Properties

Label 5239.2.a.g
Level $5239$
Weight $2$
Character orbit 5239.a
Self dual yes
Analytic conductor $41.834$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5239,2,Mod(1,5239)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5239.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5239, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5239 = 13^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5239.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,2,-5,6,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.8336256189\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.5748973.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 6x^{4} + 4x^{3} + 8x^{2} - 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 403)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{4} q^{2} + (\beta_1 - 1) q^{3} + ( - \beta_{5} + \beta_{3} - \beta_{2} + \cdots + 1) q^{4} + ( - \beta_{5} + \beta_{4} + 2) q^{5} + ( - \beta_{5} + 2 \beta_{4} - \beta_{2} + 1) q^{6} + (\beta_{4} + \beta_{3} - \beta_{2}) q^{7}+ \cdots + (\beta_{5} - 3 \beta_{4} - 3 \beta_{3} + \cdots + 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} - 5 q^{3} + 6 q^{4} + 9 q^{5} + 3 q^{8} - q^{9} - 8 q^{10} + 5 q^{11} - 13 q^{12} - 17 q^{14} - 4 q^{15} + 14 q^{16} - 23 q^{17} - 9 q^{18} - 7 q^{19} + 10 q^{20} - 2 q^{21} + 2 q^{22} - 18 q^{23}+ \cdots + 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 6x^{4} + 4x^{3} + 8x^{2} - 4x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 3\nu + 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{5} - \nu^{4} - 5\nu^{3} + 3\nu^{2} + 4\nu - 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - 6\nu^{3} - 2\nu^{2} + 6\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 3\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{5} - \beta_{4} + \beta_{3} + 6\beta_{2} + \beta _1 + 6 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} + 6\beta_{3} + 8\beta_{2} + 12\beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.32857
2.35805
0.699790
−1.85232
1.31089
−0.187851
−2.45145 −2.32857 4.00960 4.02200 5.70836 4.56194 −4.92644 2.42222 −9.85973
1.2 −0.543189 1.35805 −1.70495 3.27954 −0.737678 −0.540055 2.01249 −1.15570 −1.78141
1.3 −0.482827 −0.300210 −1.76688 −0.848172 0.144950 1.74674 1.81875 −2.90987 0.409520
1.4 0.917109 −2.85232 −1.15891 0.732299 −2.61588 −4.57774 −2.89707 5.13571 0.671598
1.5 1.94648 0.310892 1.78879 3.27007 0.605146 −3.06335 −0.411120 −2.90335 6.36512
1.6 2.61388 −1.18785 4.83234 −1.45573 −3.10489 1.87247 7.40339 −1.58901 −3.80510
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(13\) \( +1 \)
\(31\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5239.2.a.g 6
13.b even 2 1 403.2.a.b 6
39.d odd 2 1 3627.2.a.m 6
52.b odd 2 1 6448.2.a.y 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
403.2.a.b 6 13.b even 2 1
3627.2.a.m 6 39.d odd 2 1
5239.2.a.g 6 1.a even 1 1 trivial
6448.2.a.y 6 52.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5239))\):

\( T_{2}^{6} - 2T_{2}^{5} - 7T_{2}^{4} + 13T_{2}^{3} + 6T_{2}^{2} - 7T_{2} - 3 \) Copy content Toggle raw display
\( T_{5}^{6} - 9T_{5}^{5} + 20T_{5}^{4} + 19T_{5}^{3} - 75T_{5}^{2} - 14T_{5} + 39 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 2 T^{5} + \cdots - 3 \) Copy content Toggle raw display
$3$ \( T^{6} + 5 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{6} - 9 T^{5} + \cdots + 39 \) Copy content Toggle raw display
$7$ \( T^{6} - 29 T^{4} + \cdots - 113 \) Copy content Toggle raw display
$11$ \( T^{6} - 5 T^{5} + \cdots + 9 \) Copy content Toggle raw display
$13$ \( T^{6} \) Copy content Toggle raw display
$17$ \( T^{6} + 23 T^{5} + \cdots - 1821 \) Copy content Toggle raw display
$19$ \( T^{6} + 7 T^{5} + \cdots + 2779 \) Copy content Toggle raw display
$23$ \( T^{6} + 18 T^{5} + \cdots + 2271 \) Copy content Toggle raw display
$29$ \( T^{6} + 18 T^{5} + \cdots + 1821 \) Copy content Toggle raw display
$31$ \( (T + 1)^{6} \) Copy content Toggle raw display
$37$ \( T^{6} - 13 T^{5} + \cdots + 2371 \) Copy content Toggle raw display
$41$ \( T^{6} - 5 T^{5} + \cdots - 9633 \) Copy content Toggle raw display
$43$ \( T^{6} + 7 T^{5} + \cdots + 599 \) Copy content Toggle raw display
$47$ \( T^{6} - 9 T^{5} + \cdots - 5361 \) Copy content Toggle raw display
$53$ \( T^{6} + 31 T^{5} + \cdots - 3633 \) Copy content Toggle raw display
$59$ \( T^{6} - T^{5} + \cdots - 1359 \) Copy content Toggle raw display
$61$ \( T^{6} + 15 T^{5} + \cdots - 6223 \) Copy content Toggle raw display
$67$ \( T^{6} - 28 T^{5} + \cdots + 221807 \) Copy content Toggle raw display
$71$ \( T^{6} + T^{5} + \cdots + 627 \) Copy content Toggle raw display
$73$ \( T^{6} - 20 T^{5} + \cdots + 1721 \) Copy content Toggle raw display
$79$ \( T^{6} + 15 T^{5} + \cdots + 15161 \) Copy content Toggle raw display
$83$ \( T^{6} + T^{5} + \cdots - 4077 \) Copy content Toggle raw display
$89$ \( T^{6} - T^{5} + \cdots - 3681 \) Copy content Toggle raw display
$97$ \( T^{6} - 5 T^{5} + \cdots - 1351 \) Copy content Toggle raw display
show more
show less