6955i 2.84121 + 1.82594i
\(655\) 0 0
\(656\) 0.0944170 0.656685i 0.00368636 0.0256392i
\(657\) −11.5562 + 17.9818i −0.450850 + 0.701536i
\(658\) 10.2284 8.86294i 0.398744 0.345513i
\(659\) 16.6805 + 36.5251i 0.649778 + 1.42282i 0.891748 + 0.452532i \(0.149479\pi\)
−0.241970 + 0.970284i \(0.577794\pi\)
\(660\) 0 0
\(661\) −9.56288 2.80792i −0.371953 0.109215i 0.0904132 0.995904i \(-0.471181\pi\)
−0.462366 + 0.886689i \(0.652999\pi\)
\(662\) 50.2737 + 43.5624i 1.95394 + 1.69310i
\(663\) −0.217015 0.739087i −0.00842818 0.0287037i
\(664\) 10.0994 22.1146i 0.391933 0.858214i
\(665\) 0 0
\(666\) 28.3829 1.09981
\(667\) 1.28272 23.8359i 0.0496669 0.922929i
\(668\) 3.79764i 0.146935i
\(669\) 1.50356 + 10.4575i 0.0581310 + 0.404310i
\(670\) 0 0
\(671\) 13.6290 4.00183i 0.526141 0.154489i
\(672\) −32.4508 28.1188i −1.25182 1.08470i
\(673\) −9.59489 + 32.6772i −0.369856 + 1.25961i 0.538930 + 0.842351i \(0.318829\pi\)
−0.908786 + 0.417263i \(0.862989\pi\)
\(674\) 9.18700 5.90412i 0.353870 0.227418i
\(675\) 0 0
\(676\) 24.2408 + 27.9754i 0.932339 + 1.07598i
\(677\) −13.5112 + 21.0239i −0.519278 + 0.808012i −0.997532 0.0702091i \(-0.977633\pi\)
0.478254 + 0.878221i \(0.341270\pi\)
\(678\) −8.15864 1.17304i −0.313331 0.0450502i
\(679\) −1.46006 + 10.1550i −0.0560320 + 0.389711i
\(680\) 0 0
\(681\) 30.3349 + 35.0084i 1.16244 + 1.34152i
\(682\) −6.83168 + 3.11992i −0.261598 + 0.119468i
\(683\) 18.6392 + 29.0032i 0.713210 + 1.10978i 0.988908 + 0.148532i \(0.0474548\pi\)
−0.275698 + 0.961244i \(0.588909\pi\)
\(684\) −72.5707 21.3087i −2.77481 0.814757i
\(685\) 0 0
\(686\) −41.9910 + 12.3297i −1.60322 + 0.470749i
\(687\) 24.9761 + 11.4062i 0.952898 + 0.435174i
\(688\) −6.85664 + 0.985836i −0.261407 + 0.0375846i
\(689\) −1.92925 −0.0734987
\(690\) 0 0
\(691\) −21.2259 −0.807470 −0.403735 0.914876i \(-0.632288\pi\)
−0.403735 + 0.914876i \(0.632288\pi\)
\(692\) 47.8757 6.88349i 1.81996 0.261671i
\(693\) 13.6869 + 6.25059i 0.519921 + 0.237440i
\(694\) −14.3077 + 4.20113i −0.543114 + 0.159473i
\(695\) 0 0
\(696\) 22.6390 + 6.64742i 0.858130 + 0.251970i
\(697\) 0.359685 + 0.559680i 0.0136240 + 0.0211994i
\(698\) −20.2289 + 9.23823i −0.765675 + 0.349672i
\(699\) −6.85483 7.91090i −0.259274 0.299218i
\(700\) 0 0
\(701\) 3.43351 23.8806i 0.129682 0.901957i −0.816275 0.577664i \(-0.803965\pi\)
0.945957 0.324293i \(-0.105126\pi\)
\(702\) −0.341287 0.0490697i −0.0128811 0.00185202i
\(703\) 16.7628 26.0834i 0.632221 0.983756i
