Properties

Label 5220.2.b.f.289.13
Level $5220$
Weight $2$
Character 5220.289
Analytic conductor $41.682$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5220,2,Mod(289,5220)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5220, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5220.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5220 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5220.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,48,0,0,0,0, 0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(37)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.6819098551\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 289.13
Character \(\chi\) \(=\) 5220.289
Dual form 5220.2.b.f.289.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.56286 - 1.59920i) q^{5} +4.48349i q^{7} +2.24386i q^{11} -1.60476i q^{13} -5.17062 q^{17} +4.76203i q^{19} -0.697164i q^{23} +(-0.114908 - 4.99868i) q^{25} +(-1.00347 - 5.29084i) q^{29} +10.0713i q^{31} +(7.17002 + 7.00709i) q^{35} -0.559917 q^{37} +1.09060i q^{41} +8.56135 q^{43} -8.49054 q^{47} -13.1017 q^{49} -5.61954i q^{53} +(3.58838 + 3.50684i) q^{55} -4.60368 q^{59} +1.70446i q^{61} +(-2.56634 - 2.50802i) q^{65} +2.30435i q^{67} -9.73636 q^{71} -11.3099 q^{73} -10.0603 q^{77} +4.76203i q^{79} +9.92487i q^{83} +(-8.08098 + 8.26887i) q^{85} +12.6007i q^{89} +7.19493 q^{91} +(7.61546 + 7.44241i) q^{95} -13.6139 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 48 q^{25} - 104 q^{49} - 80 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5220\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(2611\) \(4061\) \(4177\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.56286 1.59920i 0.698934 0.715186i
\(6\) 0 0
\(7\) 4.48349i 1.69460i 0.531114 + 0.847300i \(0.321774\pi\)
−0.531114 + 0.847300i \(0.678226\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.24386i 0.676548i 0.941048 + 0.338274i \(0.109843\pi\)
−0.941048 + 0.338274i \(0.890157\pi\)
\(12\) 0 0
\(13\) 1.60476i 0.445080i −0.974924 0.222540i \(-0.928565\pi\)
0.974924 0.222540i \(-0.0714349\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −5.17062 −1.25406 −0.627030 0.778995i \(-0.715730\pi\)
−0.627030 + 0.778995i \(0.715730\pi\)
\(18\) 0 0
\(19\) 4.76203i 1.09249i 0.837627 + 0.546243i \(0.183942\pi\)
−0.837627 + 0.546243i \(0.816058\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.697164i 0.145369i −0.997355 0.0726844i \(-0.976843\pi\)
0.997355 0.0726844i \(-0.0231566\pi\)
\(24\) 0 0
\(25\) −0.114908 4.99868i −0.0229815 0.999736i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.00347 5.29084i −0.186340 0.982485i
\(30\) 0 0
\(31\) 10.0713i 1.80885i 0.426631 + 0.904426i \(0.359700\pi\)
−0.426631 + 0.904426i \(0.640300\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 7.17002 + 7.00709i 1.21195 + 1.18441i
\(36\) 0 0
\(37\) −0.559917 −0.0920497 −0.0460249 0.998940i \(-0.514655\pi\)
−0.0460249 + 0.998940i \(0.514655\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.09060i 0.170323i 0.996367 + 0.0851614i \(0.0271406\pi\)
−0.996367 + 0.0851614i \(0.972859\pi\)
\(42\) 0 0
\(43\) 8.56135 1.30559 0.652796 0.757533i \(-0.273596\pi\)
0.652796 + 0.757533i \(0.273596\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.49054 −1.23847 −0.619236 0.785205i \(-0.712558\pi\)
−0.619236 + 0.785205i \(0.712558\pi\)
\(48\) 0 0
\(49\) −13.1017 −1.87167
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.61954i 0.771904i −0.922519 0.385952i \(-0.873873\pi\)
0.922519 0.385952i \(-0.126127\pi\)
\(54\) 0 0
\(55\) 3.58838 + 3.50684i 0.483857 + 0.472862i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.60368 −0.599348 −0.299674 0.954042i \(-0.596878\pi\)
−0.299674 + 0.954042i \(0.596878\pi\)
\(60\) 0 0
\(61\) 1.70446i 0.218233i 0.994029 + 0.109117i \(0.0348022\pi\)
−0.994029 + 0.109117i \(0.965198\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.56634 2.50802i −0.318315 0.311082i
\(66\) 0 0
\(67\) 2.30435i 0.281521i 0.990044 + 0.140760i \(0.0449547\pi\)
−0.990044 + 0.140760i \(0.955045\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −9.73636 −1.15549 −0.577747 0.816216i \(-0.696068\pi\)
−0.577747 + 0.816216i \(0.696068\pi\)
\(72\) 0 0
\(73\) −11.3099 −1.32372 −0.661859 0.749628i \(-0.730232\pi\)
