Properties

Label 2-5239-1.1-c1-0-223
Degree $2$
Conductor $5239$
Sign $1$
Analytic cond. $41.8336$
Root an. cond. $6.46789$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.57·2-s − 3.30·3-s + 4.61·4-s + 4.29·5-s − 8.50·6-s − 0.180·7-s + 6.73·8-s + 7.92·9-s + 11.0·10-s − 2.21·11-s − 15.2·12-s − 0.463·14-s − 14.1·15-s + 8.08·16-s + 3.03·17-s + 20.3·18-s − 1.10·19-s + 19.8·20-s + 0.595·21-s − 5.69·22-s + 2.45·23-s − 22.2·24-s + 13.4·25-s − 16.2·27-s − 0.831·28-s − 5.06·29-s − 36.4·30-s + ⋯
L(s)  = 1  + 1.81·2-s − 1.90·3-s + 2.30·4-s + 1.92·5-s − 3.47·6-s − 0.0681·7-s + 2.37·8-s + 2.64·9-s + 3.49·10-s − 0.667·11-s − 4.40·12-s − 0.123·14-s − 3.66·15-s + 2.02·16-s + 0.735·17-s + 4.80·18-s − 0.253·19-s + 4.43·20-s + 0.129·21-s − 1.21·22-s + 0.511·23-s − 4.54·24-s + 2.68·25-s − 3.12·27-s − 0.157·28-s − 0.940·29-s − 6.66·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5239 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5239 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5239\)    =    \(13^{2} \cdot 31\)
Sign: $1$
Analytic conductor: \(41.8336\)
Root analytic conductor: \(6.46789\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5239,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.212369778\)
\(L(\frac12)\) \(\approx\) \(5.212369778\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 \)
31 \( 1 - T \)
good2 \( 1 - 2.57T + 2T^{2} \)
3 \( 1 + 3.30T + 3T^{2} \)
5 \( 1 - 4.29T + 5T^{2} \)
7 \( 1 + 0.180T + 7T^{2} \)
11 \( 1 + 2.21T + 11T^{2} \)
17 \( 1 - 3.03T + 17T^{2} \)
19 \( 1 + 1.10T + 19T^{2} \)
23 \( 1 - 2.45T + 23T^{2} \)
29 \( 1 + 5.06T + 29T^{2} \)
37 \( 1 - 6.47T + 37T^{2} \)
41 \( 1 - 5.45T + 41T^{2} \)
43 \( 1 - 7.76T + 43T^{2} \)
47 \( 1 + 0.525T + 47T^{2} \)
53 \( 1 - 4.05T + 53T^{2} \)
59 \( 1 - 4.54T + 59T^{2} \)
61 \( 1 - 3.40T + 61T^{2} \)
67 \( 1 + 8.21T + 67T^{2} \)
71 \( 1 + 3.49T + 71T^{2} \)
73 \( 1 - 1.54T + 73T^{2} \)
79 \( 1 + 3.10T + 79T^{2} \)
83 \( 1 + 5.88T + 83T^{2} \)
89 \( 1 + 9.17T + 89T^{2} \)
97 \( 1 - 7.93T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.58141382743190413218470862706, −6.93052408595014084337639996451, −6.21430635770794009145558807761, −5.84250708275529133891488438399, −5.42186335931286024394193941773, −4.88211308798119039074475039592, −4.14596044042336959079029978059, −2.87926304406713189672205719172, −2.02160650716422703075699071217, −1.10996718150326526856827644136, 1.10996718150326526856827644136, 2.02160650716422703075699071217, 2.87926304406713189672205719172, 4.14596044042336959079029978059, 4.88211308798119039074475039592, 5.42186335931286024394193941773, 5.84250708275529133891488438399, 6.21430635770794009145558807761, 6.93052408595014084337639996451, 7.58141382743190413218470862706

Graph of the $Z$-function along the critical line