Properties

Label 520.2.k.a.441.6
Level $520$
Weight $2$
Character 520.441
Analytic conductor $4.152$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [520,2,Mod(441,520)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("520.441"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(520, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 520 = 2^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 520.k (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.15222090511\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 441.6
Root \(1.45161 - 1.45161i\) of defining polynomial
Character \(\chi\) \(=\) 520.441
Dual form 520.2.k.a.441.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.21432 q^{3} +1.00000i q^{5} -2.90321i q^{7} +1.90321 q^{9} +5.73975i q^{11} +(3.59210 - 0.311108i) q^{13} +2.21432i q^{15} +5.80642 q^{17} -5.11753i q^{19} -6.42864i q^{21} +5.59210 q^{23} -1.00000 q^{25} -2.42864 q^{27} -8.57628 q^{29} -1.44446i q^{31} +12.7096i q^{33} +2.90321 q^{35} +0.474572i q^{37} +(7.95407 - 0.688892i) q^{39} +9.47949i q^{41} -12.6430 q^{43} +1.90321i q^{45} -8.70964i q^{47} -1.42864 q^{49} +12.8573 q^{51} -9.47949 q^{53} -5.73975 q^{55} -11.3319i q^{57} +0.688892i q^{59} -3.85236 q^{61} -5.52543i q^{63} +(0.311108 + 3.59210i) q^{65} -5.52543i q^{67} +12.3827 q^{69} -12.7304i q^{71} +11.1383i q^{73} -2.21432 q^{75} +16.6637 q^{77} -0.561993 q^{79} -11.0874 q^{81} +7.03657i q^{83} +5.80642i q^{85} -18.9906 q^{87} -1.80642i q^{89} +(-0.903212 - 10.4286i) q^{91} -3.19850i q^{93} +5.11753 q^{95} +12.6637i q^{97} +10.9240i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{9} + 8 q^{13} + 8 q^{17} + 20 q^{23} - 6 q^{25} + 12 q^{27} - 12 q^{29} + 4 q^{35} + 8 q^{39} - 36 q^{43} + 18 q^{49} + 24 q^{51} - 4 q^{53} - 8 q^{55} - 36 q^{61} + 2 q^{65} + 8 q^{69} + 20 q^{77}+ \cdots + 4 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/520\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(261\) \(391\) \(417\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.21432 1.27844 0.639219 0.769025i \(-0.279258\pi\)
0.639219 + 0.769025i \(0.279258\pi\)
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 2.90321i 1.09731i −0.836049 0.548655i \(-0.815140\pi\)
0.836049 0.548655i \(-0.184860\pi\)
\(8\) 0 0
\(9\) 1.90321 0.634404
\(10\) 0 0
\(11\) 5.73975i 1.73060i 0.501255 + 0.865299i \(0.332872\pi\)
−0.501255 + 0.865299i \(0.667128\pi\)
\(12\) 0 0
\(13\) 3.59210 0.311108i 0.996270 0.0862858i
