Properties

Label 5239.2.a.t.1.3
Level $5239$
Weight $2$
Character 5239.1
Self dual yes
Analytic conductor $41.834$
Analytic rank $1$
Dimension $36$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5239,2,Mod(1,5239)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5239.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5239, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5239 = 13^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5239.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,2,-5,28,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.8336256189\)
Analytic rank: \(1\)
Dimension: \(36\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Character \(\chi\) \(=\) 5239.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.51712 q^{2} -2.55317 q^{3} +4.33588 q^{4} +0.350569 q^{5} +6.42663 q^{6} +1.25323 q^{7} -5.87968 q^{8} +3.51869 q^{9} -0.882423 q^{10} +0.660450 q^{11} -11.0702 q^{12} -3.15453 q^{14} -0.895063 q^{15} +6.12809 q^{16} +3.74858 q^{17} -8.85696 q^{18} +2.46144 q^{19} +1.52003 q^{20} -3.19971 q^{21} -1.66243 q^{22} -2.92240 q^{23} +15.0118 q^{24} -4.87710 q^{25} -1.32430 q^{27} +5.43386 q^{28} +2.76396 q^{29} +2.25298 q^{30} -1.00000 q^{31} -3.66576 q^{32} -1.68624 q^{33} -9.43562 q^{34} +0.439344 q^{35} +15.2566 q^{36} +6.15389 q^{37} -6.19573 q^{38} -2.06123 q^{40} -5.55631 q^{41} +8.05405 q^{42} +3.46032 q^{43} +2.86363 q^{44} +1.23354 q^{45} +7.35603 q^{46} +9.57856 q^{47} -15.6461 q^{48} -5.42941 q^{49} +12.2762 q^{50} -9.57077 q^{51} -5.19908 q^{53} +3.33343 q^{54} +0.231533 q^{55} -7.36860 q^{56} -6.28448 q^{57} -6.95722 q^{58} -9.92816 q^{59} -3.88089 q^{60} -11.0598 q^{61} +2.51712 q^{62} +4.40973 q^{63} -3.02903 q^{64} +4.24447 q^{66} -0.0241667 q^{67} +16.2534 q^{68} +7.46139 q^{69} -1.10588 q^{70} -5.14755 q^{71} -20.6888 q^{72} +9.68885 q^{73} -15.4901 q^{74} +12.4521 q^{75} +10.6725 q^{76} +0.827696 q^{77} -7.79772 q^{79} +2.14832 q^{80} -7.17489 q^{81} +13.9859 q^{82} -16.5885 q^{83} -13.8736 q^{84} +1.31414 q^{85} -8.71004 q^{86} -7.05687 q^{87} -3.88323 q^{88} +4.33965 q^{89} -3.10497 q^{90} -12.6712 q^{92} +2.55317 q^{93} -24.1104 q^{94} +0.862904 q^{95} +9.35932 q^{96} +7.85953 q^{97} +13.6665 q^{98} +2.32392 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 2 q^{2} - 5 q^{3} + 28 q^{4} + 5 q^{5} - 3 q^{6} + 5 q^{7} + 3 q^{8} + 5 q^{9} - 15 q^{10} - q^{11} - 13 q^{12} - 19 q^{14} - 10 q^{15} + 4 q^{16} - 46 q^{17} - 9 q^{18} + 8 q^{19} - 5 q^{20} - 16 q^{21}+ \cdots - 47 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.51712 −1.77987 −0.889935 0.456087i \(-0.849251\pi\)
−0.889935 + 0.456087i \(0.849251\pi\)
\(3\) −2.55317 −1.47407 −0.737037 0.675852i \(-0.763776\pi\)
−0.737037 + 0.675852i \(0.763776\pi\)
\(4\) 4.33588 2.16794
\(5\) 0.350569 0.156779 0.0783896 0.996923i \(-0.475022\pi\)
0.0783896 + 0.996923i \(0.475022\pi\)
\(6\) 6.42663 2.62366
\(7\) 1.25323 0.473677 0.236838 0.971549i \(-0.423889\pi\)
0.236838 + 0.971549i \(0.423889\pi\)
\(8\) −5.87968 −2.07878
\(9\) 3.51869 1.17290
\(10\) −0.882423 −0.279047
\(11\) 0.660450 0.199133 0.0995665 0.995031i \(-0.468254\pi\)
0.0995665 + 0.995031i \(0.468254\pi\)
\(12\) −11.0702 −3.19571
\(13\) 0 0
\(14\) −3.15453 −0.843083
\(15\) −0.895063 −0.231104
\(16\) 6.12809 1.53202
\(17\) 3.74858 0.909164 0.454582 0.890705i \(-0.349789\pi\)
0.454582 + 0.890705i \(0.349789\pi\)
\(18\) −8.85696 −2.08760
\(19\) 2.46144 0.564693 0.282346 0.959312i \(-0.408887\pi\)
0.282346 + 0.959312i \(0.408887\pi\)
\(20\) 1.52003 0.339888
\(21\) −3.19971 −0.698235
\(22\) −1.66243 −0.354431
\(23\) −2.92240 −0.609363 −0.304681 0.952454i \(-0.598550\pi\)
−0.304681 + 0.952454i \(0.598550\pi\)
\(24\) 15.0118 3.06428
\(25\) −4.87710 −0.975420
\(26\) 0 0
\(27\) −1.32430 −0.254863
\(28\) 5.43386 1.02690
\(29\) 2.76396 0.513255 0.256627 0.966510i \(-0.417389\pi\)
0.256627 + 0.966510i \(0.417389\pi\)
\(30\) 2.25298 0.411336
\(31\) −1.00000 −0.179605
\(32\) −3.66576 −0.648021
\(33\) −1.68624 −0.293537
\(34\) −9.43562 −1.61819
\(35\) 0.439344 0.0742627
\(36\) 15.2566 2.54277
\(37\) 6.15389 1.01169 0.505847 0.862623i \(-0.331180\pi\)
0.505847 + 0.862623i \(0.331180\pi\)
\(38\) −6.19573 −1.00508
\(39\) 0 0
\(40\) −2.06123 −0.325910
\(41\) −5.55631 −0.867751 −0.433875 0.900973i \(-0.642854\pi\)
−0.433875 + 0.900973i \(0.642854\pi\)
\(42\) 8.05405 1.24277
\(43\) 3.46032 0.527694 0.263847 0.964564i \(-0.415009\pi\)
0.263847 + 0.964564i \(0.415009\pi\)
\(44\) 2.86363 0.431709
\(45\) 1.23354 0.183886
\(46\) 7.35603 1.08459
\(47\) 9.57856 1.39718 0.698588 0.715524i \(-0.253812\pi\)
0.698588 + 0.715524i \(0.253812\pi\)
\(48\) −15.6461 −2.25832
\(49\) −5.42941 −0.775630
\(50\) 12.2762 1.73612
\(51\) −9.57077 −1.34018
\(52\) 0 0
\(53\) −5.19908 −0.714148 −0.357074 0.934076i \(-0.616226\pi\)
−0.357074 + 0.934076i \(0.616226\pi\)
\(54\) 3.33343 0.453622
\(55\) 0.231533 0.0312199
\(56\) −7.36860 −0.984670
\(57\) −6.28448 −0.832400
\(58\) −6.95722 −0.913527
\(59\) −9.92816 −1.29254 −0.646268 0.763110i \(-0.723671\pi\)