\(704\) 15.9693 + 18.4296i 0.601866 + 0.694590i
\(705\) 0 0
\(706\) 45.3611 29.1518i 1.70719 1.09714i
\(707\) −1.21684 + 4.14417i −0.0457639 + 0.155858i
\(708\) −39.1603 33.9326i −1.47173 1.27527i
\(709\) 6.75188 1.98253i 0.253572 0.0744556i −0.152476 0.988307i \(-0.548725\pi\)
0.406048 + 0.913852i \(0.366906\pi\)
\(710\) 0 0
\(711\) 2.68028 + 18.6417i 0.100518 + 0.699119i
\(712\) 26.2175i 0.982544i
\(713\) 6.75275 5.24339i 0.252892 0.196367i
\(714\) 20.4995 0.767175
\(715\) 0 0
\(716\) −1.69814 + 3.71841i −0.0634626 + 0.138964i
\(717\) 15.9441 + 54.3008i 0.595445 + 2.02790i
\(718\) −0.697483 0.604373i −0.0260298 0.0225550i
\(719\) 25.4920 + 7.48514i 0.950693 + 0.279149i 0.720075 0.693896i \(-0.244107\pi\)
0.230618 + 0.973044i \(0.425925\pi\)
\(720\) 0 0
\(721\) 15.0941 + 33.0515i 0.562134 + 1.23090i
\(722\) −74.5284 + 64.5792i −2.77366 + 2.40339i
\(723\) 8.05658 12.5363i 0.299628 0.466230i
\(724\) −6.55643 + 45.6010i −0.243668 + 1.69475i
\(725\) 0 0
\(726\) 34.2213 + 21.9927i 1.27007 + 0.816226i
\(727\) 3.95072 3.42332i 0.146524 0.126964i −0.578514 0.815672i \(-0.696367\pi\)
0.725039 + 0.688708i \(0.241822\pi\)
\(728\) 0.799832 0.365271i 0.0296437 0.0135378i
\(729\) 27.2318 17.5008i 1.00859 0.648179i
\(730\) 0 0
\(731\) 4.54901 5.24983i 0.168251 0.194172i
\(732\) −15.0246 51.1691i −0.555325 1.89126i
\(733\) −24.2771 11.0870i −0.896694 0.409506i −0.0868973 0.996217i \(-0.527695\pi\)
−0.809796 + 0.586711i \(0.800422\pi\)
\(734\) 8.95920 + 62.3126i 0.330690 + 2.30000i
\(735\) 0 0
\(736\) −28.0037 20.2026i −1.03223 0.744677i
\(737\) 13.8924i 0.511734i
\(738\) 3.08557 0.443638i 0.113581 0.0163305i
\(739\) 0.930342 2.03716i 0.0342232 0.0749383i −0.891748 0.452532i \(-0.850521\pi\)
0.925972 + 0.377593i \(0.123248\pi\)
\(740\) 0 0
\(741\) −2.58196 + 2.97974i −0.0948507 + 0.109464i
\(742\) 14.4649 49.2630i 0.531024 1.80850i
\(743\) 9.80730 + 15.2605i 0.359795 + 0.559852i 0.973213 0.229907i \(-0.0738422\pi\)
−0.613418 + 0.789759i \(0.710206\pi\)
\(744\) 3.51056 + 7.68705i 0.128703 + 0.281821i
\(745\) 0 0
\(746\) 26.7091 + 17.1649i 0.977890 + 0.628452i
\(747\) −42.3183 6.08446i −1.54835 0.222619i
\(748\) −8.43051 1.21212i −0.308250 0.0443197i
\(749\) 3.96893 + 2.55068i 0.145022 + 0.0931997i
\(750\) 0 0
\(751\) 11.7258 + 25.6759i 0.427880 + 0.936927i 0.993666 + 0.112375i \(0.0358457\pi\)
−0.565786 + 0.824552i \(0.691427\pi\)
\(752\) −2.17685 3.38724i −0.0793815 0.123520i
\(753\) 1.09797 3.73935i 0.0400123 0.136269i