\(14\) 0 0
\(15\) 2.21432i 0.571735i
\(16\) 0 0
\(17\) 5.80642 1.40826 0.704132 0.710069i \(-0.251336\pi\)
0.704132 + 0.710069i \(0.251336\pi\)
\(18\) 0 0
\(19\) 5.11753i 1.17404i −0.809572 0.587021i \(-0.800301\pi\)
0.809572 0.587021i \(-0.199699\pi\)
\(20\) 0 0
\(21\) 6.42864i 1.40284i
\(22\) 0 0
\(23\) 5.59210 1.16603 0.583017 0.812460i \(-0.301872\pi\)
0.583017 + 0.812460i \(0.301872\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −2.42864 −0.467392
\(28\) 0 0
\(29\) −8.57628 −1.59258 −0.796288 0.604918i \(-0.793206\pi\)
−0.796288 + 0.604918i \(0.793206\pi\)
\(30\) 0 0
\(31\) 1.44446i 0.259433i −0.991551 0.129716i \(-0.958593\pi\)
0.991551 0.129716i \(-0.0414067\pi\)
\(32\) 0 0
\(33\) 12.7096i 2.21246i
\(34\) 0 0
\(35\) 2.90321 0.490732
\(36\) 0 0
\(37\) 0.474572i 0.0780192i 0.999239 + 0.0390096i \(0.0124203\pi\)
−0.999239 + 0.0390096i \(0.987580\pi\)
\(38\) 0 0
\(39\) 7.95407 0.688892i 1.27367 0.110311i
\(40\) 0 0
\(41\) 9.47949i 1.48045i 0.672360 + 0.740224i \(0.265281\pi\)
−0.672360 + 0.740224i \(0.734719\pi\)
\(42\) 0 0
\(43\) −12.6430 −1.92803 −0.964017 0.265842i \(-0.914350\pi\)
−0.964017 + 0.265842i \(0.914350\pi\)
\(44\) 0 0
\(45\) 1.90321i 0.283714i
\(46\) 0 0
\(47\) 8.70964i 1.27043i −0.772335 0.635215i \(-0.780911\pi\)
0.772335 0.635215i \(-0.219089\pi\)
\(48\) 0 0
\(49\) −1.42864 −0.204091
\(50\) 0 0
\(51\) 12.8573 1.80038
\(52\) 0 0
\(53\) −9.47949 −1.30211 −0.651054 0.759031i \(-0.725673\pi\)
−0.651054 + 0.759031i \(0.725673\pi\)
\(54\) 0 0
\(55\) −5.73975 −0.773947
\(56\) 0 0
\(57\) 11.3319i 1.50094i
\(58\) 0 0
\(59\) 0.688892i 0.0896861i 0.998994 + 0.0448431i \(0.0142788\pi\)
−0.998994 + 0.0448431i \(0.985721\pi\)
\(60\) 0 0
\(61\) −3.85236 −0.493244 −0.246622 0.969112i \(-0.579321\pi\)
−0.246622 + 0.969112i \(0.579321\pi\)
\(62\) 0 0
\(63\) 5.52543i 0.696138i
\(64\) 0 0
\(65\) 0.311108 + 3.59210i 0.0385882 + 0.445546i
\(66\) 0 0
\(67\) 5.52543i 0.675038i −0.941319 0.337519i \(-0.890412\pi\)
0.941319 0.337519i \(-0.109588\pi\)
\(68\) 0 0
\(69\) 12.3827 1.49070
\(70\) 0 0
\(71\) 12.7304i 1.51082i −0.655254 0.755409i \(-0.727438\pi\)
0.655254 0.755409i \(-0.272562\pi\)
\(72\) 0 0
\(73\) 11.1383i 1.30364i 0.758375 + 0.651818i \(0.225994\pi\)
−0.758375 + 0.651818i \(0.774006\pi\)
\(74\) 0 0
\(75\) −2.21432 −0.255688
\(76\) 0 0
\(77\) 16.6637 1.89901
\(78\) 0 0
\(79\) −0.561993 −0.0632291 −0.0316146 0.999500i \(-0.510065\pi\)