−0.646268 + 0.763110i \(0.723671\pi\)
\(60\) −3.88089 −0.501020
\(61\) −11.0598 −1.41606 −0.708031 0.706181i \(-0.750416\pi\)
−0.708031 + 0.706181i \(0.750416\pi\)
\(62\) 2.51712 0.319674
\(63\) 4.40973 0.555574
\(64\) −3.02903 −0.378629
\(65\) 0 0
\(66\) 4.24447 0.522458
\(67\) −0.0241667 −0.00295243 −0.00147621 0.999999i \(-0.500470\pi\)
−0.00147621 + 0.999999i \(0.500470\pi\)
\(68\) 16.2534 1.97101
\(69\) 7.46139 0.898246
\(70\) −1.10588 −0.132178
\(71\) −5.14755 −0.610902 −0.305451 0.952208i \(-0.598807\pi\)
−0.305451 + 0.952208i \(0.598807\pi\)
\(72\) −20.6888 −2.43820
\(73\) 9.68885 1.13399 0.566997 0.823720i \(-0.308105\pi\)
0.566997 + 0.823720i \(0.308105\pi\)
\(74\) −15.4901 −1.80068
\(75\) 12.4521 1.43784
\(76\) 10.6725 1.22422
\(77\) 0.827696 0.0943247
\(78\) 0 0
\(79\) −7.79772 −0.877312 −0.438656 0.898655i \(-0.644545\pi\)
−0.438656 + 0.898655i \(0.644545\pi\)
\(80\) 2.14832 0.240189
\(81\) −7.17489 −0.797210
\(82\) 13.9859 1.54448
\(83\) −16.5885 −1.82082 −0.910412 0.413704i \(-0.864235\pi\)
−0.910412 + 0.413704i \(0.864235\pi\)
\(84\) −13.8736 −1.51373
\(85\) 1.31414 0.142538
\(86\) −8.71004 −0.939228
\(87\) −7.05687 −0.756576
\(88\) −3.88323 −0.413954
\(89\) 4.33965 0.460002 0.230001 0.973190i \(-0.426127\pi\)
0.230001 + 0.973190i \(0.426127\pi\)
\(90\) −3.10497 −0.327293
\(91\) 0 0
\(92\) −12.6712 −1.32106
\(93\) 2.55317 0.264752
\(94\) −24.1104 −2.48679
\(95\) 0.862904 0.0885321
\(96\) 9.35932 0.955232
\(97\) 7.85953 0.798015 0.399007 0.916948i \(-0.369355\pi\)
0.399007 + 0.916948i \(0.369355\pi\)
\(98\) 13.6665 1.38052
\(99\) 2.32392 0.233563
\(100\) −21.1465 −2.11465
\(101\) −14.4907 −1.44188 −0.720939 0.692998i \(-0.756289\pi\)
−0.720939 + 0.692998i \(0.756289\pi\)
\(102\) 24.0908 2.38534
\(103\) 10.2006 1.00510 0.502549 0.864549i \(-0.332396\pi\)
0.502549 + 0.864549i \(0.332396\pi\)
\(104\) 0 0
\(105\) −1.12172 −0.109469
\(106\) 13.0867 1.27109
\(107\) −4.71529 −0.455844 −0.227922 0.973679i \(-0.573193\pi\)
−0.227922 + 0.973679i \(0.573193\pi\)
\(108\) −5.74203 −0.552527
\(109\) 15.0493 1.44146 0.720729 0.693217i \(-0.243807\pi\)
0.720729 + 0.693217i \(0.243807\pi\)
\(110\) −0.582796 −0.0555674
\(111\) −15.7119 −1.49131
\(112\) 7.67991 0.725683
\(113\) −5.24457 −0.493367 −0.246684 0.969096i \(-0.579341\pi\)
−0.246684 + 0.969096i \(0.579341\pi\)
\(114\) 15.8188 1.48156
\(115\) −1.02450 −0.0955354
\(116\) 11.9842 1.11271
\(117\) 0 0
\(118\) 24.9903 2.30055
\(119\) 4.69784 0.430650
\(120\) 5.26269 0.480415
\(121\) −10.5638 −0.960346
\(122\) 27.8388 2.52041
\(123\) 14.1862 1.27913
\(124\) −4.33588 −0.389373
\(125\) −3.46261 −0.309705
\(126\) −11.0998 −0.988849
\(127\) 1.49078 0.132285 0.0661427 0.997810i \(-0.478931\pi\)
0.0661427 + 0.997810i \(0.478931\pi\)
\(128\) 14.9560 1.32193
\(129\) −8.83480 −0.777861
\(130\) 0 0
\(131\) −19.6433 −1.71624 −0.858122 0.513446i \(-0.828369\pi\)
−0.858122 + 0.513446i \(0.828369\pi\)
\(132\) −7.31134 −0.636371
\(133\) 3.08475 0.267482
\(134\) 0.0608303 0.00525494
\(135\) −0.464260 −0.0399572
\(136\) −22.0405 −1.88995
\(137\) −15.8536 −1.35446 −0.677231 0.735770i \(-0.736820\pi\)
−0.677231 + 0.735770i \(0.736820\pi\)
\(138\) −18.7812 −1.59876
\(139\) 16.1612 1.37077 0.685387 0.728179i \(-0.259633\pi\)
0.685387 + 0.728179i \(0.259633\pi\)
\(140\) 1.90494 0.160997
\(141\) −24.4557 −2.05954
\(142\) 12.9570 1.08733
\(143\) 0 0
\(144\) 21.5629 1.79690
\(145\) 0.968959 0.0804677
\(146\) −24.3880 −2.01836
\(147\) 13.8622 1.14334
\(148\) 26.6825 2.19329
\(149\) −0.986393 −0.0808084 −0.0404042 0.999183i \(-0.512865\pi\)
−0.0404042 + 0.999183i \(0.512865\pi\)
\(150\) −31.3433 −2.55917
\(151\) 8.16626 0.664560 0.332280 0.943181i \(-0.392182\pi\)
0.332280 + 0.943181i \(0.392182\pi\)
\(152\) −14.4725 −1.17387
\(153\) 13.1901 1.06636
\(154\) −2.08341 −0.167886
\(155\) −0.350569 −0.0281584
\(156\) 0 0
\(157\) −14.3662 −1.14655 −0.573276 0.819362i \(-0.694328\pi\)
−0.573276 + 0.819362i \(0.694328\pi\)
\(158\) 19.6278 1.56150
\(159\) 13.2741 1.05271
\(160\) −1.28510 −0.101596
\(161\) −3.66244 −0.288641
\(162\) 18.0600 1.41893
\(163\) 23.2207 1.81878 0.909391 0.415942i \(-0.136548\pi\)
0.909391 + 0.415942i \(0.136548\pi\)
\(164\) −24.0915 −1.88123
\(165\) −0.591144 −0.0460205
\(166\) 41.7552 3.24083
\(167\) −6.10167 −0.472161 −0.236081 0.971733i \(-0.575863\pi\)
−0.236081 + 0.971733i \(0.575863\pi\)
\(168\) 18.8133 1.45148
\(169\) 0 0
\(170\) −3.30784 −0.253699
\(171\) 8.66104 0.662327
\(172\) 15.0035 1.14401
\(173\) −0.0478257 −0.00363612 −0.00181806 0.999998i \(-0.500579\pi\)
−0.00181806 + 0.999998i \(0.500579\pi\)
\(174\) 17.7630 1.34661
\(175\) −6.11213 −0.462034
\(176\) 4.04730 0.305076
\(177\) 25.3483 1.90530
\(178\) −10.9234 −0.818744
\(179\) −10.3782 −0.775700 −0.387850 0.921722i \(-0.626782\pi\)
−0.387850 + 0.921722i \(0.626782\pi\)
\(180\) 5.34850 0.398653
\(181\) −10.0926 −0.750176 −0.375088 0.926989i \(-0.622387\pi\)
−0.375088 + 0.926989i \(0.622387\pi\)
\(182\) 0 0
\(183\) 28.2376 2.08738
\(184\) 17.1828 1.26673