\(754\) 1.41119 1.62860i 0.0513924 0.0593100i
\(755\) 0 0
\(756\) 2.24187 4.90900i 0.0815359 0.178539i
\(757\) −0.120772 + 0.0173643i −0.00438952 + 0.000631118i −0.144509 0.989503i \(-0.546160\pi\)
0.140120 + 0.990135i \(0.455251\pi\)
\(758\) 12.4000i 0.450389i
\(759\) 21.7302 + 7.67118i 0.788756 + 0.278446i
\(760\) 0 0
\(761\) 3.80057 + 26.4336i 0.137771 + 0.958216i 0.935027 + 0.354576i \(0.115375\pi\)
−0.797257 + 0.603640i \(0.793716\pi\)
\(762\) 30.1992 + 13.7915i 1.09400 + 0.499614i
\(763\) 10.4250 + 35.5042i 0.377409 + 1.28534i
\(764\) −38.7970 + 44.7741i −1.40363 + 1.61987i
\(765\) 0 0
\(766\) 0.429451 0.275992i 0.0155167 0.00997198i
\(767\) −1.29015 + 0.589194i −0.0465848 + 0.0212745i
\(768\) 8.91825 7.72771i 0.321810 0.278850i
\(769\) 6.60471 + 4.24459i 0.238172 + 0.153064i 0.654283 0.756250i \(-0.272971\pi\)
−0.416111 + 0.909314i \(0.636607\pi\)
\(770\) 0 0
\(771\) 9.82128 68.3085i 0.353705 2.46007i
\(772\) 22.6235 35.2028i 0.814237 1.26698i
\(773\) −25.9084 + 22.4497i −0.931859 + 0.807460i −0.981531 0.191305i \(-0.938728\pi\)
0.0496716 + 0.998766i \(0.484183\pi\)
\(774\) −13.5212 29.6073i −0.486009 1.06421i
\(775\) 0 0
\(776\) −7.82482 2.29757i −0.280895 0.0824781i
\(777\) 17.5017 + 15.1653i 0.627869 + 0.544052i
\(778\) 18.7303 + 63.7897i 0.671515 + 2.28697i
\(779\) 1.41463 3.09760i 0.0506843 0.110983i
\(780\) 0 0
\(781\) 1.39619 0.0499596
\(782\) 16.4200 1.46587i 0.587180 0.0524193i
\(783\) 3.96386i 0.141657i
\(784\) 0.303264 + 2.10925i 0.0108308 + 0.0753302i
\(785\) 0 0
\(786\) −67.8546 + 19.9239i −2.42029 + 0.710662i
\(787\) 12.1015 + 10.4860i 0.431370 + 0.373785i 0.843311 0.537426i \(-0.180603\pi\)
−0.411940 + 0.911211i \(0.635149\pi\)
\(788\) 9.39611 32.0002i 0.334723 1.13996i
\(789\) −27.3612 + 17.5840i −0.974085 + 0.626006i
\(790\) 0 0
\(791\) −2.31250 2.66877i −0.0822231 0.0948905i
\(792\) −6.46634 + 10.0618i −0.229772 + 0.357531i
\(793\) −1.44488 0.207742i −0.0513090 0.00737712i
\(794\) −4.09109 + 28.4542i −0.145187 + 1.00980i
\(795\) 0 0
\(796\) 10.7041 + 12.3532i 0.379397 + 0.437847i
\(797\) 19.5787 8.94128i 0.693512 0.316716i −0.0372914 0.999304i \(-0.511873\pi\)
0.730803 + 0.682588i \(0.239146\pi\)
\(798\) −56.7282 88.2709i −2.00816 3.12475i
\(799\) 3.87413 + 1.13755i 0.137057 + 0.0402435i
\(800\) 0 0
\(801\) 44.2376 12.9893i 1.56306 0.458955i
\(802\) 42.7470 + 19.5219i 1.50945 + 0.689343i
\(803\) 12.1952 1.75340i 0.430358 0.0618761i
\(804\) 52.1582 1.83948
