Properties

Label 2-5225-1.1-c1-0-175
Degree $2$
Conductor $5225$
Sign $1$
Analytic cond. $41.7218$
Root an. cond. $6.45924$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.66·2-s − 1.48·3-s + 5.09·4-s − 3.95·6-s + 2.27·7-s + 8.23·8-s − 0.800·9-s + 11-s − 7.55·12-s + 1.52·13-s + 6.06·14-s + 11.7·16-s + 3.39·17-s − 2.13·18-s + 19-s − 3.38·21-s + 2.66·22-s − 4.55·23-s − 12.2·24-s + 4.06·26-s + 5.63·27-s + 11.6·28-s + 9.48·29-s + 0.999·31-s + 14.8·32-s − 1.48·33-s + 9.03·34-s + ⋯
L(s)  = 1  + 1.88·2-s − 0.856·3-s + 2.54·4-s − 1.61·6-s + 0.861·7-s + 2.91·8-s − 0.266·9-s + 0.301·11-s − 2.18·12-s + 0.423·13-s + 1.62·14-s + 2.93·16-s + 0.822·17-s − 0.502·18-s + 0.229·19-s − 0.737·21-s + 0.567·22-s − 0.950·23-s − 2.49·24-s + 0.797·26-s + 1.08·27-s + 2.19·28-s + 1.76·29-s + 0.179·31-s + 2.62·32-s − 0.258·33-s + 1.54·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5225\)    =    \(5^{2} \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(41.7218\)
Root analytic conductor: \(6.45924\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5225,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.059500197\)
\(L(\frac12)\) \(\approx\) \(6.059500197\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( 1 - T \)
19 \( 1 - T \)
good2 \( 1 - 2.66T + 2T^{2} \)
3 \( 1 + 1.48T + 3T^{2} \)
7 \( 1 - 2.27T + 7T^{2} \)
13 \( 1 - 1.52T + 13T^{2} \)
17 \( 1 - 3.39T + 17T^{2} \)
23 \( 1 + 4.55T + 23T^{2} \)
29 \( 1 - 9.48T + 29T^{2} \)
31 \( 1 - 0.999T + 31T^{2} \)
37 \( 1 + 7.35T + 37T^{2} \)
41 \( 1 + 10.9T + 41T^{2} \)
43 \( 1 - 10.7T + 43T^{2} \)
47 \( 1 + 12.5T + 47T^{2} \)
53 \( 1 - 6.26T + 53T^{2} \)
59 \( 1 - 12.8T + 59T^{2} \)
61 \( 1 - 9.11T + 61T^{2} \)
67 \( 1 - 1.97T + 67T^{2} \)
71 \( 1 + 9.85T + 71T^{2} \)
73 \( 1 - 5.69T + 73T^{2} \)
79 \( 1 - 13.5T + 79T^{2} \)
83 \( 1 + 9.93T + 83T^{2} \)
89 \( 1 + 3.48T + 89T^{2} \)
97 \( 1 - 6.80T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.041167121827753197147582384359, −7.02007384349443154686808407410, −6.47918317906122712375027813544, −5.81038398055001901880857478156, −5.20017131297909700396053495158, −4.76237501057299153918502532267, −3.86607310948426541451279745078, −3.15466091935556520279008783135, −2.13351766515476776485089600547, −1.13023772201400586268082681887, 1.13023772201400586268082681887, 2.13351766515476776485089600547, 3.15466091935556520279008783135, 3.86607310948426541451279745078, 4.76237501057299153918502532267, 5.20017131297909700396053495158, 5.81038398055001901880857478156, 6.47918317906122712375027813544, 7.02007384349443154686808407410, 8.041167121827753197147582384359

Graph of the $Z$-function along the critical line