Properties

Label 5225.2.a.y.1.15
Level $5225$
Weight $2$
Character 5225.1
Self dual yes
Analytic conductor $41.722$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5225,2,Mod(1,5225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5225.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5225 = 5^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,5,4,17,0,-1,21] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.7218350561\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 5 x^{14} - 11 x^{13} + 87 x^{12} - 4 x^{11} - 545 x^{10} + 431 x^{9} + 1480 x^{8} - 1763 x^{7} + \cdots + 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.15
Root \(2.66335\) of defining polynomial
Character \(\chi\) \(=\) 5225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.66335 q^{2} -1.48323 q^{3} +5.09344 q^{4} -3.95037 q^{6} +2.27906 q^{7} +8.23893 q^{8} -0.800022 q^{9} +1.00000 q^{11} -7.55476 q^{12} +1.52624 q^{13} +6.06993 q^{14} +11.7563 q^{16} +3.39286 q^{17} -2.13074 q^{18} +1.00000 q^{19} -3.38037 q^{21} +2.66335 q^{22} -4.55963 q^{23} -12.2203 q^{24} +4.06493 q^{26} +5.63632 q^{27} +11.6082 q^{28} +9.48668 q^{29} +0.999697 q^{31} +14.8333 q^{32} -1.48323 q^{33} +9.03639 q^{34} -4.07487 q^{36} -7.35542 q^{37} +2.66335 q^{38} -2.26377 q^{39} -10.9835 q^{41} -9.00311 q^{42} +10.7429 q^{43} +5.09344 q^{44} -12.1439 q^{46} -12.5964 q^{47} -17.4373 q^{48} -1.80590 q^{49} -5.03241 q^{51} +7.77384 q^{52} +6.26507 q^{53} +15.0115 q^{54} +18.7770 q^{56} -1.48323 q^{57} +25.2664 q^{58} +12.8815 q^{59} +9.11146 q^{61} +2.66254 q^{62} -1.82330 q^{63} +15.9937 q^{64} -3.95037 q^{66} +1.97376 q^{67} +17.2814 q^{68} +6.76299 q^{69} -9.85507 q^{71} -6.59133 q^{72} +5.69357 q^{73} -19.5901 q^{74} +5.09344 q^{76} +2.27906 q^{77} -6.02923 q^{78} +13.5023 q^{79} -5.95990 q^{81} -29.2528 q^{82} -9.93334 q^{83} -17.2177 q^{84} +28.6122 q^{86} -14.0709 q^{87} +8.23893 q^{88} -3.48710 q^{89} +3.47840 q^{91} -23.2242 q^{92} -1.48278 q^{93} -33.5486 q^{94} -22.0012 q^{96} +6.80514 q^{97} -4.80975 q^{98} -0.800022 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q + 5 q^{2} + 4 q^{3} + 17 q^{4} - q^{6} + 21 q^{7} + 9 q^{8} + 15 q^{9} + 15 q^{11} + 11 q^{12} + 13 q^{13} + 9 q^{14} + 21 q^{16} + 17 q^{17} + 22 q^{18} + 15 q^{19} + 6 q^{21} + 5 q^{22} + 26 q^{23}+ \cdots + 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.66335 1.88327 0.941637 0.336629i \(-0.109287\pi\)
0.941637 + 0.336629i \(0.109287\pi\)
\(3\) −1.48323 −0.856344 −0.428172 0.903697i \(-0.640842\pi\)
−0.428172 + 0.903697i \(0.640842\pi\)
\(4\) 5.09344 2.54672
\(5\) 0 0
\(6\) −3.95037 −1.61273
\(7\) 2.27906 0.861402 0.430701 0.902495i \(-0.358266\pi\)
0.430701 + 0.902495i \(0.358266\pi\)
\(8\) 8.23893 2.91290
\(9\) −0.800022 −0.266674
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) −7.55476 −2.18087
\(13\) 1.52624 0.423304 0.211652 0.977345i \(-0.432116\pi\)
0.211652 + 0.977345i \(0.432116\pi\)
\(14\) 6.06993 1.62226
\(15\) 0 0
\(16\) 11.7563 2.93907
\(17\) 3.39286 0.822891 0.411445 0.911434i \(-0.365024\pi\)
0.411445 + 0.911434i \(0.365024\pi\)
\(18\) −2.13074 −0.502221
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) −3.38037 −0.737657
\(22\) 2.66335 0.567829
\(23\) −4.55963 −0.950749 −0.475375 0.879783i \(-0.657687\pi\)
−0.475375 + 0.879783i \(0.657687\pi\)
\(24\) −12.2203 −2.49445
\(25\) 0 0
\(26\) 4.06493 0.797198
\(27\) 5.63632 1.08471
\(28\) 11.6082 2.19375
\(29\) 9.48668 1.76163 0.880816 0.473459i \(-0.156995\pi\)
0.880816 + 0.473459i \(0.156995\pi\)
\(30\) 0 0
\(31\) 0.999697 0.179551 0.0897754 0.995962i \(-0.471385\pi\)
0.0897754 + 0.995962i \(0.471385\pi\)
\(32\) 14.8333 2.62218
\(33\) −1.48323 −0.258198
\(34\) 9.03639 1.54973
\(35\) 0 0
\(36\) −4.07487 −0.679145
\(37\) −7.35542 −1.20922 −0.604611 0.796521i \(-0.706672\pi\)
−0.604611 + 0.796521i \(0.706672\pi\)
\(38\) 2.66335 0.432053
\(39\) −2.26377 −0.362494
\(40\) 0 0
\(41\) −10.9835 −1.71533 −0.857664 0.514210i \(-0.828085\pi\)
−0.857664 + 0.514210i \(0.828085\pi\)
\(42\) −9.00311 −1.38921
\(43\) 10.7429 1.63828 0.819140 0.573593i \(-0.194451\pi\)
0.819140 + 0.573593i \(0.194451\pi\)
\(44\) 5.09344 0.767866
\(45\) 0 0
\(46\) −12.1439 −1.79052
\(47\) −12.5964 −1.83737 −0.918685 0.394991i \(-0.870748\pi\)
−0.918685 + 0.394991i \(0.870748\pi\)
\(48\) −17.4373 −2.51686
\(49\) −1.80590 −0.257986
\(50\) 0 0
\(51\) −5.03241 −0.704678
\(52\) 7.77384 1.07804
\(53\) 6.26507 0.860573 0.430287 0.902692i \(-0.358413\pi\)
0.430287 + 0.902692i \(0.358413\pi\)
\(54\) 15.0115 2.04281
\(55\) 0 0
\(56\) 18.7770 2.50918
\(57\) −1.48323 −0.196459
\(58\) 25.2664 3.31764
\(59\) 12.8815 1.67703 0.838516 0.544877i \(-0.183424\pi\)
0.838516 + 0.544877i \(0.183424\pi\)
\(60\) 0 0
\(61\) 9.11146 1.16660 0.583302 0.812256i \(-0.301761\pi\)