\(805\) 0 0
\(806\) 0.771816 0.0271860
\(807\) −24.8717 + 3.57601i −0.875526 + 0.125882i
\(808\) −3.12301 1.42623i −0.109867 0.0501746i
\(809\) 23.1479 6.79683i 0.813836 0.238964i 0.151776 0.988415i \(-0.451501\pi\)
0.662060 + 0.749451i \(0.269682\pi\)
\(810\) 0 0
\(811\) −13.7575 4.03956i −0.483091 0.141848i 0.0311137 0.999516i \(-0.490095\pi\)
−0.514205 + 0.857668i \(0.671913\pi\)
\(812\) 18.2351 + 28.3744i 0.639927 + 0.995747i
\(813\) 10.0854 4.60584i 0.353710 0.161534i
\(814\) −10.7135 12.3640i −0.375507 0.433358i
\(815\) 0 0
\(816\) 0.867929 6.03658i 0.0303836 0.211323i
\(817\) −35.1942 5.06017i −1.23129 0.177033i
\(818\) 10.8998 16.9605i 0.381103 0.593008i
\(819\) −1.01260 1.16861i −0.0353832 0.0408344i
\(820\) 0 0
\(821\) 11.9529 7.68167i 0.417160 0.268092i −0.315180 0.949032i \(-0.602065\pi\)
0.732339 + 0.680940i \(0.238428\pi\)
\(822\) 1.08844 3.70689i 0.0379638 0.129293i
\(823\) −12.1095 10.4929i −0.422109 0.365760i 0.417752 0.908561i \(-0.362818\pi\)
−0.839861 + 0.542802i \(0.817364\pi\)
\(824\) −27.7127 + 8.13718i −0.965417 + 0.283472i
\(825\) 0 0
\(826\) −5.37175 37.3613i −0.186907 1.29997i
\(827\) 35.1240i 1.22138i −0.791870 0.610690i \(-0.790892\pi\)
0.791870 0.610690i \(-0.209108\pi\)
\(828\) 15.1228 42.8385i 0.525554 1.48874i
\(829\) 2.29604 0.0797447 0.0398723 0.999205i \(-0.487305\pi\)
0.0398723 + 0.999205i \(0.487305\pi\)
\(830\) 0 0
\(831\) 32.1620 70.4250i 1.11569 2.44302i
\(832\) −0.706035 2.40453i −0.0244774 0.0833622i
\(833\) −1.61496 1.39937i −0.0559550 0.0484853i
\(834\) −74.1629 21.7762i −2.56805 0.754048i
\(835\) 0 0
\(836\) 18.1103 + 39.6561i 0.626359 + 1.37153i
\(837\) 1.07294 0.929704i 0.0370861 0.0321353i
\(838\) 10.6915 16.6364i 0.369333 0.574694i
\(839\) 5.49501 38.2187i 0.189709 1.31945i −0.643052 0.765822i \(-0.722332\pi\)
0.832761 0.553632i \(-0.186759\pi\)
\(840\) 0 0
\(841\) −3.55542 2.28493i −0.122601 0.0787906i
\(842\) −52.4134 + 45.4164i −1.80628 + 1.56515i
\(843\) −8.18306 + 3.73708i −0.281839 + 0.128712i
\(844\) 33.7985 21.7210i 1.16339 0.747667i
\(845\) 0 0
\(846\) 12.3893 14.2980i 0.425953 0.491576i
\(847\) 4.90997 + 16.7218i 0.168708 + 0.574568i
\(848\) −13.8943 6.34530i −0.477131 0.217898i
\(849\) −5.28673 36.7700i −0.181440 1.26194i
\(850\) 0 0
\(851\) 15.1032 + 10.8959i 0.517732 + 0.373505i
\(852\) 5.24190i 0.179584i
\(853\) −38.0382 + 5.46907i −1.30240 + 0.187257i −0.758380 0.651812i \(-0.774009\pi\)
−0.544024 + 0.839070i \(0.683100\pi\)