\(185\) 2.15736 0.158612
\(186\) −6.42663 −0.471224
\(187\) 2.47575 0.181045
\(188\) 41.5315 3.02900
\(189\) −1.65966 −0.120722
\(190\) −2.17203 −0.157576
\(191\) 1.73739 0.125713 0.0628565 0.998023i \(-0.479979\pi\)
0.0628565 + 0.998023i \(0.479979\pi\)
\(192\) 7.73364 0.558128
\(193\) −3.38782 −0.243861 −0.121930 0.992539i \(-0.538908\pi\)
−0.121930 + 0.992539i \(0.538908\pi\)
\(194\) −19.7834 −1.42036
\(195\) 0 0
\(196\) −23.5413 −1.68152
\(197\) −0.518299 −0.0369273 −0.0184637 0.999830i \(-0.505877\pi\)
−0.0184637 + 0.999830i \(0.505877\pi\)
\(198\) −5.84957 −0.415711
\(199\) 12.1683 0.862586 0.431293 0.902212i \(-0.358058\pi\)
0.431293 + 0.902212i \(0.358058\pi\)
\(200\) 28.6758 2.02769
\(201\) 0.0617017 0.00435210
\(202\) 36.4748 2.56636
\(203\) 3.46388 0.243117
\(204\) −41.4977 −2.90542
\(205\) −1.94787 −0.136045
\(206\) −25.6762 −1.78894
\(207\) −10.2830 −0.714720
\(208\) 0 0
\(209\) 1.62566 0.112449
\(210\) 2.82350 0.194840
\(211\) 13.6044 0.936565 0.468282 0.883579i \(-0.344873\pi\)
0.468282 + 0.883579i \(0.344873\pi\)
\(212\) −22.5426 −1.54823
\(213\) 13.1426 0.900515
\(214\) 11.8689 0.811344
\(215\) 1.21308 0.0827315
\(216\) 7.78649 0.529804
\(217\) −1.25323 −0.0850748
\(218\) −37.8808 −2.56561
\(219\) −24.7373 −1.67159
\(220\) 1.00390 0.0676829
\(221\) 0 0
\(222\) 39.5488 2.65434
\(223\) 3.63268 0.243262 0.121631 0.992575i \(-0.461188\pi\)
0.121631 + 0.992575i \(0.461188\pi\)
\(224\) −4.59404 −0.306952
\(225\) −17.1610 −1.14407
\(226\) 13.2012 0.878130
\(227\) 14.2559 0.946196 0.473098 0.881010i \(-0.343136\pi\)
0.473098 + 0.881010i \(0.343136\pi\)
\(228\) −27.2487 −1.80459
\(229\) 17.4447 1.15278 0.576388 0.817176i \(-0.304462\pi\)
0.576388 + 0.817176i \(0.304462\pi\)
\(230\) 2.57880 0.170041
\(231\) −2.11325 −0.139042
\(232\) −16.2512 −1.06694
\(233\) 10.6659 0.698747 0.349373 0.936984i \(-0.386395\pi\)
0.349373 + 0.936984i \(0.386395\pi\)
\(234\) 0 0
\(235\) 3.35795 0.219048
\(236\) −43.0473 −2.80214
\(237\) 19.9089 1.29322
\(238\) −11.8250 −0.766501
\(239\) −6.36483 −0.411707 −0.205853 0.978583i \(-0.565997\pi\)
−0.205853 + 0.978583i \(0.565997\pi\)
\(240\) −5.48503 −0.354057
\(241\) 16.5659 1.06710 0.533551 0.845768i \(-0.320857\pi\)
0.533551 + 0.845768i \(0.320857\pi\)
\(242\) 26.5903 1.70929
\(243\) 22.2916 1.43001
\(244\) −47.9540 −3.06994
\(245\) −1.90338 −0.121603
\(246\) −35.7084 −2.27668
\(247\) 0 0
\(248\) 5.87968 0.373360
\(249\) 42.3533 2.68403
\(250\) 8.71578 0.551235
\(251\) 13.7076 0.865216 0.432608 0.901582i \(-0.357593\pi\)
0.432608 + 0.901582i \(0.357593\pi\)
\(252\) 19.1201 1.20445
\(253\) −1.93010 −0.121344
\(254\) −3.75247 −0.235451
\(255\) −3.35522 −0.210112
\(256\) −31.5878 −1.97424
\(257\) −0.110362 −0.00688416 −0.00344208 0.999994i \(-0.501096\pi\)
−0.00344208 + 0.999994i \(0.501096\pi\)
\(258\) 22.2382 1.38449
\(259\) 7.71224 0.479215
\(260\) 0 0
\(261\) 9.72552 0.601995
\(262\) 49.4445 3.05469
\(263\) −0.332118 −0.0204793 −0.0102396 0.999948i \(-0.503259\pi\)
−0.0102396 + 0.999948i \(0.503259\pi\)
\(264\) 9.91457 0.610200
\(265\) −1.82264 −0.111964
\(266\) −7.76468 −0.476083
\(267\) −11.0799 −0.678077
\(268\) −0.104784 −0.00640069
\(269\) 21.0062 1.28077 0.640384 0.768055i \(-0.278775\pi\)
0.640384 + 0.768055i \(0.278775\pi\)
\(270\) 1.16860 0.0711186
\(271\) −23.9353 −1.45396 −0.726982 0.686657i \(-0.759078\pi\)
−0.726982 + 0.686657i \(0.759078\pi\)
\(272\) 22.9716 1.39286
\(273\) 0 0
\(274\) 39.9053 2.41077
\(275\) −3.22108 −0.194238
\(276\) 32.3517 1.94734
\(277\) 14.6717 0.881537 0.440769 0.897621i \(-0.354706\pi\)
0.440769 + 0.897621i \(0.354706\pi\)
\(278\) −40.6796 −2.43980
\(279\) −3.51869 −0.210658
\(280\) −2.58320 −0.154376
\(281\) 21.9817 1.31132 0.655658 0.755058i \(-0.272391\pi\)
0.655658 + 0.755058i \(0.272391\pi\)
\(282\) 61.5579 3.66572
\(283\) 16.8398 1.00102 0.500511 0.865730i \(-0.333146\pi\)
0.500511 + 0.865730i \(0.333146\pi\)
\(284\) −22.3192 −1.32440
\(285\) −2.20314 −0.130503
\(286\) 0 0
\(287\) −6.96334 −0.411033
\(288\) −12.8987 −0.760062
\(289\) −2.94814 −0.173420
\(290\) −2.43898 −0.143222
\(291\) −20.0667 −1.17633
\(292\) 42.0097 2.45843
\(293\) −16.5859 −0.968957 −0.484478 0.874803i \(-0.660991\pi\)
−0.484478 + 0.874803i \(0.660991\pi\)
\(294\) −34.8929 −2.03499
\(295\) −3.48051 −0.202643
\(296\) −36.1829 −2.10309
\(297\) −0.874637 −0.0507516
\(298\) 2.48287 0.143829
\(299\) 0 0
\(300\) 53.9907 3.11716
\(301\) 4.33658 0.249956
\(302\) −20.5554 −1.18283
\(303\) 36.9973 2.12544
\(304\) 15.0839 0.865123
\(305\) −3.87722 −0.222009
\(306\) −33.2010 −1.89798
\(307\) −9.59813 −0.547794 −0.273897 0.961759i \(-0.588313\pi\)
−0.273897 + 0.961759i \(0.588313\pi\)
\(308\) 3.58879 0.204490
\(309\) −26.0440 −1.48159
\(310\) 0.882423 0.0501183
\(311\) 8.51620 0.482909 0.241455 0.970412i \(-0.422376\pi\)
0.241455 + 0.970412i \(0.422376\pi\)
\(312\) 0 0
\(313\) −19.5627 −1.10575 −0.552875 0.833264i \(-0.686469\pi\)
−0.552875 + 0.833264i \(0.686469\pi\)
\(314\) 36.1615 2.04071
\(315\) 1.54591 0.0871024
\(316\) −33.8100 −1.90196