0.583302 + 0.812256i \(0.301761\pi\)
\(62\) 2.66254 0.338144
\(63\) −1.82330 −0.229714
\(64\) 15.9937 1.99921
\(65\) 0 0
\(66\) −3.95037 −0.486257
\(67\) 1.97376 0.241133 0.120566 0.992705i \(-0.461529\pi\)
0.120566 + 0.992705i \(0.461529\pi\)
\(68\) 17.2814 2.09567
\(69\) 6.76299 0.814169
\(70\) 0 0
\(71\) −9.85507 −1.16958 −0.584791 0.811184i \(-0.698823\pi\)
−0.584791 + 0.811184i \(0.698823\pi\)
\(72\) −6.59133 −0.776796
\(73\) 5.69357 0.666382 0.333191 0.942859i \(-0.391875\pi\)
0.333191 + 0.942859i \(0.391875\pi\)
\(74\) −19.5901 −2.27730
\(75\) 0 0
\(76\) 5.09344 0.584258
\(77\) 2.27906 0.259723
\(78\) −6.02923 −0.682676
\(79\) 13.5023 1.51913 0.759564 0.650433i \(-0.225412\pi\)
0.759564 + 0.650433i \(0.225412\pi\)
\(80\) 0 0
\(81\) −5.95990 −0.662211
\(82\) −29.2528 −3.23043
\(83\) −9.93334 −1.09033 −0.545163 0.838330i \(-0.683532\pi\)
−0.545163 + 0.838330i \(0.683532\pi\)
\(84\) −17.2177 −1.87861
\(85\) 0 0
\(86\) 28.6122 3.08533
\(87\) −14.0709 −1.50856
\(88\) 8.23893 0.878273
\(89\) −3.48710 −0.369632 −0.184816 0.982773i \(-0.559169\pi\)
−0.184816 + 0.982773i \(0.559169\pi\)
\(90\) 0 0
\(91\) 3.47840 0.364635
\(92\) −23.2242 −2.42129
\(93\) −1.48278 −0.153757
\(94\) −33.5486 −3.46027
\(95\) 0 0
\(96\) −22.0012 −2.24549
\(97\) 6.80514 0.690957 0.345478 0.938427i \(-0.387717\pi\)
0.345478 + 0.938427i \(0.387717\pi\)
\(98\) −4.80975 −0.485859
\(99\) −0.800022 −0.0804053
\(100\) 0 0
\(101\) 1.97228 0.196249 0.0981245 0.995174i \(-0.468716\pi\)
0.0981245 + 0.995174i \(0.468716\pi\)
\(102\) −13.4031 −1.32710
\(103\) −0.301074 −0.0296657 −0.0148329 0.999890i \(-0.504722\pi\)
−0.0148329 + 0.999890i \(0.504722\pi\)
\(104\) 12.5746 1.23304
\(105\) 0 0
\(106\) 16.6861 1.62070
\(107\) 5.51379 0.533038 0.266519 0.963830i \(-0.414127\pi\)
0.266519 + 0.963830i \(0.414127\pi\)
\(108\) 28.7083 2.76245
\(109\) −0.0672977 −0.00644595 −0.00322297 0.999995i \(-0.501026\pi\)
−0.00322297 + 0.999995i \(0.501026\pi\)
\(110\) 0 0
\(111\) 10.9098 1.03551
\(112\) 26.7933 2.53172
\(113\) 6.65021 0.625599 0.312800 0.949819i \(-0.398733\pi\)
0.312800 + 0.949819i \(0.398733\pi\)
\(114\) −3.95037 −0.369986
\(115\) 0 0
\(116\) 48.3199 4.48639
\(117\) −1.22103 −0.112884
\(118\) 34.3080 3.15831
\(119\) 7.73253 0.708840
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 24.2670 2.19703
\(123\) 16.2910 1.46891
\(124\) 5.09190 0.457266
\(125\) 0 0
\(126\) −4.85608 −0.432614
\(127\) 12.5167 1.11068 0.555339 0.831624i \(-0.312589\pi\)
0.555339 + 0.831624i \(0.312589\pi\)
\(128\) 12.9302 1.14288
\(129\) −15.9342 −1.40293
\(130\) 0 0
\(131\) −7.11523 −0.621660 −0.310830 0.950465i \(-0.600607\pi\)
−0.310830 + 0.950465i \(0.600607\pi\)
\(132\) −7.55476 −0.657558
\(133\) 2.27906 0.197619
\(134\) 5.25681 0.454119
\(135\) 0 0
\(136\) 27.9536 2.39700
\(137\) −7.95408 −0.679563 −0.339781 0.940504i \(-0.610353\pi\)
−0.339781 + 0.940504i \(0.610353\pi\)
\(138\) 18.0122 1.53330
\(139\) −8.97715 −0.761432 −0.380716 0.924692i \(-0.624322\pi\)
−0.380716 + 0.924692i \(0.624322\pi\)
\(140\) 0 0
\(141\) 18.6833 1.57342
\(142\) −26.2475 −2.20264
\(143\) 1.52624 0.127631
\(144\) −9.40530 −0.783775
\(145\) 0 0
\(146\) 15.1640 1.25498
\(147\) 2.67857 0.220925
\(148\) −37.4644 −3.07956
\(149\) −16.2455 −1.33089 −0.665444 0.746448i \(-0.731758\pi\)
−0.665444 + 0.746448i \(0.731758\pi\)
\(150\) 0 0
\(151\) −16.7242 −1.36100 −0.680499 0.732749i \(-0.738237\pi\)
−0.680499 + 0.732749i \(0.738237\pi\)
\(152\) 8.23893 0.668266
\(153\) −2.71437 −0.219444
\(154\) 6.06993 0.489129
\(155\) 0 0
\(156\) −11.5304 −0.923172
\(157\) 15.0972 1.20489 0.602444 0.798161i \(-0.294194\pi\)
0.602444 + 0.798161i \(0.294194\pi\)
\(158\) 35.9614 2.86093
\(159\) −9.29255 −0.736947
\(160\) 0 0
\(161\) −10.3917 −0.818978
\(162\) −15.8733 −1.24712
\(163\) 23.8250 1.86612 0.933060 0.359721i \(-0.117128\pi\)
0.933060 + 0.359721i \(0.117128\pi\)
\(164\) −55.9437 −4.36847
\(165\) 0 0
\(166\) −26.4560 −2.05338
\(167\) 3.48426 0.269620 0.134810 0.990871i \(-0.456958\pi\)
0.134810 + 0.990871i \(0.456958\pi\)
\(168\) −27.8506 −2.14872
\(169\) −10.6706 −0.820814
\(170\) 0 0
\(171\) −0.800022 −0.0611792
\(172\) 54.7185 4.17225
\(173\) 8.59439 0.653420 0.326710 0.945125i \(-0.394060\pi\)
0.326710 + 0.945125i \(0.394060\pi\)
\(174\) −37.4759 −2.84104
\(175\) 0 0
\(176\) 11.7563 0.886164
\(177\) −19.1063 −1.43612
\(178\) −9.28737 −0.696118
\(179\) 16.8791 1.26160 0.630802 0.775944i \(-0.282726\pi\)
0.630802 + 0.775944i \(0.282726\pi\)
\(180\) 0 0
\(181\) −12.8785 −0.957253 −0.478626 0.878019i \(-0.658865\pi\)
−0.478626 + 0.878019i \(0.658865\pi\)
\(182\) 9.26419 0.686708
\(183\) −13.5144 −0.999014
\(184\) −37.5665 −2.76944
\(185\) 0 0
\(186\) −3.94917 −0.289567
\(187\) 3.39286 0.248111