−0.661859 + 0.749628i \(0.730232\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −10.0603 −1.14648
\(78\) 0 0
\(79\) 4.76203i 0.535771i 0.963451 + 0.267885i \(0.0863248\pi\)
−0.963451 + 0.267885i \(0.913675\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 9.92487i 1.08940i 0.838632 + 0.544698i \(0.183356\pi\)
−0.838632 + 0.544698i \(0.816644\pi\)
\(84\) 0 0
\(85\) −8.08098 + 8.26887i −0.876505 + 0.896885i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 12.6007i 1.33568i 0.744307 + 0.667838i \(0.232780\pi\)
−0.744307 + 0.667838i \(0.767220\pi\)
\(90\) 0 0
\(91\) 7.19493 0.754234
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 7.61546 + 7.44241i 0.781330 + 0.763576i
\(96\) 0 0
\(97\) −13.6139 −1.38228 −0.691139 0.722722i \(-0.742891\pi\)
−0.691139 + 0.722722i \(0.742891\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.90049i 0.487617i −0.969823 0.243809i \(-0.921603\pi\)
0.969823 0.243809i \(-0.0783969\pi\)
\(102\) 0 0
\(103\) 6.08825i 0.599893i −0.953956 0.299947i \(-0.903031\pi\)
0.953956 0.299947i \(-0.0969689\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 13.7268i 1.32702i −0.748169 0.663509i \(-0.769067\pi\)
0.748169 0.663509i \(-0.230933\pi\)
\(108\) 0 0
\(109\) 11.1949 1.07228 0.536140 0.844129i \(-0.319882\pi\)
0.536140 + 0.844129i \(0.319882\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 13.3802 1.25871 0.629353 0.777120i \(-0.283320\pi\)
0.629353 + 0.777120i \(0.283320\pi\)
\(114\) 0 0
\(115\) −1.11491 1.08957i −0.103966 0.101603i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 23.1824i 2.12513i
\(120\) 0 0
\(121\) 5.96511 0.542283
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −8.17349 7.62850i −0.731059 0.682314i
\(126\) 0 0
\(127\) −7.37717 −0.654618 −0.327309 0.944917i \(-0.606142\pi\)
−0.327309 + 0.944917i \(0.606142\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 12.1253i 1.05939i −0.848187 0.529696i \(-0.822306\pi\)
0.848187 0.529696i \(-0.177694\pi\)
\(132\) 0 0
\(133\) −21.3505 −1.85133
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −18.5508 −1.58491 −0.792453 0.609933i \(-0.791196\pi\)
−0.792453 + 0.609933i \(0.791196\pi\)
\(138\) 0 0
\(139\) −12.3315 −1.04595 −0.522973 0.852349i \(-0.675177\pi\)
−0.522973 + 0.852349i \(0.675177\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.60085 0.301118
\(144\) 0 0
\(145\) −10.0294 6.66411i −0.832899 0.553425i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 17.8249 1.46028 0.730138 0.683300i \(-0.239456\pi\)
0.730138 + 0.683300i \(0.239456\pi\)
\(150\) 0 0
\(151\) −17.2966 −1.40758 −0.703790 0.710408i \(-0.748510\pi\)
−0.703790 + 0.710408i \(0.748510\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 16.1060 + 15.7400i 1.29367 + 1.26427i
\(156\) 0 0
\(157\) 4.42826 0.353413 0.176707 0.984264i \(-0.443456\pi\)
0.176707 + 0.984264i \(0.443456\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.12573 0.246342
\(162\) 0 0
\(163\) −17.5465 −1.37435 −0.687175 0.726492i \(-0.741150\pi\)
−0.687175 + 0.726492i \(0.741150\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.3460i 0.955362i 0.878533 + 0.477681i \(0.158523\pi\)
−0.878533 + 0.477681i \(0.841477\pi\)
\(168\) 0 0
\(169\) 10.4247 0.801903
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.78866i 0.212018i 0.994365 + 0.106009i \(0.0338072\pi\)
−0.994365 + 0.106009i \(0.966193\pi\)
\(174\) 0 0
\(175\) 22.4115 0.515187i 1.69415 0.0389445i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 22.9576 1.71593 0.857966 0.513706i \(-0.171728\pi\)
0.857966 + 0.513706i \(0.171728\pi\)
\(180\) 0 0
\(181\) −12.5613 −0.933677 −0.466838 0.884343i \(-0.654607\pi\)
−0.466838 + 0.884343i \(0.654607\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.875074 + 0.895421i −0.0643367 + 0.0658327i
\(186\) 0 0
\(187\) 11.6021i 0.848431i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 23.1198i 1.67289i 0.548052 + 0.836444i \(0.315369\pi\)
−0.548052 + 0.836444i \(0.684631\pi\)
\(192\) 0 0
\(193\) −0.760326 −0.0547294 −0.0273647 0.999626i \(-0.508712\pi\)
−0.0273647 + 0.999626i \(0.508712\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.01170i 0.642057i −0.947070 0.321028i \(-0.895972\pi\)
0.947070 0.321028i \(-0.104028\pi\)
\(198\) 0 0
\(199\) −14.1017 −0.999643 −0.499822 0.866128i \(-0.666601\pi\)