\(317\) 32.0733 1.80142 0.900708 0.434425i \(-0.143048\pi\)
0.900708 + 0.434425i \(0.143048\pi\)
\(318\) −33.4126 −1.87368
\(319\) 1.82546 0.102206
\(320\) −1.06189 −0.0593612
\(321\) 12.0389 0.671949
\(322\) 9.21880 0.513743
\(323\) 9.22690 0.513399
\(324\) −31.1095 −1.72830
\(325\) 0 0
\(326\) −58.4491 −3.23720
\(327\) −38.4234 −2.12482
\(328\) 32.6694 1.80386
\(329\) 12.0041 0.661810
\(330\) 1.48798 0.0819106
\(331\) −7.32907 −0.402842 −0.201421 0.979505i \(-0.564556\pi\)
−0.201421 + 0.979505i \(0.564556\pi\)
\(332\) −71.9257 −3.94744
\(333\) 21.6536 1.18661
\(334\) 15.3586 0.840386
\(335\) −0.00847209 −0.000462879 0
\(336\) −19.6081 −1.06971
\(337\) −30.9133 −1.68396 −0.841978 0.539512i \(-0.818609\pi\)
−0.841978 + 0.539512i \(0.818609\pi\)
\(338\) 0 0
\(339\) 13.3903 0.727260
\(340\) 5.69794 0.309014
\(341\) −0.660450 −0.0357654
\(342\) −21.8009 −1.17886
\(343\) −15.5769 −0.841075
\(344\) −20.3456 −1.09696
\(345\) 2.61573 0.140826
\(346\) 0.120383 0.00647183
\(347\) 3.29960 0.177132 0.0885658 0.996070i \(-0.471772\pi\)
0.0885658 + 0.996070i \(0.471772\pi\)
\(348\) −30.5977 −1.64021
\(349\) −27.0059 −1.44559 −0.722796 0.691061i \(-0.757144\pi\)
−0.722796 + 0.691061i \(0.757144\pi\)
\(350\) 15.3850 0.822360
\(351\) 0 0
\(352\) −2.42105 −0.129042
\(353\) −28.3874 −1.51091 −0.755454 0.655201i \(-0.772584\pi\)
−0.755454 + 0.655201i \(0.772584\pi\)
\(354\) −63.8047 −3.39118
\(355\) −1.80457 −0.0957767
\(356\) 18.8162 0.997256
\(357\) −11.9944 −0.634810
\(358\) 26.1231 1.38065
\(359\) −5.15728 −0.272191 −0.136095 0.990696i \(-0.543455\pi\)
−0.136095 + 0.990696i \(0.543455\pi\)
\(360\) −7.25285 −0.382259
\(361\) −12.9413 −0.681122
\(362\) 25.4042 1.33522
\(363\) 26.9712 1.41562
\(364\) 0 0
\(365\) 3.39661 0.177787
\(366\) −71.0773 −3.71527
\(367\) −8.82770 −0.460802 −0.230401 0.973096i \(-0.574004\pi\)
−0.230401 + 0.973096i \(0.574004\pi\)
\(368\) −17.9087 −0.933558
\(369\) −19.5509 −1.01778
\(370\) −5.43034 −0.282310
\(371\) −6.51564 −0.338275
\(372\) 11.0702 0.573966
\(373\) 26.7130 1.38315 0.691573 0.722307i \(-0.256918\pi\)
0.691573 + 0.722307i \(0.256918\pi\)
\(374\) −6.23175 −0.322236
\(375\) 8.84063 0.456528
\(376\) −56.3189 −2.90443
\(377\) 0 0
\(378\) 4.17756 0.214870
\(379\) 26.9190 1.38274 0.691369 0.722502i \(-0.257008\pi\)
0.691369 + 0.722502i \(0.257008\pi\)
\(380\) 3.74145 0.191932
\(381\) −3.80622 −0.194998
\(382\) −4.37321 −0.223753
\(383\) −21.3494 −1.09090 −0.545451 0.838143i \(-0.683642\pi\)
−0.545451 + 0.838143i \(0.683642\pi\)
\(384\) −38.1851 −1.94863
\(385\) 0.290164 0.0147882
\(386\) 8.52755 0.434041
\(387\) 12.1758 0.618931
\(388\) 34.0780 1.73005
\(389\) −32.2747 −1.63639 −0.818197 0.574938i \(-0.805026\pi\)
−0.818197 + 0.574938i \(0.805026\pi\)
\(390\) 0 0
\(391\) −10.9549 −0.554011
\(392\) 31.9232 1.61237
\(393\) 50.1527 2.52987
\(394\) 1.30462 0.0657258
\(395\) −2.73364 −0.137544
\(396\) 10.0762 0.506349
\(397\) −34.3213 −1.72254 −0.861268 0.508151i \(-0.830329\pi\)
−0.861268 + 0.508151i \(0.830329\pi\)
\(398\) −30.6290 −1.53529
\(399\) −7.87590 −0.394288
\(400\) −29.8873 −1.49437
\(401\) −12.5193 −0.625186 −0.312593 0.949887i \(-0.601198\pi\)
−0.312593 + 0.949887i \(0.601198\pi\)
\(402\) −0.155310 −0.00774618
\(403\) 0 0
\(404\) −62.8299 −3.12591
\(405\) −2.51529 −0.124986
\(406\) −8.71899 −0.432716
\(407\) 4.06433 0.201462
\(408\) 56.2731 2.78593
\(409\) 14.3723 0.710665 0.355332 0.934740i \(-0.384368\pi\)
0.355332 + 0.934740i \(0.384368\pi\)
\(410\) 4.90302 0.242143
\(411\) 40.4769 1.99658
\(412\) 44.2287 2.17899
\(413\) −12.4423 −0.612244
\(414\) 25.8836 1.27211
\(415\) −5.81541 −0.285467
\(416\) 0 0
\(417\) −41.2623 −2.02062
\(418\) −4.09197 −0.200145
\(419\) −36.0418 −1.76075 −0.880377 0.474274i \(-0.842711\pi\)
−0.880377 + 0.474274i \(0.842711\pi\)
\(420\) −4.86364 −0.237322
\(421\) −37.0184 −1.80417 −0.902083 0.431562i \(-0.857963\pi\)
−0.902083 + 0.431562i \(0.857963\pi\)
\(422\) −34.2438 −1.66696
\(423\) 33.7040 1.63874
\(424\) 30.5689 1.48456
\(425\) −18.2822 −0.886817
\(426\) −33.0814 −1.60280
\(427\) −13.8605 −0.670756
\(428\) −20.4449 −0.988243
\(429\) 0 0
\(430\) −3.05347 −0.147251
\(431\) 19.1893 0.924315 0.462157 0.886798i \(-0.347075\pi\)
0.462157 + 0.886798i \(0.347075\pi\)
\(432\) −8.11546 −0.390455
\(433\) −14.5012 −0.696885 −0.348442 0.937330i \(-0.613289\pi\)
−0.348442 + 0.937330i \(0.613289\pi\)
\(434\) 3.15453 0.151422
\(435\) −2.47392 −0.118615
\(436\) 65.2518 3.12499
\(437\) −7.19331 −0.344103
\(438\) 62.2667 2.97522
\(439\) 7.67460 0.366289 0.183144 0.983086i \(-0.441372\pi\)
0.183144 + 0.983086i \(0.441372\pi\)
\(440\) −1.36134 −0.0648994
\(441\) −19.1044 −0.909734
\(442\) 0 0
\(443\) −35.0863 −1.66700 −0.833500 0.552519i \(-0.813667\pi\)
−0.833500 + 0.552519i \(0.813667\pi\)
\(444\) −68.1251 −3.23307
\(445\) 1.52135 0.0721187
\(446\) −9.14387 −0.432975
\(447\) 2.51843 0.119118
\(448\) −3.79608 −0.179348
\(449\) −6.40721 −0.302375 −0.151187 0.988505i \(-0.548310\pi\)
−0.151187 + 0.988505i \(0.548310\pi\)