\(188\) −64.1589 −4.67927
\(189\) 12.8455 0.934371
\(190\) 0 0
\(191\) −9.90809 −0.716924 −0.358462 0.933544i \(-0.616699\pi\)
−0.358462 + 0.933544i \(0.616699\pi\)
\(192\) −23.7223 −1.71201
\(193\) 9.46456 0.681274 0.340637 0.940195i \(-0.389357\pi\)
0.340637 + 0.940195i \(0.389357\pi\)
\(194\) 18.1245 1.30126
\(195\) 0 0
\(196\) −9.19826 −0.657019
\(197\) −2.58989 −0.184522 −0.0922610 0.995735i \(-0.529409\pi\)
−0.0922610 + 0.995735i \(0.529409\pi\)
\(198\) −2.13074 −0.151425
\(199\) −7.62690 −0.540656 −0.270328 0.962768i \(-0.587132\pi\)
−0.270328 + 0.962768i \(0.587132\pi\)
\(200\) 0 0
\(201\) −2.92754 −0.206493
\(202\) 5.25287 0.369591
\(203\) 21.6207 1.51747
\(204\) −25.6323 −1.79462
\(205\) 0 0
\(206\) −0.801867 −0.0558687
\(207\) 3.64781 0.253540
\(208\) 17.9430 1.24412
\(209\) 1.00000 0.0691714
\(210\) 0 0
\(211\) −24.0159 −1.65332 −0.826662 0.562700i \(-0.809763\pi\)
−0.826662 + 0.562700i \(0.809763\pi\)
\(212\) 31.9108 2.19164
\(213\) 14.6173 1.00156
\(214\) 14.6852 1.00386
\(215\) 0 0
\(216\) 46.4372 3.15965
\(217\) 2.27837 0.154666
\(218\) −0.179237 −0.0121395
\(219\) −8.44489 −0.570653
\(220\) 0 0
\(221\) 5.17834 0.348333
\(222\) 29.0566 1.95015
\(223\) −5.88063 −0.393796 −0.196898 0.980424i \(-0.563087\pi\)
−0.196898 + 0.980424i \(0.563087\pi\)
\(224\) 33.8059 2.25875
\(225\) 0 0
\(226\) 17.7119 1.17818
\(227\) −15.1534 −1.00577 −0.502883 0.864355i \(-0.667727\pi\)
−0.502883 + 0.864355i \(0.667727\pi\)
\(228\) −7.55476 −0.500326
\(229\) 7.95745 0.525843 0.262921 0.964817i \(-0.415314\pi\)
0.262921 + 0.964817i \(0.415314\pi\)
\(230\) 0 0
\(231\) −3.38037 −0.222412
\(232\) 78.1601 5.13146
\(233\) −1.24861 −0.0817991 −0.0408996 0.999163i \(-0.513022\pi\)
−0.0408996 + 0.999163i \(0.513022\pi\)
\(234\) −3.25203 −0.212592
\(235\) 0 0
\(236\) 65.6114 4.27094
\(237\) −20.0270 −1.30090
\(238\) 20.5945 1.33494
\(239\) 17.1689 1.11056 0.555282 0.831662i \(-0.312610\pi\)
0.555282 + 0.831662i \(0.312610\pi\)
\(240\) 0 0
\(241\) −8.48920 −0.546837 −0.273419 0.961895i \(-0.588154\pi\)
−0.273419 + 0.961895i \(0.588154\pi\)
\(242\) 2.66335 0.171207
\(243\) −8.06904 −0.517629
\(244\) 46.4087 2.97102
\(245\) 0 0
\(246\) 43.3887 2.76636
\(247\) 1.52624 0.0971126
\(248\) 8.23644 0.523014
\(249\) 14.7334 0.933694
\(250\) 0 0
\(251\) −8.61021 −0.543472 −0.271736 0.962372i \(-0.587598\pi\)
−0.271736 + 0.962372i \(0.587598\pi\)
\(252\) −9.28686 −0.585017
\(253\) −4.55963 −0.286662
\(254\) 33.3364 2.09171
\(255\) 0 0
\(256\) 2.45035 0.153147
\(257\) −13.8864 −0.866213 −0.433106 0.901343i \(-0.642583\pi\)
−0.433106 + 0.901343i \(0.642583\pi\)
\(258\) −42.4385 −2.64211
\(259\) −16.7634 −1.04163
\(260\) 0 0
\(261\) −7.58955 −0.469782
\(262\) −18.9504 −1.17076
\(263\) 6.17658 0.380864 0.190432 0.981700i \(-0.439011\pi\)
0.190432 + 0.981700i \(0.439011\pi\)
\(264\) −12.2203 −0.752104
\(265\) 0 0
\(266\) 6.06993 0.372171
\(267\) 5.17218 0.316532
\(268\) 10.0532 0.614098
\(269\) −17.9268 −1.09301 −0.546507 0.837454i \(-0.684043\pi\)
−0.546507 + 0.837454i \(0.684043\pi\)
\(270\) 0 0
\(271\) −19.1484 −1.16318 −0.581592 0.813481i \(-0.697570\pi\)
−0.581592 + 0.813481i \(0.697570\pi\)
\(272\) 39.8875 2.41854
\(273\) −5.15927 −0.312253
\(274\) −21.1845 −1.27980
\(275\) 0 0
\(276\) 34.4469 2.07346
\(277\) 12.7314 0.764955 0.382477 0.923965i \(-0.375071\pi\)
0.382477 + 0.923965i \(0.375071\pi\)
\(278\) −23.9093 −1.43398
\(279\) −0.799780 −0.0478816
\(280\) 0 0
\(281\) 12.6290 0.753381 0.376690 0.926339i \(-0.377062\pi\)
0.376690 + 0.926339i \(0.377062\pi\)
\(282\) 49.7603 2.96318
\(283\) −12.3980 −0.736982 −0.368491 0.929631i \(-0.620125\pi\)
−0.368491 + 0.929631i \(0.620125\pi\)
\(284\) −50.1962 −2.97860
\(285\) 0 0
\(286\) 4.06493 0.240364
\(287\) −25.0319 −1.47759
\(288\) −11.8670 −0.699267
\(289\) −5.48847 −0.322851
\(290\) 0 0
\(291\) −10.0936 −0.591697
\(292\) 28.9999 1.69709
\(293\) −11.3319 −0.662016 −0.331008 0.943628i \(-0.607389\pi\)
−0.331008 + 0.943628i \(0.607389\pi\)
\(294\) 7.13398 0.416062
\(295\) 0 0
\(296\) −60.6008 −3.52235
\(297\) 5.63632 0.327052
\(298\) −43.2676 −2.50643
\(299\) −6.95911 −0.402456
\(300\) 0 0
\(301\) 24.4837 1.41122
\(302\) −44.5425 −2.56313
\(303\) −2.92535 −0.168057
\(304\) 11.7563 0.674270
\(305\) 0 0
\(306\) −7.22932 −0.413273
\(307\) 8.22400 0.469368 0.234684 0.972072i \(-0.424594\pi\)
0.234684 + 0.972072i \(0.424594\pi\)
\(308\) 11.6082 0.661441
\(309\) 0.446563 0.0254041
\(310\) 0 0
\(311\) 2.48566 0.140949 0.0704745 0.997514i \(-0.477549\pi\)
0.0704745 + 0.997514i \(0.477549\pi\)
\(312\) −18.6511 −1.05591
\(313\) 21.7727 1.23067 0.615333 0.788267i \(-0.289022\pi\)
0.615333 + 0.788267i \(0.289022\pi\)
\(314\) 40.2092 2.26914
\(315\) 0 0
\(316\) 68.7732 3.86880
\(317\) 4.23879 0.238074 0.119037 0.992890i \(-0.462019\pi\)
