Properties

Label 5220.2.b.f
Level $5220$
Weight $2$
Character orbit 5220.b
Analytic conductor $41.682$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5220,2,Mod(289,5220)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5220, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5220.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5220 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5220.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,48,0,0,0,0, 0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(37)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.6819098551\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q + 48 q^{25} - 104 q^{49} - 80 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
289.1 0 0 0 −2.10485 0.754717i 0 1.11057i 0 0 0
289.2 0 0 0 −2.10485 0.754717i 0 1.11057i 0 0 0
289.3 0 0 0 −2.10485 + 0.754717i 0 1.11057i 0 0 0
289.4 0 0 0 −2.10485 + 0.754717i 0 1.11057i 0 0 0
289.5 0 0 0 −1.90448 1.17173i 0 3.55878i 0 0 0
289.6 0 0 0 −1.90448 1.17173i 0 3.55878i 0 0 0
289.7 0 0 0 −1.90448 + 1.17173i 0 3.55878i 0 0 0
289.8 0 0 0 −1.90448 + 1.17173i 0 3.55878i 0 0 0
289.9 0 0 0 −1.56286 1.59920i 0 4.48349i 0 0 0
289.10 0 0 0 −1.56286 1.59920i 0 4.48349i 0 0 0
289.11 0 0 0 −1.56286 + 1.59920i 0 4.48349i 0 0 0
289.12 0 0 0 −1.56286 + 1.59920i 0 4.48349i 0 0 0
289.13 0 0 0 1.56286 1.59920i 0 4.48349i 0 0 0
289.14 0 0 0 1.56286 1.59920i 0 4.48349i 0 0 0
289.15 0 0 0 1.56286 + 1.59920i 0 4.48349i 0 0 0
289.16 0 0 0 1.56286 + 1.59920i 0 4.48349i 0 0 0
289.17 0 0 0 1.90448 1.17173i 0 3.55878i 0 0 0
289.18 0 0 0 1.90448 1.17173i 0 3.55878i 0 0 0
289.19 0 0 0 1.90448 + 1.17173i 0 3.55878i 0 0 0
289.20 0 0 0 1.90448 + 1.17173i 0 3.55878i 0 0 0
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 289.24
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner
29.b even 2 1 inner
87.d odd 2 1 inner
145.d even 2 1 inner
435.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5220.2.b.f 24
3.b odd 2 1 inner 5220.2.b.f 24
5.b even 2 1 inner 5220.2.b.f 24
15.d odd 2 1 inner 5220.2.b.f 24
29.b even 2 1 inner 5220.2.b.f 24
87.d odd 2 1 inner 5220.2.b.f 24
145.d even 2 1 inner 5220.2.b.f 24
435.b odd 2 1 inner 5220.2.b.f 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5220.2.b.f 24 1.a even 1 1 trivial
5220.2.b.f 24 3.b odd 2 1 inner
5220.2.b.f 24 5.b even 2 1 inner
5220.2.b.f 24 15.d odd 2 1 inner
5220.2.b.f 24 29.b even 2 1 inner
5220.2.b.f 24 87.d odd 2 1 inner
5220.2.b.f 24 145.d even 2 1 inner
5220.2.b.f 24 435.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(5220, [\chi])\):

\( T_{7}^{6} + 34T_{7}^{4} + 295T_{7}^{2} + 314 \) Copy content Toggle raw display
\( T_{17}^{6} - 74T_{17}^{4} + 1569T_{17}^{2} - 8164 \) Copy content Toggle raw display
\( T_{37}^{6} - 122T_{37}^{4} + 2692T_{37}^{2} - 832 \) Copy content Toggle raw display