\(854\) 16.1378 35.3369i 0.552226 1.20921i
\(855\) 0 0
\(856\) −2.45588 + 2.83423i −0.0839402 + 0.0968721i
\(857\) 14.3372 48.8281i 0.489750 1.66794i −0.229598 0.973286i \(-0.573741\pi\)
0.719348 0.694650i \(-0.244441\pi\)
\(858\) 1.12474 + 1.75013i 0.0383980 + 0.0597485i
\(859\) −3.79985 8.32050i −0.129649 0.283892i 0.833664 0.552272i \(-0.186239\pi\)
−0.963313 + 0.268380i \(0.913512\pi\)
\(860\) 0 0
\(861\) 2.13969 + 1.37510i 0.0729205 + 0.0468631i
\(862\) −48.2094 6.93147i −1.64202 0.236087i
\(863\) −12.2133 1.75600i −0.415744 0.0597750i −0.0687310 0.997635i \(-0.521895\pi\)
−0.347013 + 0.937860i \(0.612804\pi\)
\(864\) −4.82378 3.10006i −0.164108 0.105466i
\(865\) 0 0
\(866\) 11.6214 + 25.4474i 0.394912 + 0.864737i
\(867\) −19.7934 30.7991i −0.672219 1.04599i
\(868\) −3.40342 + 11.5910i −0.115519 + 0.393423i
\(869\) 7.10891 8.20412i 0.241153 0.278306i
\(870\) 0 0
\(871\) 0.593078 1.29866i 0.0200957 0.0440034i
\(872\) −29.1143 + 4.18600i −0.985934 + 0.141756i
\(873\) 14.3414i 0.485381i
\(874\) −51.7512 66.6482i −1.75051 2.25441i
\(875\) 0 0
\(876\) −6.58303 45.7860i −0.222420 1.54696i
\(877\) −2.09870 0.958445i −0.0708681 0.0323644i 0.379666 0.925124i \(-0.376039\pi\)
−0.450534 + 0.892759i \(0.648766\pi\)
\(878\) −11.4363 38.9485i −0.385957 1.31445i
\(879\) −35.4087 + 40.8638i −1.19431 + 1.37830i
\(880\) 0 0
\(881\) −29.9489 + 19.2470i −1.00901 + 0.648448i −0.937135 0.348966i \(-0.886533\pi\)
−0.0718697 + 0.997414i \(0.522897\pi\)
\(882\) −9.10782 + 4.15940i −0.306676 + 0.140054i
\(883\) 23.0311 19.9566i 0.775059 0.671592i −0.174684 0.984625i \(-0.555890\pi\)
0.949742 + 0.313032i \(0.101345\pi\)
\(884\) 0.736336 + 0.473214i 0.0247657 + 0.0159159i
\(885\) 0 0
\(886\) 4.36315 30.3464i 0.146583 1.01951i
\(887\) 11.2405 17.4906i 0.377421 0.587278i −0.599632 0.800276i \(-0.704686\pi\)
0.977053 + 0.212998i \(0.0683227\pi\)
\(888\) −13.9121 + 12.0549i −0.466858 + 0.404535i
\(889\) 5.90859 + 12.9380i 0.198168 + 0.433927i
\(890\) 0 0
\(891\) −14.5817 4.28156i −0.488504 0.143438i
\(892\) −9.07286 7.86168i −0.303782 0.263228i
\(893\) −5.82260 19.8299i −0.194846 0.663584i
\(894\) −38.2822 + 83.8263i −1.28035 + 2.80357i
\(895\) 0 0
\(896\) 32.5243 1.08656
\(897\) −1.70385 1.64478i −0.0568898 0.0549176i
\(898\) 66.3122i 2.21287i
\(899\) 1.26275 + 8.78264i 0.0421152 + 0.292918i
\(900\) 0 0
\(901\) 14.6969 4.31539i 0.489624 0.143766i
\(902\) −1.35794 1.17666i −0.0452145 0.0391786i