0.119037 + 0.992890i \(0.462019\pi\)
\(318\) −24.7493 −1.38787
\(319\) 9.48668 0.531152
\(320\) 0 0
\(321\) −8.17823 −0.456464
\(322\) −27.6767 −1.54236
\(323\) 3.39286 0.188784
\(324\) −30.3564 −1.68647
\(325\) 0 0
\(326\) 63.4544 3.51442
\(327\) 0.0998181 0.00551995
\(328\) −90.4920 −4.99658
\(329\) −28.7078 −1.58271
\(330\) 0 0
\(331\) 27.9785 1.53784 0.768919 0.639346i \(-0.220795\pi\)
0.768919 + 0.639346i \(0.220795\pi\)
\(332\) −50.5949 −2.77676
\(333\) 5.88450 0.322468
\(334\) 9.27981 0.507768
\(335\) 0 0
\(336\) −39.7406 −2.16803
\(337\) −21.4572 −1.16885 −0.584423 0.811449i \(-0.698679\pi\)
−0.584423 + 0.811449i \(0.698679\pi\)
\(338\) −28.4195 −1.54582
\(339\) −9.86381 −0.535728
\(340\) 0 0
\(341\) 0.999697 0.0541366
\(342\) −2.13074 −0.115217
\(343\) −20.0691 −1.08363
\(344\) 88.5102 4.77215
\(345\) 0 0
\(346\) 22.8899 1.23057
\(347\) 31.2123 1.67556 0.837782 0.546005i \(-0.183852\pi\)
0.837782 + 0.546005i \(0.183852\pi\)
\(348\) −71.6696 −3.84189
\(349\) −23.4707 −1.25636 −0.628180 0.778068i \(-0.716200\pi\)
−0.628180 + 0.778068i \(0.716200\pi\)
\(350\) 0 0
\(351\) 8.60239 0.459162
\(352\) 14.8333 0.790616
\(353\) 13.5458 0.720971 0.360485 0.932765i \(-0.382611\pi\)
0.360485 + 0.932765i \(0.382611\pi\)
\(354\) −50.8868 −2.70460
\(355\) 0 0
\(356\) −17.7613 −0.941349
\(357\) −11.4691 −0.607011
\(358\) 44.9550 2.37595
\(359\) 16.2248 0.856313 0.428156 0.903705i \(-0.359163\pi\)
0.428156 + 0.903705i \(0.359163\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −34.3000 −1.80277
\(363\) −1.48323 −0.0778495
\(364\) 17.7170 0.928624
\(365\) 0 0
\(366\) −35.9937 −1.88142
\(367\) 5.01745 0.261909 0.130954 0.991388i \(-0.458196\pi\)
0.130954 + 0.991388i \(0.458196\pi\)
\(368\) −53.6044 −2.79432
\(369\) 8.78702 0.457434
\(370\) 0 0
\(371\) 14.2784 0.741300
\(372\) −7.55247 −0.391577
\(373\) −33.2251 −1.72033 −0.860166 0.510015i \(-0.829640\pi\)
−0.860166 + 0.510015i \(0.829640\pi\)
\(374\) 9.03639 0.467261
\(375\) 0 0
\(376\) −103.781 −5.35208
\(377\) 14.4790 0.745706
\(378\) 34.2120 1.75968
\(379\) −13.0037 −0.667957 −0.333978 0.942581i \(-0.608391\pi\)
−0.333978 + 0.942581i \(0.608391\pi\)
\(380\) 0 0
\(381\) −18.5652 −0.951122
\(382\) −26.3887 −1.35016
\(383\) −31.0556 −1.58687 −0.793435 0.608655i \(-0.791709\pi\)
−0.793435 + 0.608655i \(0.791709\pi\)
\(384\) −19.1785 −0.978698
\(385\) 0 0
\(386\) 25.2074 1.28303
\(387\) −8.59458 −0.436887
\(388\) 34.6616 1.75968
\(389\) 28.0459 1.42199 0.710993 0.703199i \(-0.248246\pi\)
0.710993 + 0.703199i \(0.248246\pi\)
\(390\) 0 0
\(391\) −15.4702 −0.782363
\(392\) −14.8787 −0.751488
\(393\) 10.5535 0.532355
\(394\) −6.89779 −0.347505
\(395\) 0 0
\(396\) −4.07487 −0.204770
\(397\) 31.5695 1.58443 0.792214 0.610243i \(-0.208928\pi\)
0.792214 + 0.610243i \(0.208928\pi\)
\(398\) −20.3131 −1.01820
\(399\) −3.38037 −0.169230
\(400\) 0 0
\(401\) −28.1565 −1.40607 −0.703034 0.711156i \(-0.748172\pi\)
−0.703034 + 0.711156i \(0.748172\pi\)
\(402\) −7.79707 −0.388882
\(403\) 1.52578 0.0760046
\(404\) 10.0457 0.499792
\(405\) 0 0
\(406\) 57.5835 2.85782
\(407\) −7.35542 −0.364594
\(408\) −41.4617 −2.05266
\(409\) −15.1780 −0.750503 −0.375251 0.926923i \(-0.622444\pi\)
−0.375251 + 0.926923i \(0.622444\pi\)
\(410\) 0 0
\(411\) 11.7977 0.581940
\(412\) −1.53351 −0.0755504
\(413\) 29.3577 1.44460
\(414\) 9.71540 0.477486
\(415\) 0 0
\(416\) 22.6392 1.10998
\(417\) 13.3152 0.652048
\(418\) 2.66335 0.130269
\(419\) −35.4606 −1.73237 −0.866183 0.499728i \(-0.833433\pi\)
−0.866183 + 0.499728i \(0.833433\pi\)
\(420\) 0 0
\(421\) 11.9716 0.583458 0.291729 0.956501i \(-0.405769\pi\)
0.291729 + 0.956501i \(0.405769\pi\)
\(422\) −63.9628 −3.11366
\(423\) 10.0774 0.489979
\(424\) 51.6175 2.50677
\(425\) 0 0
\(426\) 38.9312 1.88622
\(427\) 20.7655 1.00491
\(428\) 28.0842 1.35750
\(429\) −2.26377 −0.109296
\(430\) 0 0
\(431\) 14.4099 0.694099 0.347050 0.937847i \(-0.387184\pi\)
0.347050 + 0.937847i \(0.387184\pi\)
\(432\) 66.2622 3.18804
\(433\) −26.9997 −1.29752 −0.648761 0.760992i \(-0.724713\pi\)
−0.648761 + 0.760992i \(0.724713\pi\)
\(434\) 6.06809 0.291278
\(435\) 0 0
\(436\) −0.342777 −0.0164160
\(437\) −4.55963 −0.218117
\(438\) −22.4917 −1.07470
\(439\) −14.7306 −0.703055 −0.351527 0.936178i \(-0.614338\pi\)
−0.351527 + 0.936178i \(0.614338\pi\)
\(440\) 0 0
\(441\) 1.44476 0.0687982
\(442\) 13.7917 0.656006
\(443\) 3.56318 0.169292 0.0846460 0.996411i \(-0.473024\pi\)
0.0846460 + 0.996411i \(0.473024\pi\)
\(444\) 55.5684 2.63716
\(445\) 0 0
\(446\) −15.6622 −0.741626
\(447\) 24.0959 1.13970
\(448\) 36.4505 1.72212
\(449\) −2.98503 −0.140872 −0.0704362 0.997516i \(-0.522439\pi\)
−0.0704362 + 0.997516i \(0.522439\pi\)
\(450\) 0 0
\(451\) −10.9835 −0.517191