\(450\) 43.1963 2.03629
\(451\) −3.66967 −0.172798
\(452\) −22.7398 −1.06959
\(453\) −20.8499 −0.979612
\(454\) −35.8837 −1.68411
\(455\) 0 0
\(456\) 36.9507 1.73038
\(457\) 8.21687 0.384369 0.192185 0.981359i \(-0.438443\pi\)
0.192185 + 0.981359i \(0.438443\pi\)
\(458\) −43.9103 −2.05179
\(459\) −4.96426 −0.231712
\(460\) −4.44212 −0.207115
\(461\) −12.9030 −0.600953 −0.300476 0.953789i \(-0.597146\pi\)
−0.300476 + 0.953789i \(0.597146\pi\)
\(462\) 5.31930 0.247476
\(463\) −10.2654 −0.477072 −0.238536 0.971134i \(-0.576668\pi\)
−0.238536 + 0.971134i \(0.576668\pi\)
\(464\) 16.9378 0.786318
\(465\) 0.895063 0.0415076
\(466\) −26.8473 −1.24368
\(467\) 18.7975 0.869844 0.434922 0.900468i \(-0.356776\pi\)
0.434922 + 0.900468i \(0.356776\pi\)
\(468\) 0 0
\(469\) −0.0302864 −0.00139850
\(470\) −8.45235 −0.389878
\(471\) 36.6795 1.69010
\(472\) 58.3744 2.68690
\(473\) 2.28537 0.105081
\(474\) −50.1131 −2.30177
\(475\) −12.0047 −0.550813
\(476\) 20.3692 0.933623
\(477\) −18.2939 −0.837622
\(478\) 16.0210 0.732785
\(479\) 24.6891 1.12807 0.564037 0.825750i \(-0.309248\pi\)
0.564037 + 0.825750i \(0.309248\pi\)
\(480\) 3.28109 0.149761
\(481\) 0 0
\(482\) −41.6983 −1.89930
\(483\) 9.35085 0.425478
\(484\) −45.8034 −2.08197
\(485\) 2.75531 0.125112
\(486\) −56.1107 −2.54523
\(487\) −21.2392 −0.962438 −0.481219 0.876600i \(-0.659806\pi\)
−0.481219 + 0.876600i \(0.659806\pi\)
\(488\) 65.0281 2.94368
\(489\) −59.2863 −2.68102
\(490\) 4.79104 0.216437
\(491\) 13.3221 0.601220 0.300610 0.953747i \(-0.402810\pi\)
0.300610 + 0.953747i \(0.402810\pi\)
\(492\) 61.5098 2.77308
\(493\) 10.3609 0.466633
\(494\) 0 0
\(495\) 0.814694 0.0366178
\(496\) −6.12809 −0.275159
\(497\) −6.45107 −0.289370
\(498\) −106.608 −4.77723
\(499\) 43.7894 1.96028 0.980140 0.198305i \(-0.0635437\pi\)
0.980140 + 0.198305i \(0.0635437\pi\)
\(500\) −15.0134 −0.671422
\(501\) 15.5786 0.696001
\(502\) −34.5036 −1.53997
\(503\) 27.6290 1.23192 0.615958 0.787779i \(-0.288769\pi\)
0.615958 + 0.787779i \(0.288769\pi\)
\(504\) −25.9278 −1.15492
\(505\) −5.07999 −0.226057
\(506\) 4.85829 0.215977
\(507\) 0 0
\(508\) 6.46384 0.286787
\(509\) −18.5810 −0.823586 −0.411793 0.911277i \(-0.635097\pi\)
−0.411793 + 0.911277i \(0.635097\pi\)
\(510\) 8.44547 0.373972
\(511\) 12.1424 0.537147
\(512\) 49.5984 2.19196
\(513\) −3.25970 −0.143919
\(514\) 0.277793 0.0122529
\(515\) 3.57602 0.157578
\(516\) −38.3066 −1.68636
\(517\) 6.32616 0.278224
\(518\) −19.4126 −0.852941
\(519\) 0.122107 0.00535992
\(520\) 0 0
\(521\) 19.3235 0.846579 0.423290 0.905994i \(-0.360875\pi\)
0.423290 + 0.905994i \(0.360875\pi\)
\(522\) −24.4803 −1.07147
\(523\) −16.1930 −0.708070 −0.354035 0.935232i \(-0.615191\pi\)
−0.354035 + 0.935232i \(0.615191\pi\)
\(524\) −85.1710 −3.72071
\(525\) 15.6053 0.681072
\(526\) 0.835979 0.0364504
\(527\) −3.74858 −0.163291
\(528\) −10.3334 −0.449706
\(529\) −14.4596 −0.628677
\(530\) 4.58779 0.199281
\(531\) −34.9341 −1.51601
\(532\) 13.3751 0.579885
\(533\) 0 0
\(534\) 27.8893 1.20689
\(535\) −1.65303 −0.0714669
\(536\) 0.142092 0.00613745
\(537\) 26.4972 1.14344
\(538\) −52.8750 −2.27960
\(539\) −3.58585 −0.154454
\(540\) −2.01298 −0.0866247
\(541\) −26.3360 −1.13227 −0.566136 0.824312i \(-0.691562\pi\)
−0.566136 + 0.824312i \(0.691562\pi\)
\(542\) 60.2479 2.58787
\(543\) 25.7681 1.10582
\(544\) −13.7414 −0.589158
\(545\) 5.27581 0.225991
\(546\) 0 0
\(547\) 24.0327 1.02756 0.513782 0.857921i \(-0.328244\pi\)
0.513782 + 0.857921i \(0.328244\pi\)
\(548\) −68.7392 −2.93639
\(549\) −38.9160 −1.66089
\(550\) 8.10784 0.345719
\(551\) 6.80332 0.289831
\(552\) −43.8706 −1.86726
\(553\) −9.77234 −0.415562
\(554\) −36.9304 −1.56902
\(555\) −5.50812 −0.233807
\(556\) 70.0730 2.97176
\(557\) −36.9008 −1.56354 −0.781769 0.623569i \(-0.785682\pi\)
−0.781769 + 0.623569i \(0.785682\pi\)
\(558\) 8.85696 0.374945
\(559\) 0 0
\(560\) 2.69234 0.113772
\(561\) −6.32101 −0.266873
\(562\) −55.3304 −2.33397
\(563\) 17.4323 0.734685 0.367343 0.930086i \(-0.380268\pi\)
0.367343 + 0.930086i \(0.380268\pi\)
\(564\) −106.037 −4.46497
\(565\) −1.83858 −0.0773497
\(566\) −42.3877 −1.78169
\(567\) −8.99179 −0.377620
\(568\) 30.2660 1.26993
\(569\) 20.6086 0.863957 0.431978 0.901884i \(-0.357816\pi\)
0.431978 + 0.901884i \(0.357816\pi\)
\(570\) 5.54557 0.232278
\(571\) 35.3415 1.47900 0.739498 0.673159i \(-0.235063\pi\)
0.739498 + 0.673159i \(0.235063\pi\)
\(572\) 0 0
\(573\) −4.43585 −0.185310
\(574\) 17.5276 0.731586
\(575\) 14.2528 0.594385
\(576\) −10.6582 −0.444093
\(577\) 14.4494 0.601535 0.300768 0.953697i \(-0.402757\pi\)
0.300768 + 0.953697i \(0.402757\pi\)
\(578\) 7.42082 0.308666
\(579\) 8.64970 0.359469
\(580\) 4.20129 0.174449
\(581\) −20.7892 −0.862481
\(582\) 50.5104 2.09372
\(583\) −3.43373 −0.142211
\(584\) −56.9674 −2.35733
\(585\) 0 0
\(586\) 41.7486 1.72462
\(587\) −36.2202 −1.49497 −0.747483 0.664281i \(-0.768738\pi\)
−0.747483 + 0.664281i \(0.768738\pi\)
\(588\) 60.1050 2.47869
\(589\) −2.46144 −0.101422
\(590\) 8.76084 0.360678
\(591\) 1.32331 0.0544336