−0.499822 + 0.866128i \(0.666601\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 23.7215 4.49907i 1.66492 0.315773i
\(204\) 0 0
\(205\) 1.74409 + 1.70446i 0.121812 + 0.119044i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −10.6853 −0.739118
\(210\) 0 0
\(211\) 6.46649i 0.445172i 0.974913 + 0.222586i \(0.0714497\pi\)
−0.974913 + 0.222586i \(0.928550\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 13.3802 13.6913i 0.912524 0.933742i
\(216\) 0 0
\(217\) −45.1544 −3.06528
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 8.29760i 0.558157i
\(222\) 0 0
\(223\) 3.33472i 0.223309i −0.993747 0.111655i \(-0.964385\pi\)
0.993747 0.111655i \(-0.0356151\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 11.3192i 0.751281i −0.926765 0.375641i \(-0.877423\pi\)
0.926765 0.375641i \(-0.122577\pi\)
\(228\) 0 0
\(229\) 26.0618i 1.72221i 0.508424 + 0.861107i \(0.330228\pi\)
−0.508424 + 0.861107i \(0.669772\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 23.8454i 1.56216i 0.624429 + 0.781082i \(0.285332\pi\)
−0.624429 + 0.781082i \(0.714668\pi\)
\(234\) 0 0
\(235\) −13.2696 + 13.5781i −0.865611 + 0.885738i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −10.3261 −0.667943 −0.333971 0.942583i \(-0.608389\pi\)
−0.333971 + 0.942583i \(0.608389\pi\)
\(240\) 0 0
\(241\) 8.96511 0.577494 0.288747 0.957405i \(-0.406761\pi\)
0.288747 + 0.957405i \(0.406761\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −20.4762 + 20.9523i −1.30818 + 1.33859i
\(246\) 0 0
\(247\) 7.64192 0.486244
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2.75953i 0.174180i 0.996200 + 0.0870899i \(0.0277567\pi\)
−0.996200 + 0.0870899i \(0.972243\pi\)
\(252\) 0 0
\(253\) 1.56433 0.0983489
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 9.24126i 0.576454i 0.957562 + 0.288227i \(0.0930658\pi\)
−0.957562 + 0.288227i \(0.906934\pi\)
\(258\) 0 0
\(259\) 2.51038i 0.155988i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −16.9811 −1.04710 −0.523549 0.851996i \(-0.675392\pi\)
−0.523549 + 0.851996i \(0.675392\pi\)
\(264\) 0 0
\(265\) −8.98680 8.78259i −0.552055 0.539510i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 18.8793i 1.15109i −0.817770 0.575545i \(-0.804790\pi\)
0.817770 0.575545i \(-0.195210\pi\)
\(270\) 0 0
\(271\) 13.6760i 0.830760i −0.909648 0.415380i \(-0.863649\pi\)
0.909648 0.415380i \(-0.136351\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 11.2163 0.257836i 0.676369 0.0155481i
\(276\) 0 0
\(277\) 11.6021i 0.697104i −0.937289 0.348552i \(-0.886674\pi\)
0.937289 0.348552i \(-0.113326\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 15.8180 0.943622 0.471811 0.881700i \(-0.343600\pi\)
0.471811 + 0.881700i \(0.343600\pi\)
\(282\) 0 0
\(283\) 10.6969i 0.635867i 0.948113 + 0.317934i \(0.102989\pi\)
−0.948113 + 0.317934i \(0.897011\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −4.88969 −0.288629
\(288\) 0 0
\(289\) 9.73530 0.572665
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 17.0816 0.997919 0.498960 0.866625i \(-0.333716\pi\)
0.498960 + 0.866625i \(0.333716\pi\)
\(294\) 0 0
\(295\) −7.19493 + 7.36222i −0.418905 + 0.428645i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.11878 −0.0647008
\(300\) 0 0
\(301\) 38.3847i 2.21246i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.72577 + 2.66384i 0.156077 + 0.152531i
\(306\) 0 0
\(307\) −5.29661 −0.302293 −0.151147 0.988511i \(-0.548297\pi\)
−0.151147 + 0.988511i \(0.548297\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 19.4352i 1.10207i 0.834483 + 0.551034i \(0.185767\pi\)
−0.834483 + 0.551034i \(0.814233\pi\)
\(312\) 0 0
\(313\) 6.21345i 0.351205i 0.984461 + 0.175603i \(0.0561874\pi\)
−0.984461 + 0.175603i \(0.943813\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −0.280931 −0.0157787 −0.00788933 0.999969i \(-0.502511\pi\)
−0.00788933 + 0.999969i \(0.502511\pi\)
\(318\) 0 0
\(319\) 11.8719 2.25165i 0.664698 0.126068i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 24.6227i 1.37004i
\(324\) 0 0
\(325\) −8.02168 + 0.184399i −0.444963 + 0.0102286i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 38.0673i 2.09872i
\(330\) 0 0
\(331\) 16.1864i 0.889686i 0.895609 + 0.444843i \(0.146740\pi\)
−0.895609 + 0.444843i \(0.853260\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 3.68512 + 3.60138i 0.201340 + 0.196764i