\(452\) 33.8725 1.59323
\(453\) 24.8059 1.16548
\(454\) −40.3588 −1.89413
\(455\) 0 0
\(456\) −12.2203 −0.572266
\(457\) −7.09332 −0.331811 −0.165906 0.986142i \(-0.553055\pi\)
−0.165906 + 0.986142i \(0.553055\pi\)
\(458\) 21.1935 0.990306
\(459\) 19.1233 0.892597
\(460\) 0 0
\(461\) −25.7684 −1.20015 −0.600077 0.799943i \(-0.704863\pi\)
−0.600077 + 0.799943i \(0.704863\pi\)
\(462\) −9.00311 −0.418863
\(463\) −35.3532 −1.64300 −0.821502 0.570206i \(-0.806863\pi\)
−0.821502 + 0.570206i \(0.806863\pi\)
\(464\) 111.528 5.17756
\(465\) 0 0
\(466\) −3.32549 −0.154050
\(467\) −31.6989 −1.46685 −0.733425 0.679770i \(-0.762079\pi\)
−0.733425 + 0.679770i \(0.762079\pi\)
\(468\) −6.21925 −0.287485
\(469\) 4.49830 0.207712
\(470\) 0 0
\(471\) −22.3927 −1.03180
\(472\) 106.130 4.88503
\(473\) 10.7429 0.493960
\(474\) −53.3391 −2.44995
\(475\) 0 0
\(476\) 39.3852 1.80522
\(477\) −5.01219 −0.229493
\(478\) 45.7268 2.09150
\(479\) −1.37837 −0.0629795 −0.0314898 0.999504i \(-0.510025\pi\)
−0.0314898 + 0.999504i \(0.510025\pi\)
\(480\) 0 0
\(481\) −11.2262 −0.511869
\(482\) −22.6097 −1.02984
\(483\) 15.4132 0.701327
\(484\) 5.09344 0.231520
\(485\) 0 0
\(486\) −21.4907 −0.974837
\(487\) 29.4556 1.33476 0.667380 0.744717i \(-0.267416\pi\)
0.667380 + 0.744717i \(0.267416\pi\)
\(488\) 75.0688 3.39820
\(489\) −35.3380 −1.59804
\(490\) 0 0
\(491\) 27.7324 1.25155 0.625773 0.780005i \(-0.284784\pi\)
0.625773 + 0.780005i \(0.284784\pi\)
\(492\) 82.9774 3.74091
\(493\) 32.1870 1.44963
\(494\) 4.06493 0.182890
\(495\) 0 0
\(496\) 11.7527 0.527713
\(497\) −22.4602 −1.00748
\(498\) 39.2404 1.75840
\(499\) −6.97004 −0.312022 −0.156011 0.987755i \(-0.549863\pi\)
−0.156011 + 0.987755i \(0.549863\pi\)
\(500\) 0 0
\(501\) −5.16796 −0.230888
\(502\) −22.9320 −1.02351
\(503\) 29.1479 1.29964 0.649820 0.760088i \(-0.274844\pi\)
0.649820 + 0.760088i \(0.274844\pi\)
\(504\) −15.0220 −0.669134
\(505\) 0 0
\(506\) −12.1439 −0.539863
\(507\) 15.8269 0.702899
\(508\) 63.7531 2.82859
\(509\) −8.38114 −0.371488 −0.185744 0.982598i \(-0.559469\pi\)
−0.185744 + 0.982598i \(0.559469\pi\)
\(510\) 0 0
\(511\) 12.9760 0.574023
\(512\) −19.3343 −0.854462
\(513\) 5.63632 0.248849
\(514\) −36.9845 −1.63132
\(515\) 0 0
\(516\) −81.1602 −3.57288
\(517\) −12.5964 −0.553988
\(518\) −44.6469 −1.96167
\(519\) −12.7475 −0.559552
\(520\) 0 0
\(521\) −34.6749 −1.51914 −0.759568 0.650428i \(-0.774590\pi\)
−0.759568 + 0.650428i \(0.774590\pi\)
\(522\) −20.2137 −0.884728
\(523\) 12.2052 0.533697 0.266848 0.963739i \(-0.414018\pi\)
0.266848 + 0.963739i \(0.414018\pi\)
\(524\) −36.2410 −1.58320
\(525\) 0 0
\(526\) 16.4504 0.717272
\(527\) 3.39184 0.147751
\(528\) −17.4373 −0.758862
\(529\) −2.20975 −0.0960760
\(530\) 0 0
\(531\) −10.3055 −0.447221
\(532\) 11.6082 0.503281
\(533\) −16.7634 −0.726105
\(534\) 13.7753 0.596117
\(535\) 0 0
\(536\) 16.2616 0.702396
\(537\) −25.0356 −1.08037
\(538\) −47.7453 −2.05845
\(539\) −1.80590 −0.0777857
\(540\) 0 0
\(541\) −15.8649 −0.682085 −0.341043 0.940048i \(-0.610780\pi\)
−0.341043 + 0.940048i \(0.610780\pi\)
\(542\) −50.9990 −2.19059
\(543\) 19.1018 0.819738
\(544\) 50.3273 2.15777
\(545\) 0 0
\(546\) −13.7410 −0.588058
\(547\) −21.2077 −0.906775 −0.453387 0.891314i \(-0.649785\pi\)
−0.453387 + 0.891314i \(0.649785\pi\)
\(548\) −40.5136 −1.73066
\(549\) −7.28938 −0.311103
\(550\) 0 0
\(551\) 9.48668 0.404146
\(552\) 55.7199 2.37159
\(553\) 30.7725 1.30858
\(554\) 33.9082 1.44062
\(555\) 0 0
\(556\) −45.7246 −1.93916
\(557\) 12.9761 0.549814 0.274907 0.961471i \(-0.411353\pi\)
0.274907 + 0.961471i \(0.411353\pi\)
\(558\) −2.13010 −0.0901741
\(559\) 16.3963 0.693491
\(560\) 0 0
\(561\) −5.03241 −0.212468
\(562\) 33.6354 1.41882
\(563\) 12.2246 0.515207 0.257603 0.966251i \(-0.417067\pi\)
0.257603 + 0.966251i \(0.417067\pi\)
\(564\) 95.1626 4.00707
\(565\) 0 0
\(566\) −33.0201 −1.38794
\(567\) −13.5829 −0.570430
\(568\) −81.1952 −3.40688
\(569\) −14.1468 −0.593067 −0.296533 0.955022i \(-0.595831\pi\)
−0.296533 + 0.955022i \(0.595831\pi\)
\(570\) 0 0
\(571\) −30.4417 −1.27395 −0.636974 0.770886i \(-0.719814\pi\)
−0.636974 + 0.770886i \(0.719814\pi\)
\(572\) 7.77384 0.325041
\(573\) 14.6960 0.613934
\(574\) −66.6688 −2.78270
\(575\) 0 0
\(576\) −12.7953 −0.533137
\(577\) −23.4791 −0.977446 −0.488723 0.872439i \(-0.662537\pi\)
−0.488723 + 0.872439i \(0.662537\pi\)
\(578\) −14.6177 −0.608017
\(579\) −14.0381 −0.583405
\(580\) 0 0
\(581\) −22.6386 −0.939209
\(582\) −26.8828 −1.11433
\(583\) 6.26507 0.259473
\(584\) 46.9090 1.94111
\(585\) 0 0
\(586\) −30.1808 −1.24676
\(587\) 29.7356 1.22732 0.613659 0.789571i \(-0.289697\pi\)
0.613659 + 0.789571i \(0.289697\pi\)
\(588\) 13.6432 0.562634
\(589\) 0.999697 0.0411918
\(590\) 0 0
\(591\) 3.84141 0.158014