−0.0316146 + 0.999500i \(0.510065\pi\)
\(80\) 0 0
\(81\) −11.0874 −1.23194
\(82\) 0 0
\(83\) 7.03657i 0.772363i 0.922423 + 0.386182i \(0.126206\pi\)
−0.922423 + 0.386182i \(0.873794\pi\)
\(84\) 0 0
\(85\) 5.80642i 0.629795i
\(86\) 0 0
\(87\) −18.9906 −2.03601
\(88\) 0 0
\(89\) 1.80642i 0.191481i −0.995406 0.0957403i \(-0.969478\pi\)
0.995406 0.0957403i \(-0.0305218\pi\)
\(90\) 0 0
\(91\) −0.903212 10.4286i −0.0946823 1.09322i
\(92\) 0 0
\(93\) 3.19850i 0.331669i
\(94\) 0 0
\(95\) 5.11753 0.525048
\(96\) 0 0
\(97\) 12.6637i 1.28580i 0.765948 + 0.642902i \(0.222270\pi\)
−0.765948 + 0.642902i \(0.777730\pi\)
\(98\) 0 0
\(99\) 10.9240i 1.09790i
\(100\) 0 0
\(101\) 2.81579 0.280182 0.140091 0.990139i \(-0.455261\pi\)
0.140091 + 0.990139i \(0.455261\pi\)
\(102\) 0 0
\(103\) 9.69381 0.955160 0.477580 0.878588i \(-0.341514\pi\)
0.477580 + 0.878588i \(0.341514\pi\)
\(104\) 0 0
\(105\) 6.42864 0.627371
\(106\) 0 0
\(107\) −14.0207 −1.35544 −0.677718 0.735322i \(-0.737031\pi\)
−0.677718 + 0.735322i \(0.737031\pi\)
\(108\) 0 0
\(109\) 3.80642i 0.364589i 0.983244 + 0.182295i \(0.0583525\pi\)
−0.983244 + 0.182295i \(0.941648\pi\)
\(110\) 0 0
\(111\) 1.05086i 0.0997428i
\(112\) 0 0
\(113\) −0.387152 −0.0364202 −0.0182101 0.999834i \(-0.505797\pi\)
−0.0182101 + 0.999834i \(0.505797\pi\)
\(114\) 0 0
\(115\) 5.59210i 0.521466i
\(116\) 0 0
\(117\) 6.83654 0.592104i 0.632038 0.0547400i
\(118\) 0 0
\(119\) 16.8573i 1.54530i
\(120\) 0 0
\(121\) −21.9447 −1.99497
\(122\) 0 0
\(123\) 20.9906i 1.89266i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) −3.20495 −0.284393 −0.142197 0.989838i \(-0.545417\pi\)
−0.142197 + 0.989838i \(0.545417\pi\)
\(128\) 0 0
\(129\) −27.9956 −2.46487
\(130\) 0 0
\(131\) 0.949145 0.0829272 0.0414636 0.999140i \(-0.486798\pi\)
0.0414636 + 0.999140i \(0.486798\pi\)
\(132\) 0 0
\(133\) −14.8573 −1.28829
\(134\) 0 0
\(135\) 2.42864i 0.209024i
\(136\) 0 0
\(137\) 12.7971i 1.09333i −0.837353 0.546663i \(-0.815898\pi\)
0.837353 0.546663i \(-0.184102\pi\)
\(138\) 0 0
\(139\) 6.66370 0.565208 0.282604 0.959237i \(-0.408802\pi\)
0.282604 + 0.959237i \(0.408802\pi\)
\(140\) 0 0
\(141\) 19.2859i 1.62417i
\(142\) 0 0
\(143\) 1.78568 + 20.6178i 0.149326 + 1.72414i
\(144\) 0 0
\(145\) 8.57628i 0.712222i
\(146\) 0 0
\(147\) −3.16346 −0.260918
\(148\) 0 0
\(149\) 6.94914i 0.569296i −0.958632 0.284648i \(-0.908123\pi\)
0.958632 0.284648i \(-0.0918767\pi\)
\(150\) 0 0