\(592\) 37.7116 1.54994
\(593\) −14.5311 −0.596720 −0.298360 0.954453i \(-0.596440\pi\)
−0.298360 + 0.954453i \(0.596440\pi\)
\(594\) 2.20156 0.0903312
\(595\) 1.64692 0.0675170
\(596\) −4.27688 −0.175188
\(597\) −31.0677 −1.27152
\(598\) 0 0
\(599\) −20.5843 −0.841053 −0.420526 0.907280i \(-0.638155\pi\)
−0.420526 + 0.907280i \(0.638155\pi\)
\(600\) −73.2143 −2.98896
\(601\) −17.9939 −0.733988 −0.366994 0.930223i \(-0.619613\pi\)
−0.366994 + 0.930223i \(0.619613\pi\)
\(602\) −10.9157 −0.444890
\(603\) −0.0850350 −0.00346289
\(604\) 35.4079 1.44073
\(605\) −3.70334 −0.150562
\(606\) −93.1264 −3.78300
\(607\) −29.6147 −1.20202 −0.601012 0.799240i \(-0.705236\pi\)
−0.601012 + 0.799240i \(0.705236\pi\)
\(608\) −9.02305 −0.365933
\(609\) −8.84388 −0.358372
\(610\) 9.75943 0.395148
\(611\) 0 0
\(612\) 57.1907 2.31180
\(613\) −0.980934 −0.0396196 −0.0198098 0.999804i \(-0.506306\pi\)
−0.0198098 + 0.999804i \(0.506306\pi\)
\(614\) 24.1596 0.975003
\(615\) 4.97325 0.200541
\(616\) −4.86659 −0.196080
\(617\) −16.3254 −0.657236 −0.328618 0.944463i \(-0.606583\pi\)
−0.328618 + 0.944463i \(0.606583\pi\)
\(618\) 65.5557 2.63704
\(619\) −32.9615 −1.32483 −0.662417 0.749135i \(-0.730469\pi\)
−0.662417 + 0.749135i \(0.730469\pi\)
\(620\) −1.52003 −0.0610457
\(621\) 3.87015 0.155304
\(622\) −21.4363 −0.859516
\(623\) 5.43858 0.217892
\(624\) 0 0
\(625\) 23.1716 0.926865
\(626\) 49.2417 1.96809
\(627\) −4.15058 −0.165758
\(628\) −62.2903 −2.48565
\(629\) 23.0684 0.919795
\(630\) −3.89125 −0.155031
\(631\) −17.1980 −0.684643 −0.342322 0.939583i \(-0.611213\pi\)
−0.342322 + 0.939583i \(0.611213\pi\)
\(632\) 45.8481 1.82374
\(633\) −34.7343 −1.38057
\(634\) −80.7322 −3.20629
\(635\) 0.522621 0.0207396
\(636\) 57.5551 2.28221
\(637\) 0 0
\(638\) −4.59489 −0.181913
\(639\) −18.1126 −0.716525
\(640\) 5.24309 0.207251
\(641\) 5.66344 0.223692 0.111846 0.993726i \(-0.464324\pi\)
0.111846 + 0.993726i \(0.464324\pi\)
\(642\) −30.3034 −1.19598
\(643\) 20.7917 0.819945 0.409973 0.912098i \(-0.365538\pi\)
0.409973 + 0.912098i \(0.365538\pi\)
\(644\) −15.8799 −0.625756
\(645\) −3.09721 −0.121952
\(646\) −23.2252 −0.913783
\(647\) 10.1424 0.398739 0.199369 0.979924i \(-0.436111\pi\)
0.199369 + 0.979924i \(0.436111\pi\)
\(648\) 42.1861 1.65723
\(649\) −6.55705 −0.257387
\(650\) 0 0
\(651\) 3.19971 0.125407
\(652\) 100.682 3.94301
\(653\) −18.1719 −0.711121 −0.355560 0.934653i \(-0.615710\pi\)
−0.355560 + 0.934653i \(0.615710\pi\)
\(654\) 96.7161 3.78190
\(655\) −6.88633 −0.269071
\(656\) −34.0496 −1.32941
\(657\) 34.0921 1.33006
\(658\) −30.2158 −1.17794
\(659\) −46.8319 −1.82431 −0.912155 0.409845i \(-0.865583\pi\)
−0.912155 + 0.409845i \(0.865583\pi\)
\(660\) −2.56313 −0.0997697
\(661\) −40.2748 −1.56651 −0.783253 0.621703i \(-0.786441\pi\)
−0.783253 + 0.621703i \(0.786441\pi\)
\(662\) 18.4481 0.717007
\(663\) 0 0
\(664\) 97.5351 3.78509
\(665\) 1.08142 0.0419356
\(666\) −54.5047 −2.11202
\(667\) −8.07740 −0.312758
\(668\) −26.4561 −1.02362
\(669\) −9.27485 −0.358586
\(670\) 0.0213252 0.000823866 0
\(671\) −7.30444 −0.281985
\(672\) 11.7294 0.452471
\(673\) 7.43778 0.286706 0.143353 0.989672i \(-0.454212\pi\)
0.143353 + 0.989672i \(0.454212\pi\)
\(674\) 77.8125 2.99722
\(675\) 6.45877 0.248598
\(676\) 0 0
\(677\) 24.2747 0.932952 0.466476 0.884534i \(-0.345523\pi\)
0.466476 + 0.884534i \(0.345523\pi\)
\(678\) −33.7049 −1.29443
\(679\) 9.84981 0.378001
\(680\) −7.72670 −0.296306
\(681\) −36.3977 −1.39476
\(682\) 1.66243 0.0636577
\(683\) 16.4054 0.627733 0.313867 0.949467i \(-0.398376\pi\)
0.313867 + 0.949467i \(0.398376\pi\)
\(684\) 37.5532 1.43588
\(685\) −5.55777 −0.212352
\(686\) 39.2089 1.49700
\(687\) −44.5393 −1.69928
\(688\) 21.2052 0.808440
\(689\) 0 0
\(690\) −6.58411 −0.250653
\(691\) 2.24074 0.0852419 0.0426210 0.999091i \(-0.486429\pi\)
0.0426210 + 0.999091i \(0.486429\pi\)
\(692\) −0.207367 −0.00788289
\(693\) 2.91240 0.110633
\(694\) −8.30547 −0.315271
\(695\) 5.66561 0.214909
\(696\) 41.4922 1.57276
\(697\) −20.8283 −0.788928
\(698\) 67.9770 2.57297
\(699\) −27.2319 −1.03000
\(700\) −26.5015 −1.00166
\(701\) 13.5475 0.511683 0.255841 0.966719i \(-0.417647\pi\)
0.255841 + 0.966719i \(0.417647\pi\)
\(702\) 0 0
\(703\) 15.1474 0.571296
\(704\) −2.00052 −0.0753976
\(705\) −8.57342 −0.322894
\(706\) 71.4544 2.68922
\(707\) −18.1602 −0.682984
\(708\) 109.907 4.13057
\(709\) 7.58705 0.284938 0.142469 0.989799i \(-0.454496\pi\)
0.142469 + 0.989799i \(0.454496\pi\)
\(710\) 4.54232 0.170470
\(711\) −27.4378 −1.02900
\(712\) −25.5158 −0.956244
\(713\) 2.92240 0.109445
\(714\) 30.1913 1.12988
\(715\) 0 0
\(716\) −44.9985 −1.68167
\(717\) 16.2505 0.606887
\(718\) 12.9815 0.484464
\(719\) 5.25694 0.196051 0.0980254 0.995184i \(-0.468747\pi\)
0.0980254 + 0.995184i \(0.468747\pi\)
\(720\) 7.55927 0.281717
\(721\) 12.7837 0.476091
\(722\) 32.5748 1.21231
\(723\) −42.2956 −1.57299
\(724\) −43.7602 −1.62634
\(725\) −13.4801 −0.500639
\(726\) −67.8897 −2.51962
\(727\) 36.7845 1.36426 0.682131 0.731230i \(-0.261053\pi\)