\(592\) −86.4724 −3.55399
\(593\) −34.8478 −1.43103 −0.715513 0.698599i \(-0.753807\pi\)
−0.715513 + 0.698599i \(0.753807\pi\)
\(594\) 15.0115 0.615929
\(595\) 0 0
\(596\) −82.7458 −3.38940
\(597\) 11.3125 0.462988
\(598\) −18.5346 −0.757935
\(599\) 10.1488 0.414669 0.207335 0.978270i \(-0.433521\pi\)
0.207335 + 0.978270i \(0.433521\pi\)
\(600\) 0 0
\(601\) −14.8810 −0.607008 −0.303504 0.952830i \(-0.598157\pi\)
−0.303504 + 0.952830i \(0.598157\pi\)
\(602\) 65.2088 2.65771
\(603\) −1.57905 −0.0643039
\(604\) −85.1839 −3.46608
\(605\) 0 0
\(606\) −7.79123 −0.316497
\(607\) 11.1790 0.453743 0.226871 0.973925i \(-0.427150\pi\)
0.226871 + 0.973925i \(0.427150\pi\)
\(608\) 14.8333 0.601569
\(609\) −32.0685 −1.29948
\(610\) 0 0
\(611\) −19.2251 −0.777766
\(612\) −13.8255 −0.558862
\(613\) −41.2298 −1.66526 −0.832628 0.553833i \(-0.813165\pi\)
−0.832628 + 0.553833i \(0.813165\pi\)
\(614\) 21.9034 0.883949
\(615\) 0 0
\(616\) 18.7770 0.756547
\(617\) 11.2150 0.451499 0.225750 0.974185i \(-0.427517\pi\)
0.225750 + 0.974185i \(0.427517\pi\)
\(618\) 1.18935 0.0478429
\(619\) −3.80803 −0.153058 −0.0765289 0.997067i \(-0.524384\pi\)
−0.0765289 + 0.997067i \(0.524384\pi\)
\(620\) 0 0
\(621\) −25.6995 −1.03129
\(622\) 6.62019 0.265445
\(623\) −7.94729 −0.318402
\(624\) −26.6136 −1.06540
\(625\) 0 0
\(626\) 57.9884 2.31768
\(627\) −1.48323 −0.0592346
\(628\) 76.8968 3.06852
\(629\) −24.9559 −0.995058
\(630\) 0 0
\(631\) 11.6663 0.464429 0.232215 0.972665i \(-0.425403\pi\)
0.232215 + 0.972665i \(0.425403\pi\)
\(632\) 111.245 4.42507
\(633\) 35.6212 1.41581
\(634\) 11.2894 0.448359
\(635\) 0 0
\(636\) −47.3311 −1.87680
\(637\) −2.75625 −0.109207
\(638\) 25.2664 1.00030
\(639\) 7.88427 0.311897
\(640\) 0 0
\(641\) −13.4013 −0.529321 −0.264661 0.964342i \(-0.585260\pi\)
−0.264661 + 0.964342i \(0.585260\pi\)
\(642\) −21.7815 −0.859647
\(643\) −9.60060 −0.378611 −0.189305 0.981918i \(-0.560624\pi\)
−0.189305 + 0.981918i \(0.560624\pi\)
\(644\) −52.9293 −2.08571
\(645\) 0 0
\(646\) 9.03639 0.355532
\(647\) 25.0402 0.984432 0.492216 0.870473i \(-0.336187\pi\)
0.492216 + 0.870473i \(0.336187\pi\)
\(648\) −49.1032 −1.92896
\(649\) 12.8815 0.505644
\(650\) 0 0
\(651\) −3.37934 −0.132447
\(652\) 121.351 4.75249
\(653\) 48.7909 1.90934 0.954669 0.297671i \(-0.0962098\pi\)
0.954669 + 0.297671i \(0.0962098\pi\)
\(654\) 0.265851 0.0103956
\(655\) 0 0
\(656\) −129.125 −5.04148
\(657\) −4.55499 −0.177707
\(658\) −76.4591 −2.98069
\(659\) −11.6452 −0.453631 −0.226816 0.973938i \(-0.572832\pi\)
−0.226816 + 0.973938i \(0.572832\pi\)
\(660\) 0 0
\(661\) 18.1320 0.705252 0.352626 0.935764i \(-0.385289\pi\)
0.352626 + 0.935764i \(0.385289\pi\)
\(662\) 74.5166 2.89617
\(663\) −7.68068 −0.298293
\(664\) −81.8401 −3.17601
\(665\) 0 0
\(666\) 15.6725 0.607297
\(667\) −43.2558 −1.67487
\(668\) 17.7469 0.686647
\(669\) 8.72234 0.337225
\(670\) 0 0
\(671\) 9.11146 0.351744
\(672\) −50.1420 −1.93427
\(673\) 11.1544 0.429970 0.214985 0.976617i \(-0.431030\pi\)
0.214985 + 0.976617i \(0.431030\pi\)
\(674\) −57.1480 −2.20126
\(675\) 0 0
\(676\) −54.3500 −2.09038
\(677\) −42.5574 −1.63562 −0.817808 0.575492i \(-0.804811\pi\)
−0.817808 + 0.575492i \(0.804811\pi\)
\(678\) −26.2708 −1.00892
\(679\) 15.5093 0.595192
\(680\) 0 0
\(681\) 22.4760 0.861282
\(682\) 2.66254 0.101954
\(683\) −37.0003 −1.41578 −0.707888 0.706325i \(-0.750352\pi\)
−0.707888 + 0.706325i \(0.750352\pi\)
\(684\) −4.07487 −0.155807
\(685\) 0 0
\(686\) −53.4512 −2.04078
\(687\) −11.8027 −0.450303
\(688\) 126.297 4.81503
\(689\) 9.56202 0.364284
\(690\) 0 0
\(691\) 30.0210 1.14205 0.571026 0.820932i \(-0.306546\pi\)
0.571026 + 0.820932i \(0.306546\pi\)
\(692\) 43.7751 1.66408
\(693\) −1.82330 −0.0692613
\(694\) 83.1294 3.15555
\(695\) 0 0
\(696\) −115.930 −4.39430
\(697\) −37.2654 −1.41153
\(698\) −62.5109 −2.36607
\(699\) 1.85198 0.0700482
\(700\) 0 0
\(701\) −30.8213 −1.16410 −0.582052 0.813151i \(-0.697750\pi\)
−0.582052 + 0.813151i \(0.697750\pi\)
\(702\) 22.9112 0.864728
\(703\) −7.35542 −0.277415
\(704\) 15.9937 0.602784
\(705\) 0 0
\(706\) 36.0773 1.35779
\(707\) 4.49493 0.169049
\(708\) −97.3169 −3.65739
\(709\) 23.6622 0.888651 0.444325 0.895865i \(-0.353443\pi\)
0.444325 + 0.895865i \(0.353443\pi\)
\(710\) 0 0
\(711\) −10.8021 −0.405112
\(712\) −28.7300 −1.07670
\(713\) −4.55825 −0.170708
\(714\) −30.5464 −1.14317
\(715\) 0 0
\(716\) 85.9728 3.21296
\(717\) −25.4655 −0.951025
\(718\) 43.2124 1.61267
\(719\) 8.20483 0.305989 0.152994 0.988227i \(-0.451108\pi\)
0.152994 + 0.988227i \(0.451108\pi\)
\(720\) 0 0
\(721\) −0.686165 −0.0255541
\(722\) 2.66335 0.0991197
\(723\) 12.5914 0.468281
\(724\) −65.5960 −2.43786
\(725\) 0 0
\(726\) −3.95037 −0.146612
\(727\) −36.9180 −1.36921 −0.684606 0.728913i \(-0.740026\pi\)