\(151\) 8.73038i 0.710468i −0.934777 0.355234i \(-0.884401\pi\)
0.934777 0.355234i \(-0.115599\pi\)
\(152\) 0 0
\(153\) 11.0509 0.893409
\(154\) 0 0
\(155\) 1.44446 0.116022
\(156\) 0 0
\(157\) −0.428639 −0.0342092 −0.0171046 0.999854i \(-0.505445\pi\)
−0.0171046 + 0.999854i \(0.505445\pi\)
\(158\) 0 0
\(159\) −20.9906 −1.66467
\(160\) 0 0
\(161\) 16.2351i 1.27950i
\(162\) 0 0
\(163\) 11.1985i 0.877134i −0.898698 0.438567i \(-0.855486\pi\)
0.898698 0.438567i \(-0.144514\pi\)
\(164\) 0 0
\(165\) −12.7096 −0.989444
\(166\) 0 0
\(167\) 6.38271i 0.493909i 0.969027 + 0.246954i \(0.0794298\pi\)
−0.969027 + 0.246954i \(0.920570\pi\)
\(168\) 0 0
\(169\) 12.8064 2.23506i 0.985110 0.171928i
\(170\) 0 0
\(171\) 9.73975i 0.744817i
\(172\) 0 0
\(173\) −3.67307 −0.279258 −0.139629 0.990204i \(-0.544591\pi\)
−0.139629 + 0.990204i \(0.544591\pi\)
\(174\) 0 0
\(175\) 2.90321i 0.219462i
\(176\) 0 0
\(177\) 1.52543i 0.114658i
\(178\) 0 0
\(179\) 1.08250 0.0809097 0.0404548 0.999181i \(-0.487119\pi\)
0.0404548 + 0.999181i \(0.487119\pi\)
\(180\) 0 0
\(181\) 1.82071 0.135333 0.0676663 0.997708i \(-0.478445\pi\)
0.0676663 + 0.997708i \(0.478445\pi\)
\(182\) 0 0
\(183\) −8.53035 −0.630582
\(184\) 0 0
\(185\) −0.474572 −0.0348913
\(186\) 0 0
\(187\) 33.3274i 2.43714i
\(188\) 0 0
\(189\) 7.05086i 0.512874i
\(190\) 0 0
\(191\) 15.2257 1.10169 0.550846 0.834607i \(-0.314305\pi\)
0.550846 + 0.834607i \(0.314305\pi\)
\(192\) 0 0
\(193\) 5.18421i 0.373167i 0.982439 + 0.186584i \(0.0597416\pi\)
−0.982439 + 0.186584i \(0.940258\pi\)
\(194\) 0 0
\(195\) 0.688892 + 7.95407i 0.0493326 + 0.569603i
\(196\) 0 0
\(197\) 15.9684i 1.13770i 0.822442 + 0.568849i \(0.192611\pi\)
−0.822442 + 0.568849i \(0.807389\pi\)
\(198\) 0 0
\(199\) −18.7971 −1.33249 −0.666244 0.745734i \(-0.732099\pi\)
−0.666244 + 0.745734i \(0.732099\pi\)
\(200\) 0 0
\(201\) 12.2351i 0.862995i
\(202\) 0 0
\(203\) 24.8988i 1.74755i
\(204\) 0 0
\(205\) −9.47949 −0.662077
\(206\) 0 0
\(207\) 10.6430 0.739737
\(208\) 0 0
\(209\) 29.3733 2.03180
\(210\) 0 0
\(211\) −6.91750 −0.476220 −0.238110 0.971238i \(-0.576528\pi\)
−0.238110 + 0.971238i \(0.576528\pi\)
\(212\) 0 0
\(213\) 28.1891i 1.93149i
\(214\) 0 0
\(215\) 12.6430i 0.862243i
\(216\) 0 0
\(217\) −4.19358 −0.284678
\(218\) 0 0
\(219\) 24.6637i 1.66662i
\(220\) 0 0
\(221\) 20.8573 1.80642i 1.40301 0.121513i
\(222\) 0 0
\(223\) 5.56691i 0.372788i −0.982475 0.186394i \(-0.940320\pi\)
0.982475 0.186394i \(-0.0596801\pi\)