\(336\) 0 0
\(337\) 12.0702 0.657504 0.328752 0.944416i \(-0.393372\pi\)
0.328752 + 0.944416i \(0.393372\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −22.5984 −1.22377
\(342\) 0 0
\(343\) 27.3569i 1.47714i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 27.5185i 1.47727i 0.674104 + 0.738636i \(0.264530\pi\)
−0.674104 + 0.738636i \(0.735470\pi\)
\(348\) 0 0
\(349\) −28.2034 −1.50969 −0.754847 0.655901i \(-0.772289\pi\)
−0.754847 + 0.655901i \(0.772289\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 22.2286i 1.18311i −0.806264 0.591556i \(-0.798514\pi\)
0.806264 0.591556i \(-0.201486\pi\)
\(354\) 0 0
\(355\) −15.2166 + 15.5704i −0.807614 + 0.826392i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 15.1096i 0.797456i −0.917069 0.398728i \(-0.869452\pi\)
0.917069 0.398728i \(-0.130548\pi\)
\(360\) 0 0
\(361\) −3.67696 −0.193524
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −17.6758 + 18.0868i −0.925192 + 0.946704i
\(366\) 0 0
\(367\) 30.7159 1.60336 0.801678 0.597756i \(-0.203941\pi\)
0.801678 + 0.597756i \(0.203941\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 25.1952 1.30807
\(372\) 0 0
\(373\) 12.5453i 0.649571i 0.945788 + 0.324786i \(0.105292\pi\)
−0.945788 + 0.324786i \(0.894708\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −8.49054 + 1.61034i −0.437285 + 0.0829365i
\(378\) 0 0
\(379\) 13.4802i 0.692430i 0.938155 + 0.346215i \(0.112533\pi\)
−0.938155 + 0.346215i \(0.887467\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 11.8805i 0.607063i 0.952821 + 0.303532i \(0.0981658\pi\)
−0.952821 + 0.303532i \(0.901834\pi\)
\(384\) 0 0
\(385\) −15.7229 + 16.0885i −0.801313 + 0.819945i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0.928453i 0.0470744i 0.999723 + 0.0235372i \(0.00749282\pi\)
−0.999723 + 0.0235372i \(0.992507\pi\)
\(390\) 0 0
\(391\) 3.60477i 0.182301i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 7.61546 + 7.44241i 0.383176 + 0.374468i
\(396\) 0 0
\(397\) 25.3834i 1.27396i −0.770882 0.636978i \(-0.780184\pi\)
0.770882 0.636978i \(-0.219816\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 35.4605 1.77081 0.885407 0.464816i \(-0.153880\pi\)
0.885407 + 0.464816i \(0.153880\pi\)
\(402\) 0 0
\(403\) 16.1620 0.805084
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.25637i 0.0622760i
\(408\) 0 0
\(409\) 38.3847i 1.89800i 0.315272 + 0.949001i \(0.397904\pi\)
−0.315272 + 0.949001i \(0.602096\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 20.6406i 1.01566i
\(414\) 0 0
\(415\) 15.8719 + 15.5112i 0.779120 + 0.761416i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −36.0503 −1.76117 −0.880587 0.473885i \(-0.842851\pi\)
−0.880587 + 0.473885i \(0.842851\pi\)
\(420\) 0 0
\(421\) 25.4517i 1.24044i 0.784427 + 0.620221i \(0.212957\pi\)
−0.784427 + 0.620221i \(0.787043\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.594143 + 25.8463i 0.0288202 + 1.25373i
\(426\) 0 0
\(427\) −7.64192 −0.369818
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −23.4866 −1.13131 −0.565655 0.824642i \(-0.691377\pi\)
−0.565655 + 0.824642i \(0.691377\pi\)
\(432\) 0 0
\(433\) −22.7145 −1.09159 −0.545794 0.837920i \(-0.683772\pi\)
−0.545794 + 0.837920i \(0.683772\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.31992 0.158813
\(438\) 0 0
\(439\) 19.2383 0.918194 0.459097 0.888386i \(-0.348173\pi\)
0.459097 + 0.888386i \(0.348173\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −32.3126 −1.53522 −0.767608 0.640920i \(-0.778553\pi\)
−0.767608 + 0.640920i \(0.778553\pi\)
\(444\) 0 0
\(445\) 20.1512 + 19.6933i 0.955256 + 0.933550i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1.37806i 0.0650347i −0.999471 0.0325174i \(-0.989648\pi\)
0.999471 0.0325174i \(-0.0103524\pi\)
\(450\) 0 0
\(451\) −2.44714 −0.115232
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 11.2447 11.5062i 0.527160 0.539417i
\(456\) 0 0
\(457\) 2.63513i 0.123266i 0.998099 + 0.0616332i \(0.0196309\pi\)
−0.998099 + 0.0616332i \(0.980369\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.21592i 0.0566309i −0.999599 0.0283154i \(-0.990986\pi\)
0.999599 0.0283154i \(-0.00901428\pi\)
\(462\) 0 0
\(463\) 27.8061i 1.29226i 0.763227 + 0.646130i \(0.223614\pi\)