0.682131 + 0.731230i \(0.261053\pi\)
\(728\) 0 0
\(729\) −35.3898 −1.31073
\(730\) −8.54967 −0.316437
\(731\) 12.9713 0.479761
\(732\) 122.435 4.52532
\(733\) 7.99448 0.295283 0.147642 0.989041i \(-0.452832\pi\)
0.147642 + 0.989041i \(0.452832\pi\)
\(734\) 22.2203 0.820168
\(735\) 4.85967 0.179252
\(736\) 10.7128 0.394880
\(737\) −0.0159609 −0.000587926 0
\(738\) 49.2120 1.81152
\(739\) 12.0376 0.442811 0.221406 0.975182i \(-0.428936\pi\)
0.221406 + 0.975182i \(0.428936\pi\)
\(740\) 9.35407 0.343862
\(741\) 0 0
\(742\) 16.4006 0.602086
\(743\) −9.28620 −0.340678 −0.170339 0.985386i \(-0.554486\pi\)
−0.170339 + 0.985386i \(0.554486\pi\)
\(744\) −15.0118 −0.550361
\(745\) −0.345799 −0.0126691
\(746\) −67.2397 −2.46182
\(747\) −58.3698 −2.13564
\(748\) 10.7345 0.392494
\(749\) −5.90934 −0.215923
\(750\) −22.2529 −0.812561
\(751\) −14.3900 −0.525099 −0.262550 0.964919i \(-0.584563\pi\)
−0.262550 + 0.964919i \(0.584563\pi\)
\(752\) 58.6983 2.14051
\(753\) −34.9979 −1.27539
\(754\) 0 0
\(755\) 2.86284 0.104189
\(756\) −7.19608 −0.261719
\(757\) −22.6602 −0.823598 −0.411799 0.911275i \(-0.635099\pi\)
−0.411799 + 0.911275i \(0.635099\pi\)
\(758\) −67.7583 −2.46109
\(759\) 4.92788 0.178871
\(760\) −5.07360 −0.184039
\(761\) −14.4013 −0.522046 −0.261023 0.965333i \(-0.584060\pi\)
−0.261023 + 0.965333i \(0.584060\pi\)
\(762\) 9.58070 0.347072
\(763\) 18.8602 0.682785
\(764\) 7.53311 0.272538
\(765\) 4.62404 0.167182
\(766\) 53.7389 1.94167
\(767\) 0 0
\(768\) 80.6492 2.91018
\(769\) 4.03329 0.145444 0.0727220 0.997352i \(-0.476831\pi\)
0.0727220 + 0.997352i \(0.476831\pi\)
\(770\) −0.730378 −0.0263210
\(771\) 0.281772 0.0101478
\(772\) −14.6892 −0.528676
\(773\) −41.1403 −1.47971 −0.739857 0.672764i \(-0.765107\pi\)
−0.739857 + 0.672764i \(0.765107\pi\)
\(774\) −30.6479 −1.10162
\(775\) 4.87710 0.175191
\(776\) −46.2116 −1.65890
\(777\) −19.6907 −0.706399
\(778\) 81.2393 2.91257
\(779\) −13.6765 −0.490013
\(780\) 0 0
\(781\) −3.39970 −0.121651
\(782\) 27.5747 0.986068
\(783\) −3.66033 −0.130809
\(784\) −33.2719 −1.18828
\(785\) −5.03636 −0.179755
\(786\) −126.240 −4.50284
\(787\) −8.73381 −0.311327 −0.155663 0.987810i \(-0.549751\pi\)
−0.155663 + 0.987810i \(0.549751\pi\)
\(788\) −2.24728 −0.0800562
\(789\) 0.847954 0.0301880
\(790\) 6.88089 0.244811
\(791\) −6.57265 −0.233696
\(792\) −13.6639 −0.485526
\(793\) 0 0
\(794\) 86.3907 3.06589
\(795\) 4.65350 0.165043
\(796\) 52.7602 1.87003
\(797\) 14.9825 0.530708 0.265354 0.964151i \(-0.414511\pi\)
0.265354 + 0.964151i \(0.414511\pi\)
\(798\) 19.8246 0.701782
\(799\) 35.9060 1.27026
\(800\) 17.8783 0.632093
\(801\) 15.2699 0.539535
\(802\) 31.5126 1.11275
\(803\) 6.39900 0.225816
\(804\) 0.267531 0.00943509
\(805\) −1.28394 −0.0452529
\(806\) 0 0
\(807\) −53.6324 −1.88795
\(808\) 85.2007 2.99735
\(809\) −20.7682 −0.730171 −0.365085 0.930974i \(-0.618960\pi\)
−0.365085 + 0.930974i \(0.618960\pi\)
\(810\) 6.33129 0.222459
\(811\) 26.2346 0.921222 0.460611 0.887602i \(-0.347630\pi\)
0.460611 + 0.887602i \(0.347630\pi\)
\(812\) 15.0190 0.527062
\(813\) 61.1109 2.14325
\(814\) −10.2304 −0.358576
\(815\) 8.14044 0.285147
\(816\) −58.6506 −2.05318
\(817\) 8.51738 0.297985
\(818\) −36.1768 −1.26489
\(819\) 0 0
\(820\) −8.44574 −0.294938
\(821\) 33.4654 1.16795 0.583975 0.811772i \(-0.301497\pi\)
0.583975 + 0.811772i \(0.301497\pi\)
\(822\) −101.885 −3.55365
\(823\) −46.1063 −1.60716 −0.803582 0.595195i \(-0.797075\pi\)
−0.803582 + 0.595195i \(0.797075\pi\)
\(824\) −59.9764 −2.08938
\(825\) 8.22397 0.286322
\(826\) 31.3187 1.08972
\(827\) 28.8236 1.00230 0.501148 0.865362i \(-0.332911\pi\)
0.501148 + 0.865362i \(0.332911\pi\)
\(828\) −44.5860 −1.54947
\(829\) 50.2001 1.74352 0.871761 0.489931i \(-0.162978\pi\)
0.871761 + 0.489931i \(0.162978\pi\)
\(830\) 14.6381 0.508095
\(831\) −37.4594 −1.29945
\(832\) 0 0
\(833\) −20.3526 −0.705176
\(834\) 103.862 3.59645
\(835\) −2.13906 −0.0740251
\(836\) 7.04865 0.243783
\(837\) 1.32430 0.0457747
\(838\) 90.7213 3.13392
\(839\) −1.12676 −0.0389001 −0.0194500 0.999811i \(-0.506192\pi\)
−0.0194500 + 0.999811i \(0.506192\pi\)
\(840\) 6.59536 0.227562
\(841\) −21.3605 −0.736570
\(842\) 93.1797 3.21118
\(843\) −56.1230 −1.93298
\(844\) 58.9870 2.03042
\(845\) 0 0
\(846\) −84.8369 −2.91675
\(847\) −13.2389 −0.454893
\(848\) −31.8604 −1.09409
\(849\) −42.9949 −1.47558
\(850\) 46.0185 1.57842
\(851\) −17.9841 −0.616488
\(852\) 56.9846 1.95226
\(853\) 27.2824 0.934131 0.467065 0.884223i \(-0.345311\pi\)
0.467065 + 0.884223i \(0.345311\pi\)
\(854\) 34.8885 1.19386
\(855\) 3.03629 0.103839
\(856\) 27.7244 0.947601
\(857\) 26.3374 0.899667 0.449834 0.893112i \(-0.351483\pi\)
0.449834 + 0.893112i \(0.351483\pi\)
\(858\) 0 0
\(859\) −33.7799 −1.15256 −0.576278 0.817254i \(-0.695495\pi\)
−0.576278 + 0.817254i \(0.695495\pi\)
\(860\) 5.25978 0.179357
\(861\) 17.7786 0.605894
\(862\) −48.3017 −1.64516
\(863\) 2.60079 0.0885318 0.0442659 0.999020i \(-0.485905\pi\)
0.0442659 + 0.999020i \(0.485905\pi\)