\(903\) 7.48196 25.4812i 0.248984 0.847962i
\(904\) 2.36141 1.51759i 0.0785393 0.0504742i
\(905\) 0 0
\(906\) 47.8387 + 55.2088i 1.58933 + 1.83419i
\(907\) −12.2789 + 19.1064i −0.407715 + 0.634417i −0.983015 0.183525i \(-0.941249\pi\)
0.575300 + 0.817943i \(0.304885\pi\)
\(908\) −52.1011 7.49100i −1.72903 0.248598i
\(909\) −0.859242 + 5.97616i −0.0284992 + 0.198217i
\(910\) 0 0
\(911\) −0.546182 0.630328i −0.0180958 0.0208837i 0.746630 0.665240i \(-0.231671\pi\)
−0.764725 + 0.644356i \(0.777125\pi\)
\(912\) −28.3953 + 12.9677i −0.940264 + 0.429404i
\(913\) 13.3231 + 20.7312i 0.440930 + 0.686101i
\(914\) 80.4460 + 23.6211i 2.66092 + 0.781315i
\(915\) 0 0
\(916\) −29.9362 + 8.79006i −0.989120 + 0.290432i
\(917\) −27.5597 12.5861i −0.910103 0.415630i
\(918\) 2.70965 0.389589i 0.0894319 0.0128584i
\(919\) 45.3320 1.49537 0.747683 0.664056i \(-0.231166\pi\)
0.747683 + 0.664056i \(0.231166\pi\)
\(920\) 0 0
\(921\) −35.5510 −1.17145
\(922\) −19.1075 + 2.74725i −0.629273 + 0.0904758i
\(923\) −0.130515 0.0596044i −0.00429597 0.00196190i
\(924\) −31.2428 + 9.17371i −1.02781 + 0.301793i
\(925\) 0 0
\(926\) 58.8566 + 17.2819i 1.93415 + 0.567918i
\(927\) 27.4602 + 42.7289i 0.901910 + 1.40340i
\(928\) 32.5986 14.8873i 1.07010 0.488699i
\(929\) −11.5958 13.3822i −0.380445 0.439056i 0.532941 0.846153i \(-0.321087\pi\)
−0.913385 + 0.407096i \(0.866541\pi\)
\(930\) 0 0
\(931\) −1.55661 + 10.8265i −0.0510159 + 0.354824i
\(932\) 11.7734 + 1.69275i 0.385649 + 0.0554480i
\(933\) 0.774713 1.20548i 0.0253630 0.0394655i
\(934\) −25.0607 28.9216i −0.820011 0.946343i
\(935\) 0 0
\(936\) 1.03402 0.664524i 0.0337980 0.0217207i
\(937\) 6.57170 22.3812i 0.214688 0.731161i −0.779774 0.626062i \(-0.784666\pi\)
0.994462 0.105099i \(-0.0335160\pi\)
\(938\) 28.7143 + 24.8810i 0.937554 + 0.812395i
\(939\) 50.9622 14.9639i 1.66309 0.488327i
\(940\) 0 0
\(941\) −1.65295 11.4965i −0.0538847 0.374776i −0.998864 0.0476470i \(-0.984828\pi\)
0.944980 0.327130i \(-0.106081\pi\)
\(942\) 22.8664i 0.745027i
\(943\) 1.81222 + 0.948444i 0.0590139 + 0.0308856i
\(944\) −11.2294 −0.365486
\(945\) 0 0
\(946\) −7.79363 + 17.0657i −0.253393 + 0.554853i
\(947\) 1.68981 + 5.75498i 0.0549116 + 0.187012i 0.982382 0.186886i \(-0.0598394\pi\)
−0.927470 + 0.373897i \(0.878021\pi\)
\(948\) −30.8018 26.6899i −1.00040 0.866849i
\(949\) −1.21486 0.356714i −0.0394359 0.0115794i
\(950\) 0 0
\(951\) 9.20056 + 20.1464i 0.298348 + 0.653292i
\(952\) −5.27600 + 4.57168i −0.170996 + 0.148169i