−0.763227 + 0.646130i \(0.776386\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 21.8708 1.01206 0.506029 0.862516i \(-0.331113\pi\)
0.506029 + 0.862516i \(0.331113\pi\)
\(468\) 0 0
\(469\) −10.3315 −0.477065
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 19.2104i 0.883296i
\(474\) 0 0
\(475\) 23.8039 0.547194i 1.09220 0.0251070i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0.740476i 0.0338332i −0.999857 0.0169166i \(-0.994615\pi\)
0.999857 0.0169166i \(-0.00538498\pi\)
\(480\) 0 0
\(481\) 0.898532i 0.0409695i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −21.2766 + 21.7713i −0.966121 + 0.988586i
\(486\) 0 0
\(487\) 22.8735i 1.03649i 0.855231 + 0.518247i \(0.173415\pi\)
−0.855231 + 0.518247i \(0.826585\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 5.53808i 0.249930i −0.992161 0.124965i \(-0.960118\pi\)
0.992161 0.124965i \(-0.0398818\pi\)
\(492\) 0 0
\(493\) 5.18858 + 27.3569i 0.233682 + 1.23209i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 43.6529i 1.95810i
\(498\) 0 0
\(499\) 31.3983 1.40558 0.702791 0.711396i \(-0.251937\pi\)
0.702791 + 0.711396i \(0.251937\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −35.8128 −1.59682 −0.798408 0.602117i \(-0.794324\pi\)
−0.798408 + 0.602117i \(0.794324\pi\)
\(504\) 0 0
\(505\) −7.83689 7.65880i −0.348737 0.340812i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 23.1274 1.02511 0.512553 0.858656i \(-0.328700\pi\)
0.512553 + 0.858656i \(0.328700\pi\)
\(510\) 0 0
\(511\) 50.7076i 2.24317i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −9.73636 9.51512i −0.429035 0.419286i
\(516\) 0 0
\(517\) 19.0515i 0.837885i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −19.8319 −0.868851 −0.434425 0.900708i \(-0.643049\pi\)
−0.434425 + 0.900708i \(0.643049\pi\)
\(522\) 0 0
\(523\) 35.6243i 1.55774i −0.627183 0.778872i \(-0.715792\pi\)
0.627183 0.778872i \(-0.284208\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 52.0746i 2.26841i
\(528\) 0 0
\(529\) 22.5140 0.978868
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.75015 0.0758073
\(534\) 0 0
\(535\) −21.9519 21.4531i −0.949064 0.927498i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 29.3983i 1.26628i
\(540\) 0 0
\(541\) 26.0618i 1.12048i 0.828329 + 0.560242i \(0.189292\pi\)
−0.828329 + 0.560242i \(0.810708\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 17.4962 17.9030i 0.749453 0.766879i
\(546\) 0 0
\(547\) 2.67314i 0.114295i −0.998366 0.0571477i \(-0.981799\pi\)
0.998366 0.0571477i \(-0.0182006\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 25.1952 4.77858i 1.07335 0.203574i
\(552\) 0 0
\(553\) −21.3505 −0.907917
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 27.3978i 1.16088i 0.814303 + 0.580440i \(0.197119\pi\)
−0.814303 + 0.580440i \(0.802881\pi\)
\(558\) 0 0
\(559\) 13.7389i 0.581094i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 7.30225 0.307753 0.153877 0.988090i \(-0.450824\pi\)
0.153877 + 0.988090i \(0.450824\pi\)
\(564\) 0 0
\(565\) 20.9115 21.3977i 0.879753 0.900208i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 33.7641i 1.41547i −0.706480 0.707733i \(-0.749718\pi\)
0.706480 0.707733i \(-0.250282\pi\)
\(570\) 0 0
\(571\) 11.3664 0.475669 0.237835 0.971306i \(-0.423562\pi\)
0.237835 + 0.971306i \(0.423562\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3.48490 + 0.0801094i −0.145330 + 0.00334079i
\(576\) 0 0
\(577\) −0.760326 −0.0316528 −0.0158264 0.999875i \(-0.505038\pi\)
−0.0158264 + 0.999875i \(0.505038\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −44.4981 −1.84609
\(582\) 0 0
\(583\) 12.6094 0.522230
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 31.7924i 1.31221i 0.754668 + 0.656106i \(0.227798\pi\)
−0.754668 + 0.656106i \(0.772202\pi\)
\(588\) 0 0
\(589\) −47.9597 −1.97614
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 45.3103i 1.86067i 0.366709 + 0.930336i \(0.380484\pi\)
−0.366709 + 0.930336i \(0.619516\pi\)
\(594\) 0 0
\(595\) −37.0734 36.2310i −1.51986 1.48533i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 9.03808i 0.369286i −0.982806 0.184643i \(-0.940887\pi\)
0.982806 0.184643i \(-0.0591129\pi\)
\(600\) 0 0
\(601\) 27.1562i 1.10772i −0.832608 0.553862i \(-0.813153\pi\)
0.832608 0.553862i \(-0.186847\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 9.32267 9.53944i 0.379020 0.387833i
