Properties

Label 5239.2.a.j
Level $5239$
Weight $2$
Character orbit 5239.a
Self dual yes
Analytic conductor $41.834$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5239,2,Mod(1,5239)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5239.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5239, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5239 = 13^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5239.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,5,-3,9,15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.8336256189\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} - 7x^{6} + 19x^{5} + 21x^{4} - 31x^{3} - 29x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 403)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{2} - \beta_{6} q^{3} + (\beta_{2} - \beta_1 + 2) q^{4} + (\beta_{5} + \beta_{2} + 2) q^{5} + ( - 2 \beta_{6} - \beta_{5} + \beta_{3} + \cdots + 1) q^{6} + ( - \beta_{4} - \beta_{3} - \beta_{2}) q^{7}+ \cdots + ( - 3 \beta_{6} + \beta_{5} - \beta_{4} + \cdots - 6) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 5 q^{2} - 3 q^{3} + 9 q^{4} + 15 q^{5} + 4 q^{7} + 15 q^{8} + 9 q^{9} + 9 q^{10} + 5 q^{11} - 9 q^{12} + 2 q^{14} - 2 q^{15} + 3 q^{16} - 11 q^{17} + 30 q^{18} + 9 q^{19} + 31 q^{20} + 16 q^{21} - 2 q^{22}+ \cdots - 51 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 3x^{7} - 7x^{6} + 19x^{5} + 21x^{4} - 31x^{3} - 29x^{2} - x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 4\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 3\nu^{3} - 3\nu^{2} + 9\nu + 3 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - 3\nu^{4} - 3\nu^{3} + 9\nu^{2} + 3\nu \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( \nu^{7} - 4\nu^{6} - 3\nu^{5} + 21\nu^{4} + 3\nu^{3} - 30\nu^{2} - 9\nu + 2 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( \nu^{7} - 3\nu^{6} - 7\nu^{5} + 20\nu^{4} + 18\nu^{3} - 34\nu^{2} - 20\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 5\beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 3\beta_{3} + 6\beta_{2} + 9\beta _1 + 15 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} + 3\beta_{4} + 12\beta_{3} + 12\beta_{2} + 30\beta _1 + 27 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( \beta_{7} - \beta_{6} + 4\beta_{5} + 13\beta_{4} + 36\beta_{3} + 43\beta_{2} + 69\beta _1 + 90 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 4\beta_{7} - 3\beta_{6} + 19\beta_{5} + 40\beta_{4} + 114\beta_{3} + 109\beta_{2} + 201\beta _1 + 205 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.75938
2.39479
1.93310
0.158875
−0.247616
−0.759212
−1.57233
−1.66697
−1.75938 −1.67414 1.09540 3.67909 2.94544 −4.14977 1.59152 −0.197253 −6.47291
1.2 −1.39479 −1.21460 −0.0545724 0.0316546 1.69410 2.20383 2.86569 −1.52475 −0.0441514
1.3 −0.933096 1.42306 −1.12933 3.66529 −1.32785 3.96149 2.91997 −0.974910 −3.42006
1.4 0.841125 0.162061 −1.29251 −0.443680 0.136313 −0.552392 −2.76941 −2.97374 −0.373191
1.5 1.24762 −2.42435 −0.443454 −0.848757 −3.02465 1.14028 −3.04849 2.87746 −1.05892
1.6 1.75921 2.94965 1.09483 3.30948 5.18907 3.55859 −1.59239 5.70046 5.82207
1.7 2.57233 −3.30456 4.61688 4.29347 −8.50042 −0.180190 6.73148 7.92012 11.0442
1.8 2.66697 1.08287 5.11275 1.31345 2.88800 −1.98184 8.30164 −1.82738 3.50294
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(13\) \( +1 \)
\(31\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5239.2.a.j 8
13.b even 2 1 403.2.a.d 8
39.d odd 2 1 3627.2.a.q 8
52.b odd 2 1 6448.2.a.bf 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
403.2.a.d 8 13.b even 2 1
3627.2.a.q 8 39.d odd 2 1
5239.2.a.j 8 1.a even 1 1 trivial
6448.2.a.bf 8 52.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5239))\):

\( T_{2}^{8} - 5T_{2}^{7} + 30T_{2}^{5} - 24T_{2}^{4} - 54T_{2}^{3} + 54T_{2}^{2} + 28T_{2} - 29 \) Copy content Toggle raw display
\( T_{5}^{8} - 15T_{5}^{7} + 83T_{5}^{6} - 192T_{5}^{5} + 99T_{5}^{4} + 225T_{5}^{3} - 158T_{5}^{2} - 90T_{5} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - 5 T^{7} + \cdots - 29 \) Copy content Toggle raw display
$3$ \( T^{8} + 3 T^{7} + \cdots + 12 \) Copy content Toggle raw display
$5$ \( T^{8} - 15 T^{7} + \cdots + 3 \) Copy content Toggle raw display
$7$ \( T^{8} - 4 T^{7} + \cdots + 29 \) Copy content Toggle raw display
$11$ \( T^{8} - 5 T^{7} + \cdots - 14580 \) Copy content Toggle raw display
$13$ \( T^{8} \) Copy content Toggle raw display
$17$ \( T^{8} + 11 T^{7} + \cdots - 1940 \) Copy content Toggle raw display
$19$ \( T^{8} - 9 T^{7} + \cdots + 3557 \) Copy content Toggle raw display
$23$ \( T^{8} - 86 T^{6} + \cdots + 3452 \) Copy content Toggle raw display
$29$ \( T^{8} + 12 T^{7} + \cdots - 315444 \) Copy content Toggle raw display
$31$ \( (T - 1)^{8} \) Copy content Toggle raw display
$37$ \( T^{8} - 9 T^{7} + \cdots - 852812 \) Copy content Toggle raw display
$41$ \( T^{8} - 25 T^{7} + \cdots + 18859 \) Copy content Toggle raw display
$43$ \( T^{8} - 7 T^{7} + \cdots - 149092 \) Copy content Toggle raw display
$47$ \( T^{8} - 17 T^{7} + \cdots - 120144 \) Copy content Toggle raw display
$53$ \( T^{8} + 15 T^{7} + \cdots - 828 \) Copy content Toggle raw display
$59$ \( T^{8} - 15 T^{7} + \cdots - 1314177 \) Copy content Toggle raw display
$61$ \( T^{8} - 11 T^{7} + \cdots + 493348 \) Copy content Toggle raw display
$67$ \( T^{8} + 18 T^{7} + \cdots + 52672 \) Copy content Toggle raw display
$71$ \( T^{8} - 7 T^{7} + \cdots + 79141 \) Copy content Toggle raw display
$73$ \( T^{8} + 24 T^{7} + \cdots - 173100 \) Copy content Toggle raw display
$79$ \( T^{8} - 33 T^{7} + \cdots - 10460864 \) Copy content Toggle raw display
$83$ \( T^{8} - 13 T^{7} + \cdots + 3798748 \) Copy content Toggle raw display
$89$ \( T^{8} - 23 T^{7} + \cdots - 462276 \) Copy content Toggle raw display
$97$ \( T^{8} - 17 T^{7} + \cdots + 2246337 \) Copy content Toggle raw display
show more
show less