\(224\) 0 0
\(225\) −1.90321 −0.126881
\(226\) 0 0
\(227\) 9.43356i 0.626127i −0.949732 0.313064i \(-0.898645\pi\)
0.949732 0.313064i \(-0.101355\pi\)
\(228\) 0 0
\(229\) 16.0415i 1.06005i −0.847982 0.530026i \(-0.822182\pi\)
0.847982 0.530026i \(-0.177818\pi\)
\(230\) 0 0
\(231\) 36.8988 2.42776
\(232\) 0 0
\(233\) 28.6637 1.87782 0.938911 0.344161i \(-0.111836\pi\)
0.938911 + 0.344161i \(0.111836\pi\)
\(234\) 0 0
\(235\) 8.70964 0.568154
\(236\) 0 0
\(237\) −1.24443 −0.0808345
\(238\) 0 0
\(239\) 21.7397i 1.40623i 0.711077 + 0.703114i \(0.248208\pi\)
−0.711077 + 0.703114i \(0.751792\pi\)
\(240\) 0 0
\(241\) 12.5303i 0.807151i −0.914946 0.403575i \(-0.867767\pi\)
0.914946 0.403575i \(-0.132233\pi\)
\(242\) 0 0
\(243\) −17.2652 −1.10756
\(244\) 0 0
\(245\) 1.42864i 0.0912724i
\(246\) 0 0
\(247\) −1.59210 18.3827i −0.101303 1.16966i
\(248\) 0 0
\(249\) 15.5812i 0.987419i
\(250\) 0 0
\(251\) 17.8479 1.12655 0.563275 0.826269i \(-0.309541\pi\)
0.563275 + 0.826269i \(0.309541\pi\)
\(252\) 0 0
\(253\) 32.0973i 2.01794i
\(254\) 0 0
\(255\) 12.8573i 0.805154i
\(256\) 0 0
\(257\) 21.6128 1.34817 0.674086 0.738653i \(-0.264538\pi\)
0.674086 + 0.738653i \(0.264538\pi\)
\(258\) 0 0
\(259\) 1.37778 0.0856114
\(260\) 0 0
\(261\) −16.3225 −1.01034
\(262\) 0 0
\(263\) −3.84590 −0.237149 −0.118574 0.992945i \(-0.537832\pi\)
−0.118574 + 0.992945i \(0.537832\pi\)
\(264\) 0 0
\(265\) 9.47949i 0.582321i
\(266\) 0 0
\(267\) 4.00000i 0.244796i
\(268\) 0 0
\(269\) −5.57136 −0.339692 −0.169846 0.985471i \(-0.554327\pi\)
−0.169846 + 0.985471i \(0.554327\pi\)
\(270\) 0 0
\(271\) 3.96497i 0.240855i −0.992722 0.120427i \(-0.961574\pi\)
0.992722 0.120427i \(-0.0384265\pi\)
\(272\) 0 0
\(273\) −2.00000 23.0923i −0.121046 1.39761i
\(274\) 0 0
\(275\) 5.73975i 0.346120i
\(276\) 0 0
\(277\) 6.99063 0.420026 0.210013 0.977699i \(-0.432649\pi\)
0.210013 + 0.977699i \(0.432649\pi\)
\(278\) 0 0
\(279\) 2.74912i 0.164585i
\(280\) 0 0
\(281\) 18.0415i 1.07626i −0.842860 0.538132i \(-0.819130\pi\)
0.842860 0.538132i \(-0.180870\pi\)
\(282\) 0 0
\(283\) 26.3160 1.56433 0.782163 0.623074i \(-0.214117\pi\)
0.782163 + 0.623074i \(0.214117\pi\)
\(284\) 0 0
\(285\) 11.3319 0.671241
\(286\) 0 0
\(287\) 27.5210 1.62451
\(288\) 0 0
\(289\) 16.7146 0.983209
\(290\) 0 0
\(291\) 28.0415i 1.64382i
\(292\) 0 0
\(293\) 20.1160i 1.17519i 0.809155 + 0.587595i \(0.199925\pi\)
−0.809155 + 0.587595i \(0.800075\pi\)
\(294\) 0 0