\(606\) 0 0
\(607\) −32.6604 −1.32564 −0.662822 0.748777i \(-0.730641\pi\)
−0.662822 + 0.748777i \(0.730641\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 13.6253i 0.551220i
\(612\) 0 0
\(613\) 10.4533i 0.422207i −0.977464 0.211103i \(-0.932294\pi\)
0.977464 0.211103i \(-0.0677057\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 10.3412 0.416323 0.208161 0.978095i \(-0.433252\pi\)
0.208161 + 0.978095i \(0.433252\pi\)
\(618\) 0 0
\(619\) 2.86172i 0.115022i −0.998345 0.0575111i \(-0.981684\pi\)
0.998345 0.0575111i \(-0.0183165\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −56.4953 −2.26344
\(624\) 0 0
\(625\) −24.9736 + 1.14877i −0.998944 + 0.0459509i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.89512 0.115436
\(630\) 0 0
\(631\) −15.6546 −0.623198 −0.311599 0.950214i \(-0.600865\pi\)
−0.311599 + 0.950214i \(0.600865\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −11.5295 + 11.7976i −0.457535 + 0.468174i
\(636\) 0 0
\(637\) 21.0251i 0.833044i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 14.0012i 0.553015i 0.961012 + 0.276508i \(0.0891771\pi\)
−0.961012 + 0.276508i \(0.910823\pi\)
\(642\) 0 0
\(643\) 22.4175i 0.884058i −0.897001 0.442029i \(-0.854259\pi\)
0.897001 0.442029i \(-0.145741\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 33.7838i 1.32818i 0.747653 + 0.664089i \(0.231181\pi\)
−0.747653 + 0.664089i \(0.768819\pi\)
\(648\) 0 0
\(649\) 10.3300i 0.405488i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 7.92867 0.310273 0.155137 0.987893i \(-0.450418\pi\)
0.155137 + 0.987893i \(0.450418\pi\)
\(654\) 0 0
\(655\) −19.3908 18.9502i −0.757662 0.740446i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 25.7137i 1.00167i −0.865544 0.500833i \(-0.833027\pi\)
0.865544 0.500833i \(-0.166973\pi\)
\(660\) 0 0
\(661\) 19.6421 0.763988 0.381994 0.924165i \(-0.375237\pi\)
0.381994 + 0.924165i \(0.375237\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −33.3680 + 34.1439i −1.29396 + 1.32404i
\(666\) 0 0
\(667\) −3.68859 + 0.699586i −0.142823 + 0.0270881i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3.82455 −0.147645
\(672\) 0 0
\(673\) 20.5691i 0.792881i −0.918060 0.396440i \(-0.870245\pi\)
0.918060 0.396440i \(-0.129755\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 34.0627 1.30914 0.654568 0.756003i \(-0.272851\pi\)
0.654568 + 0.756003i \(0.272851\pi\)
\(678\) 0 0
\(679\) 61.0376i 2.34241i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 14.5511i 0.556783i −0.960468 0.278392i \(-0.910199\pi\)
0.960468 0.278392i \(-0.0898013\pi\)
\(684\) 0 0
\(685\) −28.9925 + 29.6666i −1.10774 + 1.13350i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −9.01802 −0.343559
\(690\) 0 0
\(691\) −14.2757 −0.543072 −0.271536 0.962428i \(-0.587532\pi\)
−0.271536 + 0.962428i \(0.587532\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −19.2725 + 19.7206i −0.731047 + 0.748046i
\(696\) 0 0
\(697\) 5.63907i 0.213595i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 12.6923 0.479380 0.239690 0.970849i \(-0.422954\pi\)
0.239690 + 0.970849i \(0.422954\pi\)
\(702\) 0 0
\(703\) 2.66634i 0.100563i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 21.9713 0.826316
\(708\) 0 0
\(709\) 29.1227 1.09372 0.546862 0.837223i \(-0.315822\pi\)
0.546862 + 0.837223i \(0.315822\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 7.02132 0.262950
\(714\) 0 0
\(715\) 5.62764 5.75849i 0.210462 0.215355i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 44.6071 1.66356 0.831782 0.555102i \(-0.187321\pi\)
0.831782 + 0.555102i \(0.187321\pi\)
\(720\) 0 0
\(721\) 27.2966 1.01658
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −26.3319 + 5.62400i −0.977943 + 0.208870i
\(726\) 0 0
\(727\) 7.30544 0.270944 0.135472 0.990781i \(-0.456745\pi\)
0.135472 + 0.990781i \(0.456745\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −44.2675 −1.63729
\(732\) 0 0
\(733\) 23.0436 0.851133 0.425566 0.904927i \(-0.360075\pi\)
0.425566 + 0.904927i \(0.360075\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.17062 −0.190462
\(738\) 0 0
\(739\) 15.3805i 0.565780i −0.959152 0.282890i \(-0.908707\pi\)
0.959152 0.282890i \(-0.0912932\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −6.74039 −0.247281 −0.123640 0.992327i \(-0.539457\pi\)