\(864\) 4.85459 0.165156
\(865\) −0.0167662 −0.000570068 0
\(866\) 36.5013 1.24036
\(867\) 7.52712 0.255634
\(868\) −5.43386 −0.184437
\(869\) −5.15000 −0.174702
\(870\) 6.22715 0.211120
\(871\) 0 0
\(872\) −88.4849 −2.99648
\(873\) 27.6553 0.935989
\(874\) 18.1064 0.612459
\(875\) −4.33944 −0.146700
\(876\) −107.258 −3.62391
\(877\) −13.2524 −0.447500 −0.223750 0.974647i \(-0.571830\pi\)
−0.223750 + 0.974647i \(0.571830\pi\)
\(878\) −19.3179 −0.651947
\(879\) 42.3466 1.42831
\(880\) 1.41886 0.0478297
\(881\) −38.6677 −1.30275 −0.651374 0.758757i \(-0.725807\pi\)
−0.651374 + 0.758757i \(0.725807\pi\)
\(882\) 48.0881 1.61921
\(883\) 21.7830 0.733055 0.366527 0.930407i \(-0.380547\pi\)
0.366527 + 0.930407i \(0.380547\pi\)
\(884\) 0 0
\(885\) 8.88633 0.298711
\(886\) 88.3163 2.96704
\(887\) −34.5354 −1.15958 −0.579792 0.814764i \(-0.696866\pi\)
−0.579792 + 0.814764i \(0.696866\pi\)
\(888\) 92.3812 3.10011
\(889\) 1.86829 0.0626605
\(890\) −3.82941 −0.128362
\(891\) −4.73865 −0.158751
\(892\) 15.7509 0.527377
\(893\) 23.5771 0.788976
\(894\) −6.33918 −0.212014
\(895\) −3.63826 −0.121614
\(896\) 18.7433 0.626168
\(897\) 0 0
\(898\) 16.1277 0.538188
\(899\) −2.76396 −0.0921833
\(900\) −74.4081 −2.48027
\(901\) −19.4892 −0.649278
\(902\) 9.23698 0.307558
\(903\) −11.0720 −0.368455
\(904\) 30.8364 1.02560
\(905\) −3.53815 −0.117612
\(906\) 52.4815 1.74358
\(907\) 8.76013 0.290875 0.145438 0.989367i \(-0.453541\pi\)
0.145438 + 0.989367i \(0.453541\pi\)
\(908\) 61.8118 2.05130
\(909\) −50.9883 −1.69117
\(910\) 0 0
\(911\) −15.5179 −0.514131 −0.257065 0.966394i \(-0.582756\pi\)
−0.257065 + 0.966394i \(0.582756\pi\)
\(912\) −38.5119 −1.27526
\(913\) −10.9559 −0.362586
\(914\) −20.6828 −0.684127
\(915\) 9.89922 0.327258
\(916\) 75.6380 2.49915
\(917\) −24.6176 −0.812944
\(918\) 12.4956 0.412417
\(919\) 4.49211 0.148181 0.0740905 0.997252i \(-0.476395\pi\)
0.0740905 + 0.997252i \(0.476395\pi\)
\(920\) 6.02375 0.198597
\(921\) 24.5057 0.807490
\(922\) 32.4784 1.06962
\(923\) 0 0
\(924\) −9.16280 −0.301434
\(925\) −30.0131 −0.986826
\(926\) 25.8391 0.849127
\(927\) 35.8928 1.17888
\(928\) −10.1320 −0.332600
\(929\) −20.9694 −0.687984 −0.343992 0.938973i \(-0.611779\pi\)
−0.343992 + 0.938973i \(0.611779\pi\)
\(930\) −2.25298 −0.0738781
\(931\) −13.3642 −0.437993
\(932\) 46.2461 1.51484
\(933\) −21.7433 −0.711844
\(934\) −47.3155 −1.54821
\(935\) 0.867921 0.0283840
\(936\) 0 0
\(937\) 18.7410 0.612242 0.306121 0.951993i \(-0.400969\pi\)
0.306121 + 0.951993i \(0.400969\pi\)
\(938\) 0.0762344 0.00248914
\(939\) 49.9470 1.62996
\(940\) 14.5597 0.474884
\(941\) −3.52462 −0.114899 −0.0574497 0.998348i \(-0.518297\pi\)
−0.0574497 + 0.998348i \(0.518297\pi\)
\(942\) −92.3266 −3.00816
\(943\) 16.2378 0.528775
\(944\) −60.8407 −1.98020
\(945\) −0.581825 −0.0189268
\(946\) −5.75254 −0.187031
\(947\) −3.38821 −0.110102 −0.0550510 0.998484i \(-0.517532\pi\)
−0.0550510 + 0.998484i \(0.517532\pi\)
\(948\) 86.3227 2.80363
\(949\) 0 0
\(950\) 30.2172 0.980376
\(951\) −81.8887 −2.65542
\(952\) −27.6218 −0.895227
\(953\) −56.0860 −1.81680 −0.908401 0.418099i \(-0.862696\pi\)
−0.908401 + 0.418099i \(0.862696\pi\)
\(954\) 46.0480 1.49086
\(955\) 0.609075 0.0197092
\(956\) −27.5972 −0.892556
\(957\) −4.66071 −0.150659
\(958\) −62.1453 −2.00783
\(959\) −19.8682 −0.641577
\(960\) 2.71118 0.0875028
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) −16.5916 −0.534658
\(964\) 71.8277 2.31341
\(965\) −1.18767 −0.0382323
\(966\) −23.5372 −0.757296
\(967\) −32.2364 −1.03665 −0.518326 0.855183i \(-0.673445\pi\)
−0.518326 + 0.855183i \(0.673445\pi\)
\(968\) 62.1118 1.99635
\(969\) −23.5579 −0.756788
\(970\) −6.93544 −0.222683
\(971\) 29.3898 0.943163 0.471581 0.881823i \(-0.343683\pi\)
0.471581 + 0.881823i \(0.343683\pi\)
\(972\) 96.6539 3.10018
\(973\) 20.2537 0.649304
\(974\) 53.4615 1.71302
\(975\) 0 0
\(976\) −67.7755 −2.16944
\(977\) 41.8636 1.33933 0.669667 0.742661i \(-0.266437\pi\)
0.669667 + 0.742661i \(0.266437\pi\)
\(978\) 149.231 4.77187
\(979\) 2.86612 0.0916016
\(980\) −8.25284 −0.263627
\(981\) 52.9537 1.69068
\(982\) −33.5334 −1.07009
\(983\) 59.9742 1.91288 0.956440 0.291930i \(-0.0942974\pi\)
0.956440 + 0.291930i \(0.0942974\pi\)
\(984\) −83.4105 −2.65903
\(985\) −0.181700 −0.00578943
\(986\) −26.0797 −0.830546
\(987\) −30.6487 −0.975557
\(988\) 0 0
\(989\) −10.1125 −0.321557
\(990\) −2.05068 −0.0651749
\(991\) −54.5197 −1.73188 −0.865938 0.500151i \(-0.833278\pi\)
−0.865938 + 0.500151i \(0.833278\pi\)
\(992\) 3.66576 0.116388
\(993\) 18.7124 0.593820
\(994\) 16.2381 0.515041
\(995\) 4.26582 0.135236
\(996\) 183.639 5.81881
\(997\) −38.3292 −1.21390 −0.606948 0.794741i \(-0.707606\pi\)
−0.606948 + 0.794741i \(0.707606\pi\)
\(998\) −110.223 −3.48905
\(999\) −8.14963 −0.257843
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5239.2.a.t.1.3 yes 36
13.12 even 2 5239.2.a.s.1.34 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5239.2.a.s.1.34 36 13.12 even 2
5239.2.a.t.1.3 yes 36 1.1 even 1 trivial