\(295\) −0.688892 −0.0401089
\(296\) 0 0
\(297\) 13.9398i 0.808868i
\(298\) 0 0
\(299\) 20.0874 1.73975i 1.16169 0.100612i
\(300\) 0 0
\(301\) 36.7052i 2.11565i
\(302\) 0 0
\(303\) 6.23506 0.358195
\(304\) 0 0
\(305\) 3.85236i 0.220585i
\(306\) 0 0
\(307\) 3.06515i 0.174937i −0.996167 0.0874685i \(-0.972122\pi\)
0.996167 0.0874685i \(-0.0278777\pi\)
\(308\) 0 0
\(309\) 21.4652 1.22111
\(310\) 0 0
\(311\) −28.2449 −1.60162 −0.800811 0.598917i \(-0.795598\pi\)
−0.800811 + 0.598917i \(0.795598\pi\)
\(312\) 0 0
\(313\) 18.1017 1.02317 0.511585 0.859233i \(-0.329059\pi\)
0.511585 + 0.859233i \(0.329059\pi\)
\(314\) 0 0
\(315\) 5.52543 0.311323
\(316\) 0 0
\(317\) 16.2908i 0.914985i 0.889214 + 0.457492i \(0.151252\pi\)
−0.889214 + 0.457492i \(0.848748\pi\)
\(318\) 0 0
\(319\) 49.2257i 2.75611i
\(320\) 0 0
\(321\) −31.0464 −1.73284
\(322\) 0 0
\(323\) 29.7146i 1.65336i
\(324\) 0 0
\(325\) −3.59210 + 0.311108i −0.199254 + 0.0172572i
\(326\) 0 0
\(327\) 8.42864i 0.466105i
\(328\) 0 0
\(329\) −25.2859 −1.39406
\(330\) 0 0
\(331\) 16.8825i 0.927944i 0.885850 + 0.463972i \(0.153576\pi\)
−0.885850 + 0.463972i \(0.846424\pi\)
\(332\) 0 0
\(333\) 0.903212i 0.0494957i
\(334\) 0 0
\(335\) 5.52543 0.301886
\(336\) 0 0
\(337\) −6.78415 −0.369556 −0.184778 0.982780i \(-0.559157\pi\)
−0.184778 + 0.982780i \(0.559157\pi\)
\(338\) 0 0
\(339\) −0.857279 −0.0465610
\(340\) 0 0
\(341\) 8.29084 0.448974
\(342\) 0 0
\(343\) 16.1748i 0.873359i
\(344\) 0 0
\(345\) 12.3827i 0.666663i
\(346\) 0 0
\(347\) −16.0207 −0.860039 −0.430019 0.902820i \(-0.641493\pi\)
−0.430019 + 0.902820i \(0.641493\pi\)
\(348\) 0 0
\(349\) 14.7052i 0.787151i −0.919292 0.393575i \(-0.871238\pi\)
0.919292 0.393575i \(-0.128762\pi\)
\(350\) 0 0
\(351\) −8.72393 + 0.755569i −0.465649 + 0.0403293i
\(352\) 0 0
\(353\) 1.81087i 0.0963829i 0.998838 + 0.0481914i \(0.0153458\pi\)
−0.998838 + 0.0481914i \(0.984654\pi\)
\(354\) 0 0
\(355\) 12.7304 0.675658
\(356\) 0 0
\(357\) 37.3274i 1.97558i
\(358\) 0 0
\(359\) 7.01582i 0.370281i 0.982712 + 0.185140i \(0.0592740\pi\)
−0.982712 + 0.185140i \(0.940726\pi\)
\(360\) 0 0
\(361\) −7.18913 −0.378375
\(362\) 0 0
\(363\) −48.5926 −2.55045
\(364\) 0 0
\(365\) −11.1383 −0.583004
\(366\) 0 0
\(367\) −2.43954 −0.127343 −0.0636714 0.997971i \(-0.520281\pi\)
−0.0636714 + 0.997971i \(0.520281\pi\)
\(368\) 0 0
\(369\) 18.0415i 0.939202i
\(370\) 0 0
\(371\) 27.5210i 1.42882i
\(372\) 0 0
\(373\) −16.4286 −0.850643 −0.425321 0.905042i \(-0.639839\pi\)