\(953\) 9.68107 15.0640i 0.313601 0.487972i −0.648295 0.761389i \(-0.724518\pi\)
0.961896 + 0.273417i \(0.0881539\pi\)
\(954\) 10.2141 71.0403i 0.330692 2.30002i
\(955\) 0 0
\(956\) −54.0987 34.7671i −1.74968 1.12445i
\(957\) −18.0749 + 15.6620i −0.584279 + 0.506281i
\(958\) 51.0697 23.3227i 1.64999 0.753524i
\(959\) 1.39241 0.894847i 0.0449632 0.0288961i
\(960\) 0 0
\(961\) 18.2196 21.0265i 0.587728 0.678274i
\(962\) 0.473664 + 1.61315i 0.0152715 + 0.0520101i
\(963\) 5.99903 + 2.73967i 0.193316 + 0.0882845i
\(964\) 2.40984 + 16.7608i 0.0776156 + 0.539829i
\(965\) 0 0
\(966\) 54.7739 31.1753i 1.76232 1.00305i
\(967\) 33.5068i 1.07751i −0.842464 0.538753i \(-0.818896\pi\)
0.842464 0.538753i \(-0.181104\pi\)
\(968\) −13.7123 + 1.97153i −0.440730 + 0.0633673i
\(969\) 13.0040 28.4748i 0.417748 0.914741i
\(970\) 0 0
\(971\) −38.8241 + 44.8054i −1.24592 + 1.43787i −0.389964 + 0.920830i \(0.627513\pi\)
−0.855960 + 0.517042i \(0.827033\pi\)
\(972\) −17.9972 + 61.2928i −0.577260 + 1.96597i
\(973\) −17.9030 27.8576i −0.573943 0.893073i
\(974\) 5.63994 + 12.3497i 0.180715 + 0.395711i
\(975\) 0 0
\(976\) −9.72257 6.24832i −0.311212 0.200004i
\(977\) −12.5133 1.79914i −0.400336 0.0575596i −0.0607934 0.998150i \(-0.519363\pi\)
−0.339542 + 0.940591i \(0.610272\pi\)
\(978\) −81.0758 11.6569i −2.59252 0.372748i
\(979\) −22.3564 14.3676i −0.714513 0.459189i
\(980\) 0 0
\(981\) 21.4877 + 47.0514i 0.686048 + 1.50224i
\(982\) 38.8952 + 60.5221i 1.24120 + 1.93134i
\(983\) −16.4433 + 56.0008i −0.524461 + 1.78615i 0.0885469 + 0.996072i \(0.471778\pi\)
−0.613008 + 0.790077i \(0.710040\pi\)
\(984\) −1.32399 + 1.52797i −0.0422072 + 0.0487097i
\(985\) 0 0
\(986\) −7.10741 + 15.5631i −0.226346 + 0.495629i
\(987\) 15.2792 2.19682i 0.486342 0.0699254i
\(988\) 4.48019i 0.142534i
\(989\) 4.17093 20.9454i 0.132628 0.666025i
\(990\) 0 0
\(991\) 6.51675 + 45.3250i 0.207011 + 1.43980i 0.782839 + 0.622224i \(0.213771\pi\)
−0.575828 + 0.817571i \(0.695320\pi\)
\(992\) 11.6755 + 5.33204i 0.370699 + 0.169292i
\(993\) 21.3754 + 72.7980i 0.678329 + 2.31018i
\(994\) 2.50055 2.88578i 0.0793125 0.0915315i
\(995\) 0 0
\(996\) 77.8338 50.0207i 2.46626 1.58497i
\(997\) −35.7959 + 16.3475i −1.13367 + 0.517729i −0.891732 0.452563i \(-0.850510\pi\)
−0.241936 + 0.970292i \(0.577782\pi\)
\(998\) −14.2785 + 12.3724i −0.451977 + 0.391640i
\(999\) 2.60161 + 1.67195i 0.0823113 + 0.0528983i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 575.2.p.b.49.1 20