−0.123640 + 0.992327i \(0.539457\pi\)
\(744\) 0 0
\(745\) 27.8580 28.5057i 1.02064 1.04437i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 61.5439 2.24876
\(750\) 0 0
\(751\) 50.1604i 1.83038i −0.403022 0.915190i \(-0.632040\pi\)
0.403022 0.915190i \(-0.367960\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −27.0323 + 27.6608i −0.983806 + 1.00668i
\(756\) 0 0
\(757\) 6.50143 0.236299 0.118149 0.992996i \(-0.462304\pi\)
0.118149 + 0.992996i \(0.462304\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −0.759611 −0.0275359 −0.0137679 0.999905i \(-0.504383\pi\)
−0.0137679 + 0.999905i \(0.504383\pi\)
\(762\) 0 0
\(763\) 50.1924i 1.81709i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 7.38780i 0.266758i
\(768\) 0 0
\(769\) 0.610070i 0.0219997i 0.999939 + 0.0109998i \(0.00350143\pi\)
−0.999939 + 0.0109998i \(0.996499\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −14.8494 −0.534097 −0.267049 0.963683i \(-0.586048\pi\)
−0.267049 + 0.963683i \(0.586048\pi\)
\(774\) 0 0
\(775\) 50.3430 1.15726i 1.80837 0.0415701i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −5.19346 −0.186075
\(780\) 0 0
\(781\) 21.8470i 0.781746i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 6.92077 7.08169i 0.247013 0.252756i
\(786\) 0 0
\(787\) 5.42668i 0.193440i −0.995312 0.0967201i \(-0.969165\pi\)
0.995312 0.0967201i \(-0.0308352\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 59.9901i 2.13300i
\(792\) 0 0
\(793\) 2.73524 0.0971314
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 27.3223 0.967806 0.483903 0.875122i \(-0.339219\pi\)
0.483903 + 0.875122i \(0.339219\pi\)
\(798\) 0 0
\(799\) 43.9013 1.55312
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 25.3777i 0.895558i
\(804\) 0 0
\(805\) 4.88509 4.99868i 0.172177 0.176180i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 43.1299i 1.51637i −0.652042 0.758183i \(-0.726087\pi\)
0.652042 0.758183i \(-0.273913\pi\)
\(810\) 0 0
\(811\) −20.7911 −0.730076 −0.365038 0.930993i \(-0.618944\pi\)
−0.365038 + 0.930993i \(0.618944\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −27.4229 + 28.0605i −0.960581 + 0.982916i
\(816\) 0 0
\(817\) 40.7694i 1.42634i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −9.20736 −0.321339 −0.160670 0.987008i \(-0.551365\pi\)
−0.160670 + 0.987008i \(0.551365\pi\)
\(822\) 0 0
\(823\) 10.0407 0.349996 0.174998 0.984569i \(-0.444008\pi\)
0.174998 + 0.984569i \(0.444008\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 25.5722 0.889231 0.444616 0.895721i \(-0.353340\pi\)
0.444616 + 0.895721i \(0.353340\pi\)
\(828\) 0 0
\(829\) 39.1907i 1.36115i 0.732680 + 0.680574i \(0.238269\pi\)
−0.732680 + 0.680574i \(0.761731\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 67.7439 2.34719
\(834\) 0 0
\(835\) 19.7438 + 19.2951i 0.683262 + 0.667736i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 23.9229i 0.825910i −0.910751 0.412955i \(-0.864497\pi\)
0.910751 0.412955i \(-0.135503\pi\)
\(840\) 0 0
\(841\) −26.9861 + 10.6185i −0.930554 + 0.366154i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 16.2925 16.6713i 0.560478 0.573510i
\(846\) 0 0
\(847\) 26.7445i 0.918953i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0.390354i 0.0133812i
\(852\) 0 0
\(853\) 29.8912 1.02346 0.511728 0.859147i \(-0.329006\pi\)
0.511728 + 0.859147i \(0.329006\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 25.9883i 0.887744i 0.896090 + 0.443872i \(0.146395\pi\)
−0.896090 + 0.443872i \(0.853605\pi\)
\(858\) 0 0
\(859\) 34.2328i 1.16801i −0.811751 0.584003i \(-0.801485\pi\)
0.811751 0.584003i \(-0.198515\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 22.3087i 0.759399i −0.925110 0.379699i \(-0.876027\pi\)
0.925110 0.379699i \(-0.123973\pi\)
\(864\) 0 0
\(865\) 4.45963 + 4.35829i 0.151632 + 0.148186i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −10.6853 −0.362474
\(870\) 0 0
\(871\) 3.69792 0.125299
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 34.2023 36.6458i 1.15625 1.23885i
\(876\) 0 0
\(877\) 49.3252i 1.66559i 0.553578 + 0.832797i \(0.313262\pi\)
−0.553578 + 0.832797i \(0.686738\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 7.59736i 0.255962i −0.991777 0.127981i \(-0.959150\pi\)
0.991777 0.127981i \(-0.0408496\pi\)