−0.684606 + 0.728913i \(0.740026\pi\)
\(728\) 28.6583 1.06215
\(729\) 29.8479 1.10548
\(730\) 0 0
\(731\) 36.4493 1.34813
\(732\) −68.8349 −2.54421
\(733\) −15.9166 −0.587891 −0.293946 0.955822i \(-0.594968\pi\)
−0.293946 + 0.955822i \(0.594968\pi\)
\(734\) 13.3632 0.493246
\(735\) 0 0
\(736\) −67.6343 −2.49303
\(737\) 1.97376 0.0727042
\(738\) 23.4029 0.861473
\(739\) −52.6814 −1.93792 −0.968959 0.247223i \(-0.920482\pi\)
−0.968959 + 0.247223i \(0.920482\pi\)
\(740\) 0 0
\(741\) −2.26377 −0.0831618
\(742\) 38.0285 1.39607
\(743\) −19.3770 −0.710874 −0.355437 0.934700i \(-0.615668\pi\)
−0.355437 + 0.934700i \(0.615668\pi\)
\(744\) −12.2165 −0.447880
\(745\) 0 0
\(746\) −88.4902 −3.23986
\(747\) 7.94689 0.290762
\(748\) 17.2814 0.631869
\(749\) 12.5662 0.459160
\(750\) 0 0
\(751\) −20.9486 −0.764424 −0.382212 0.924075i \(-0.624838\pi\)
−0.382212 + 0.924075i \(0.624838\pi\)
\(752\) −148.087 −5.40016
\(753\) 12.7709 0.465399
\(754\) 38.5626 1.40437
\(755\) 0 0
\(756\) 65.4277 2.37958
\(757\) −4.85815 −0.176572 −0.0882862 0.996095i \(-0.528139\pi\)
−0.0882862 + 0.996095i \(0.528139\pi\)
\(758\) −34.6335 −1.25795
\(759\) 6.76299 0.245481
\(760\) 0 0
\(761\) −45.7286 −1.65766 −0.828831 0.559500i \(-0.810993\pi\)
−0.828831 + 0.559500i \(0.810993\pi\)
\(762\) −49.4456 −1.79122
\(763\) −0.153375 −0.00555255
\(764\) −50.4663 −1.82581
\(765\) 0 0
\(766\) −82.7121 −2.98851
\(767\) 19.6604 0.709894
\(768\) −3.63443 −0.131146
\(769\) 42.0970 1.51806 0.759029 0.651057i \(-0.225674\pi\)
0.759029 + 0.651057i \(0.225674\pi\)
\(770\) 0 0
\(771\) 20.5968 0.741777
\(772\) 48.2072 1.73501
\(773\) 0.276331 0.00993893 0.00496947 0.999988i \(-0.498418\pi\)
0.00496947 + 0.999988i \(0.498418\pi\)
\(774\) −22.8904 −0.822778
\(775\) 0 0
\(776\) 56.0671 2.01269
\(777\) 24.8640 0.891992
\(778\) 74.6962 2.67799
\(779\) −10.9835 −0.393523
\(780\) 0 0
\(781\) −9.85507 −0.352642
\(782\) −41.2026 −1.47340
\(783\) 53.4699 1.91086
\(784\) −21.2307 −0.758240
\(785\) 0 0
\(786\) 28.1078 1.00257
\(787\) −30.0118 −1.06980 −0.534902 0.844914i \(-0.679651\pi\)
−0.534902 + 0.844914i \(0.679651\pi\)
\(788\) −13.1915 −0.469926
\(789\) −9.16131 −0.326151
\(790\) 0 0
\(791\) 15.1562 0.538893
\(792\) −6.59133 −0.234213
\(793\) 13.9063 0.493828
\(794\) 84.0807 2.98391
\(795\) 0 0
\(796\) −38.8472 −1.37690
\(797\) −53.5284 −1.89607 −0.948037 0.318160i \(-0.896935\pi\)
−0.948037 + 0.318160i \(0.896935\pi\)
\(798\) −9.00311 −0.318707
\(799\) −42.7378 −1.51195
\(800\) 0 0
\(801\) 2.78976 0.0985712
\(802\) −74.9906 −2.64801
\(803\) 5.69357 0.200922
\(804\) −14.9113 −0.525879
\(805\) 0 0
\(806\) 4.06369 0.143138
\(807\) 26.5896 0.935997
\(808\) 16.2495 0.571654
\(809\) 32.1617 1.13074 0.565372 0.824836i \(-0.308733\pi\)
0.565372 + 0.824836i \(0.308733\pi\)
\(810\) 0 0
\(811\) −11.7382 −0.412185 −0.206093 0.978533i \(-0.566075\pi\)
−0.206093 + 0.978533i \(0.566075\pi\)
\(812\) 110.124 3.86458
\(813\) 28.4015 0.996085
\(814\) −19.5901 −0.686631
\(815\) 0 0
\(816\) −59.1624 −2.07110
\(817\) 10.7429 0.375847
\(818\) −40.4243 −1.41340
\(819\) −2.78280 −0.0972387
\(820\) 0 0
\(821\) 15.5521 0.542772 0.271386 0.962471i \(-0.412518\pi\)
0.271386 + 0.962471i \(0.412518\pi\)
\(822\) 31.4215 1.09595
\(823\) 49.9472 1.74105 0.870524 0.492125i \(-0.163780\pi\)
0.870524 + 0.492125i \(0.163780\pi\)
\(824\) −2.48053 −0.0864134
\(825\) 0 0
\(826\) 78.1900 2.72058
\(827\) −22.9363 −0.797575 −0.398787 0.917043i \(-0.630569\pi\)
−0.398787 + 0.917043i \(0.630569\pi\)
\(828\) 18.5799 0.645697
\(829\) −37.1605 −1.29064 −0.645318 0.763914i \(-0.723275\pi\)
−0.645318 + 0.763914i \(0.723275\pi\)
\(830\) 0 0
\(831\) −18.8836 −0.655065
\(832\) 24.4102 0.846273
\(833\) −6.12718 −0.212294
\(834\) 35.4631 1.22799
\(835\) 0 0
\(836\) 5.09344 0.176160
\(837\) 5.63461 0.194761
\(838\) −94.4441 −3.26252
\(839\) −10.8879 −0.375893 −0.187946 0.982179i \(-0.560183\pi\)
−0.187946 + 0.982179i \(0.560183\pi\)
\(840\) 0 0
\(841\) 60.9970 2.10335
\(842\) 31.8845 1.09881
\(843\) −18.7317 −0.645154
\(844\) −122.324 −4.21055
\(845\) 0 0
\(846\) 26.8396 0.922765
\(847\) 2.27906 0.0783093
\(848\) 73.6540 2.52929
\(849\) 18.3890 0.631110
\(850\) 0 0
\(851\) 33.5380 1.14967
\(852\) 74.4527 2.55071
\(853\) 46.7100 1.59932 0.799659 0.600454i \(-0.205013\pi\)
0.799659 + 0.600454i \(0.205013\pi\)
\(854\) 55.3059 1.89253
\(855\) 0 0
\(856\) 45.4277 1.55269
\(857\) −35.0245 −1.19642 −0.598208 0.801341i \(-0.704120\pi\)
−0.598208 + 0.801341i \(0.704120\pi\)
\(858\) −6.02923 −0.205834
\(859\) 15.6843 0.535141 0.267571 0.963538i \(-0.413779\pi\)
0.267571 + 0.963538i \(0.413779\pi\)
\(860\) 0 0
\(861\) 37.1282 1.26532
\(862\) 38.3786 1.30718
\(863\) −21.9764 −0.748084 −0.374042 0.927412i \(-0.622028\pi\)
