Properties

Label 2-5239-1.1-c1-0-214
Degree $2$
Conductor $5239$
Sign $-1$
Analytic cond. $41.8336$
Root an. cond. $6.46789$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.482·2-s − 0.300·3-s − 1.76·4-s − 0.848·5-s + 0.144·6-s + 1.74·7-s + 1.81·8-s − 2.90·9-s + 0.409·10-s − 0.172·11-s + 0.530·12-s − 0.843·14-s + 0.254·15-s + 2.65·16-s − 7.81·17-s + 1.40·18-s + 7.12·19-s + 1.49·20-s − 0.524·21-s + 0.0832·22-s + 2.39·23-s − 0.546·24-s − 4.28·25-s + 1.77·27-s − 3.08·28-s + 4.75·29-s − 0.122·30-s + ⋯
L(s)  = 1  − 0.341·2-s − 0.173·3-s − 0.883·4-s − 0.379·5-s + 0.0591·6-s + 0.660·7-s + 0.643·8-s − 0.969·9-s + 0.129·10-s − 0.0519·11-s + 0.153·12-s − 0.225·14-s + 0.0657·15-s + 0.663·16-s − 1.89·17-s + 0.331·18-s + 1.63·19-s + 0.335·20-s − 0.114·21-s + 0.0177·22-s + 0.500·23-s − 0.111·24-s − 0.856·25-s + 0.341·27-s − 0.583·28-s + 0.882·29-s − 0.0224·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5239 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5239 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5239\)    =    \(13^{2} \cdot 31\)
Sign: $-1$
Analytic conductor: \(41.8336\)
Root analytic conductor: \(6.46789\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5239,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 \)
31 \( 1 + T \)
good2 \( 1 + 0.482T + 2T^{2} \)
3 \( 1 + 0.300T + 3T^{2} \)
5 \( 1 + 0.848T + 5T^{2} \)
7 \( 1 - 1.74T + 7T^{2} \)
11 \( 1 + 0.172T + 11T^{2} \)
17 \( 1 + 7.81T + 17T^{2} \)
19 \( 1 - 7.12T + 19T^{2} \)
23 \( 1 - 2.39T + 23T^{2} \)
29 \( 1 - 4.75T + 29T^{2} \)
37 \( 1 - 0.630T + 37T^{2} \)
41 \( 1 - 5.65T + 41T^{2} \)
43 \( 1 - 1.81T + 43T^{2} \)
47 \( 1 + 1.80T + 47T^{2} \)
53 \( 1 + 1.19T + 53T^{2} \)
59 \( 1 + 9.16T + 59T^{2} \)
61 \( 1 - 12.0T + 61T^{2} \)
67 \( 1 - 5.84T + 67T^{2} \)
71 \( 1 + 2.22T + 71T^{2} \)
73 \( 1 - 6.64T + 73T^{2} \)
79 \( 1 + 0.527T + 79T^{2} \)
83 \( 1 + 7.27T + 83T^{2} \)
89 \( 1 - 12.9T + 89T^{2} \)
97 \( 1 + 0.368T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.033325364151879560004718872376, −7.33413670807894654374918448985, −6.41721931390186435071339052528, −5.49021509053072153926505867279, −4.91144362623610031227414934841, −4.26328900827631793544533335999, −3.35145073025550751619562220312, −2.33320579703391686488646929057, −1.07178957455723841770528542801, 0, 1.07178957455723841770528542801, 2.33320579703391686488646929057, 3.35145073025550751619562220312, 4.26328900827631793544533335999, 4.91144362623610031227414934841, 5.49021509053072153926505867279, 6.41721931390186435071339052528, 7.33413670807894654374918448985, 8.033325364151879560004718872376

Graph of the $Z$-function along the critical line