\(882\) 0 0
\(883\) 4.02750i 0.135536i 0.997701 + 0.0677682i \(0.0215878\pi\)
−0.997701 + 0.0677682i \(0.978412\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3.60085 0.120905 0.0604523 0.998171i \(-0.480746\pi\)
0.0604523 + 0.998171i \(0.480746\pi\)
\(888\) 0 0
\(889\) 33.0755i 1.10932i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 40.4322i 1.35301i
\(894\) 0 0
\(895\) 35.8796 36.7139i 1.19932 1.22721i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 53.2855 10.1062i 1.77717 0.337062i
\(900\) 0 0
\(901\) 29.0565i 0.968013i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −19.6317 + 20.0881i −0.652579 + 0.667752i
\(906\) 0 0
\(907\) 51.6632 1.71545 0.857725 0.514109i \(-0.171877\pi\)
0.857725 + 0.514109i \(0.171877\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0.453013i 0.0150090i −0.999972 0.00750449i \(-0.997611\pi\)
0.999972 0.00750449i \(-0.00238878\pi\)
\(912\) 0 0
\(913\) −22.2700 −0.737028
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 54.3637 1.79525
\(918\) 0 0
\(919\) 2.34401 0.0773216 0.0386608 0.999252i \(-0.487691\pi\)
0.0386608 + 0.999252i \(0.487691\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 15.6245i 0.514287i
\(924\) 0 0
\(925\) 0.0643387 + 2.79884i 0.00211544 + 0.0920254i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −2.23756 −0.0734120 −0.0367060 0.999326i \(-0.511687\pi\)
−0.0367060 + 0.999326i \(0.511687\pi\)
\(930\) 0 0
\(931\) 62.3907i 2.04477i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −18.5542 18.1325i −0.606786 0.592998i
\(936\) 0 0
\(937\) 27.7257i 0.905760i 0.891571 + 0.452880i \(0.149603\pi\)
−0.891571 + 0.452880i \(0.850397\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −42.8308 −1.39624 −0.698122 0.715979i \(-0.745981\pi\)
−0.698122 + 0.715979i \(0.745981\pi\)
\(942\) 0 0
\(943\) 0.760326 0.0247596
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 23.1596 0.752586 0.376293 0.926501i \(-0.377199\pi\)
0.376293 + 0.926501i \(0.377199\pi\)
\(948\) 0 0
\(949\) 18.1496i 0.589161i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 20.6892i 0.670189i −0.942184 0.335095i \(-0.891232\pi\)
0.942184 0.335095i \(-0.108768\pi\)
\(954\) 0 0
\(955\) 36.9732 + 36.1331i 1.19643 + 1.16924i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 83.1726i 2.68578i
\(960\) 0 0
\(961\) −70.4303 −2.27194
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1.18829 + 1.21592i −0.0382523 + 0.0391417i
\(966\) 0 0
\(967\) 17.7056 0.569375 0.284687 0.958620i \(-0.408110\pi\)
0.284687 + 0.958620i \(0.408110\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 56.5160i 1.81368i 0.421471 + 0.906842i \(0.361514\pi\)
−0.421471 + 0.906842i \(0.638486\pi\)
\(972\) 0 0
\(973\) 55.2883i 1.77246i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 9.17191i 0.293436i −0.989178 0.146718i \(-0.953129\pi\)
0.989178 0.146718i \(-0.0468709\pi\)
\(978\) 0 0
\(979\) −28.2742 −0.903648
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −46.2546 −1.47529 −0.737647 0.675187i \(-0.764063\pi\)
−0.737647 + 0.675187i \(0.764063\pi\)
\(984\) 0 0
\(985\) −14.4115 14.0841i −0.459190 0.448756i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 5.96866i 0.189792i
\(990\) 0 0
\(991\) 0.171474 0.00544706 0.00272353 0.999996i \(-0.499133\pi\)
0.00272353 + 0.999996i \(0.499133\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −22.0391 + 22.5515i −0.698685 + 0.714931i
\(996\) 0 0
\(997\) −20.8550 −0.660483 −0.330242 0.943896i \(-0.607130\pi\)
−0.330242 + 0.943896i \(0.607130\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5220.2.b.f.289.13 yes 24
3.2 odd 2 inner 5220.2.b.f.289.12 yes 24
5.4 even 2 inner 5220.2.b.f.289.16 yes 24
15.14 odd 2 inner 5220.2.b.f.289.9 24
29.28 even 2 inner 5220.2.b.f.289.14 yes 24
87.86 odd 2 inner 5220.2.b.f.289.11 yes 24
145.144 even 2 inner 5220.2.b.f.289.15 yes 24
435.434 odd 2 inner 5220.2.b.f.289.10 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5220.2.b.f.289.9 24 15.14 odd 2 inner
5220.2.b.f.289.10 yes 24 435.434 odd 2 inner
5220.2.b.f.289.11 yes 24 87.86 odd 2 inner
5220.2.b.f.289.12 yes 24 3.2 odd 2 inner
5220.2.b.f.289.13 yes 24 1.1 even 1 trivial
5220.2.b.f.289.14 yes 24 29.28 even 2 inner
5220.2.b.f.289.15 yes 24 145.144 even 2 inner
5220.2.b.f.289.16 yes 24 5.4 even 2 inner