−0.374042 + 0.927412i \(0.622028\pi\)
\(864\) 83.6050 2.84430
\(865\) 0 0
\(866\) −71.9097 −2.44359
\(867\) 8.14067 0.276472
\(868\) 11.6047 0.393890
\(869\) 13.5023 0.458034
\(870\) 0 0
\(871\) 3.01243 0.102072
\(872\) −0.554461 −0.0187764
\(873\) −5.44426 −0.184260
\(874\) −12.1439 −0.410774
\(875\) 0 0
\(876\) −43.0136 −1.45329
\(877\) 24.7003 0.834069 0.417035 0.908891i \(-0.363069\pi\)
0.417035 + 0.908891i \(0.363069\pi\)
\(878\) −39.2329 −1.32404
\(879\) 16.8078 0.566914
\(880\) 0 0
\(881\) −33.6606 −1.13405 −0.567027 0.823699i \(-0.691906\pi\)
−0.567027 + 0.823699i \(0.691906\pi\)
\(882\) 3.84791 0.129566
\(883\) 32.9203 1.10786 0.553929 0.832564i \(-0.313128\pi\)
0.553929 + 0.832564i \(0.313128\pi\)
\(884\) 26.3756 0.887107
\(885\) 0 0
\(886\) 9.49001 0.318823
\(887\) 41.6748 1.39930 0.699651 0.714485i \(-0.253339\pi\)
0.699651 + 0.714485i \(0.253339\pi\)
\(888\) 89.8850 3.01634
\(889\) 28.5263 0.956740
\(890\) 0 0
\(891\) −5.95990 −0.199664
\(892\) −29.9527 −1.00289
\(893\) −12.5964 −0.421522
\(894\) 64.1759 2.14636
\(895\) 0 0
\(896\) 29.4686 0.984478
\(897\) 10.3220 0.344641
\(898\) −7.95019 −0.265301
\(899\) 9.48380 0.316302
\(900\) 0 0
\(901\) 21.2565 0.708158
\(902\) −29.2528 −0.974013
\(903\) −36.3151 −1.20849
\(904\) 54.7907 1.82231
\(905\) 0 0
\(906\) 66.0668 2.19492
\(907\) 33.7269 1.11988 0.559941 0.828532i \(-0.310824\pi\)
0.559941 + 0.828532i \(0.310824\pi\)
\(908\) −77.1830 −2.56141
\(909\) −1.57787 −0.0523345
\(910\) 0 0
\(911\) −27.4759 −0.910318 −0.455159 0.890410i \(-0.650418\pi\)
−0.455159 + 0.890410i \(0.650418\pi\)
\(912\) −17.4373 −0.577407
\(913\) −9.93334 −0.328746
\(914\) −18.8920 −0.624892
\(915\) 0 0
\(916\) 40.5308 1.33918
\(917\) −16.2160 −0.535500
\(918\) 50.9320 1.68101
\(919\) 6.84795 0.225893 0.112947 0.993601i \(-0.463971\pi\)
0.112947 + 0.993601i \(0.463971\pi\)
\(920\) 0 0
\(921\) −12.1981 −0.401941
\(922\) −68.6303 −2.26022
\(923\) −15.0412 −0.495088
\(924\) −17.2177 −0.566422
\(925\) 0 0
\(926\) −94.1581 −3.09423
\(927\) 0.240866 0.00791108
\(928\) 140.719 4.61931
\(929\) 9.06304 0.297349 0.148674 0.988886i \(-0.452499\pi\)
0.148674 + 0.988886i \(0.452499\pi\)
\(930\) 0 0
\(931\) −1.80590 −0.0591861
\(932\) −6.35972 −0.208320
\(933\) −3.68681 −0.120701
\(934\) −84.4253 −2.76248
\(935\) 0 0
\(936\) −10.0600 −0.328821
\(937\) 31.5974 1.03224 0.516122 0.856515i \(-0.327375\pi\)
0.516122 + 0.856515i \(0.327375\pi\)
\(938\) 11.9806 0.391179
\(939\) −32.2940 −1.05387
\(940\) 0 0
\(941\) −5.58295 −0.181999 −0.0909995 0.995851i \(-0.529006\pi\)
−0.0909995 + 0.995851i \(0.529006\pi\)
\(942\) −59.6395 −1.94316
\(943\) 50.0805 1.63085
\(944\) 151.439 4.92892
\(945\) 0 0
\(946\) 28.6122 0.930262
\(947\) 26.8235 0.871646 0.435823 0.900032i \(-0.356457\pi\)
0.435823 + 0.900032i \(0.356457\pi\)
\(948\) −102.007 −3.31302
\(949\) 8.68978 0.282082
\(950\) 0 0
\(951\) −6.28712 −0.203874
\(952\) 63.7078 2.06478
\(953\) −15.6816 −0.507976 −0.253988 0.967207i \(-0.581742\pi\)
−0.253988 + 0.967207i \(0.581742\pi\)
\(954\) −13.3492 −0.432198
\(955\) 0 0
\(956\) 87.4489 2.82830
\(957\) −14.0709 −0.454849
\(958\) −3.67110 −0.118608
\(959\) −18.1278 −0.585377
\(960\) 0 0
\(961\) −30.0006 −0.967761
\(962\) −29.8992 −0.963990
\(963\) −4.41115 −0.142147
\(964\) −43.2393 −1.39264
\(965\) 0 0
\(966\) 41.0509 1.32079
\(967\) −13.6161 −0.437863 −0.218931 0.975740i \(-0.570257\pi\)
−0.218931 + 0.975740i \(0.570257\pi\)
\(968\) 8.23893 0.264809
\(969\) −5.03241 −0.161664
\(970\) 0 0
\(971\) 59.1158 1.89712 0.948558 0.316604i \(-0.102543\pi\)
0.948558 + 0.316604i \(0.102543\pi\)
\(972\) −41.0992 −1.31826
\(973\) −20.4594 −0.655899
\(974\) 78.4506 2.51372
\(975\) 0 0
\(976\) 107.117 3.42873
\(977\) 22.4291 0.717571 0.358785 0.933420i \(-0.383191\pi\)
0.358785 + 0.933420i \(0.383191\pi\)
\(978\) −94.1177 −3.00955
\(979\) −3.48710 −0.111448
\(980\) 0 0
\(981\) 0.0538396 0.00171897
\(982\) 73.8612 2.35700
\(983\) −7.13855 −0.227684 −0.113842 0.993499i \(-0.536316\pi\)
−0.113842 + 0.993499i \(0.536316\pi\)
\(984\) 134.221 4.27880
\(985\) 0 0
\(986\) 85.7253 2.73005
\(987\) 42.5804 1.35535
\(988\) 7.77384 0.247319
\(989\) −48.9838 −1.55759
\(990\) 0 0
\(991\) −18.7708 −0.596274 −0.298137 0.954523i \(-0.596365\pi\)
−0.298137 + 0.954523i \(0.596365\pi\)
\(992\) 14.8288 0.470814
\(993\) −41.4986 −1.31692
\(994\) −59.8196 −1.89736
\(995\) 0 0
\(996\) 75.0440 2.37786
\(997\) 31.9203 1.01093 0.505463 0.862848i \(-0.331322\pi\)
0.505463 + 0.862848i \(0.331322\pi\)
\(998\) −18.5637 −0.587623
\(999\) −41.4574 −1.31166
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5225.2.a.y.1.15 yes 15
5.4 even 2 5225.2.a.r.1.1 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5225.2.a.r.1.1 15 5.4 even 2
5225.2.a.y.1.15 yes 15 1.1 even 1 trivial