5.2 odd 4 23.2.c.a.3.1 10
5.3 odd 4 575.2.k.b.26.1 10
5.4 even 2 inner 575.2.p.b.49.2 20
15.2 even 4 207.2.i.c.118.1 10
20.7 even 4 368.2.m.c.49.1 10
23.8 even 11 inner 575.2.p.b.399.2 20
115.2 odd 44 529.2.c.i.334.1 10
115.7 even 44 529.2.c.c.170.1 10
115.8 odd 44 575.2.k.b.376.1 10
115.12 odd 44 529.2.c.b.501.1 10
115.17 even 44 529.2.c.e.177.1 10
115.22 even 4 529.2.c.a.118.1 10
115.27 odd 44 529.2.c.i.255.1 10
115.32 odd 44 529.2.c.d.266.1 10
115.37 even 44 529.2.c.e.266.1 10
115.42 even 44 529.2.c.h.255.1 10
115.52 odd 44 529.2.c.d.177.1 10
115.54 even 22 inner 575.2.p.b.399.1 20
115.57 even 44 529.2.c.c.501.1 10
115.62 odd 44 529.2.c.b.170.1 10
115.67 even 44 529.2.c.h.334.1 10
115.72 odd 44 529.2.c.g.487.1 10
115.77 odd 44 23.2.c.a.8.1 yes 10
115.82 odd 44 529.2.a.i.1.5 5
115.87 odd 44 529.2.c.g.466.1 10
115.97 even 44 529.2.c.f.466.1 10
115.102 even 44 529.2.a.j.1.5 5
115.107 even 44 529.2.c.a.399.1 10
115.112 even 44 529.2.c.f.487.1 10
345.77 even 44 207.2.i.c.100.1 10
345.197 even 44 4761.2.a.bo.1.1 5
345.332 odd 44 4761.2.a.bn.1.1 5
460.307 even 44 368.2.m.c.353.1 10
460.427 even 44 8464.2.a.bs.1.5 5
460.447 odd 44 8464.2.a.bt.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.2.c.a.3.1 10 5.2 odd 4
23.2.c.a.8.1 yes 10 115.77 odd 44
207.2.i.c.100.1 10 345.77 even 44
207.2.i.c.118.1 10 15.2 even 4
368.2.m.c.49.1 10 20.7 even 4
368.2.m.c.353.1 10 460.307 even 44
529.2.a.i.1.5 5 115.82 odd 44
529.2.a.j.1.5 5 115.102 even 44
529.2.c.a.118.1 10 115.22 even 4
529.2.c.a.399.1 10 115.107 even 44
529.2.c.b.170.1 10 115.62 odd 44
529.2.c.b.501.1 10 115.12 odd 44
529.2.c.c.170.1 10 115.7 even 44
529.2.c.c.501.1 10 115.57 even 44
529.2.c.d.177.1 10 115.52 odd 44
529.2.c.d.266.1 10 115.32 odd 44
529.2.c.e.177.1 10 115.17 even 44
529.2.c.e.266.1 10 115.37 even 44
529.2.c.f.466.1 10 115.97 even 44
529.2.c.f.487.1 10 115.112 even 44
529.2.c.g.466.1 10 115.87 odd 44
529.2.c.g.487.1 10 115.72 odd 44
529.2.c.h.255.1 10 115.42 even 44
529.2.c.h.334.1 10 115.67 even 44
529.2.c.i.255.1 10 115.27 odd 44
529.2.c.i.334.1 10 115.2 odd 44
575.2.k.b.26.1 10 5.3 odd 4
575.2.k.b.376.1 10 115.8 odd 44
575.2.p.b.49.1 20 1.1 even 1 trivial
575.2.p.b.49.2 20 5.4 even 2 inner
575.2.p.b.399.1 20 115.54 even 22 inner
575.2.p.b.399.2 20 23.8 even 11 inner
4761.2.a.bn.1.1 5 345.332 odd 44
4761.2.a.bo.1.1 5 345.197 even 44
8464.2.a.bs.1.5 5 460.427 even 44
8464.2.a.bt.1.5 5 460.447 odd 44