−0.425321 + 0.905042i \(0.639839\pi\)
\(374\) 0 0
\(375\) 2.21432i 0.114347i
\(376\) 0 0
\(377\) −30.8069 + 2.66815i −1.58664 + 0.137417i
\(378\) 0 0
\(379\) 0.0251894i 0.00129389i −1.00000 0.000646945i \(-0.999794\pi\)
1.00000 0.000646945i \(-0.000205929\pi\)
\(380\) 0 0
\(381\) −7.09679 −0.363579
\(382\) 0 0
\(383\) 3.89384i 0.198966i −0.995039 0.0994831i \(-0.968281\pi\)
0.995039 0.0994831i \(-0.0317189\pi\)
\(384\) 0 0
\(385\) 16.6637i 0.849261i
\(386\) 0 0
\(387\) −24.0622 −1.22315
\(388\) 0 0
\(389\) 24.1017 1.22201 0.611003 0.791629i \(-0.290766\pi\)
0.611003 + 0.791629i \(0.290766\pi\)
\(390\) 0 0
\(391\) 32.4701 1.64208
\(392\) 0 0
\(393\) 2.10171 0.106017
\(394\) 0 0
\(395\) 0.561993i 0.0282769i
\(396\) 0 0
\(397\) 33.2114i 1.66683i 0.552646 + 0.833416i \(0.313618\pi\)
−0.552646 + 0.833416i \(0.686382\pi\)
\(398\) 0 0
\(399\) −32.8988 −1.64700
\(400\) 0 0
\(401\) 35.6958i 1.78256i 0.453449 + 0.891282i \(0.350193\pi\)
−0.453449 + 0.891282i \(0.649807\pi\)
\(402\) 0 0
\(403\) −0.449383 5.18865i −0.0223854 0.258465i
\(404\) 0 0
\(405\) 11.0874i 0.550938i
\(406\) 0 0
\(407\) −2.72393 −0.135020
\(408\) 0 0
\(409\) 25.8666i 1.27902i −0.768781 0.639512i \(-0.779137\pi\)
0.768781 0.639512i \(-0.220863\pi\)
\(410\) 0 0
\(411\) 28.3368i 1.39775i
\(412\) 0 0
\(413\) 2.00000 0.0984136
\(414\) 0 0
\(415\) −7.03657 −0.345411
\(416\) 0 0
\(417\) 14.7556 0.722583
\(418\) 0 0
\(419\) 12.6035 0.615720 0.307860 0.951432i \(-0.400387\pi\)
0.307860 + 0.951432i \(0.400387\pi\)
\(420\) 0 0
\(421\) 14.3783i 0.700754i 0.936609 + 0.350377i \(0.113946\pi\)
−0.936609 + 0.350377i \(0.886054\pi\)
\(422\) 0 0
\(423\) 16.5763i 0.805966i
\(424\) 0 0
\(425\) −5.80642 −0.281653
\(426\) 0 0
\(427\) 11.1842i 0.541242i
\(428\) 0 0
\(429\) 3.95407 + 45.6543i 0.190904 + 2.20421i
\(430\) 0 0
\(431\) 20.2701i 0.976376i 0.872738 + 0.488188i \(0.162342\pi\)
−0.872738 + 0.488188i \(0.837658\pi\)
\(432\) 0 0
\(433\) 9.34614 0.449147 0.224573 0.974457i \(-0.427901\pi\)
0.224573 + 0.974457i \(0.427901\pi\)
\(434\) 0 0
\(435\) 18.9906i 0.910531i
\(436\) 0 0
\(437\) 28.6178i 1.36897i
\(438\) 0 0
\(439\) −6.50177 −0.310313 −0.155156 0.987890i \(-0.549588\pi\)
−0.155156 + 0.987890i \(0.549588\pi\)
\(440\) 0 0
\(441\) −2.71900 −0.129476
\(442\) 0 0
\(443\) 21.4686 1.02000 0.510002 0.860173i \(-0.329645\pi\)
0.510002 + 0.860173i \(0.329645\pi\)
\(444\) 0 0
\(445\) 1.80642 0.0856327
\(446\) 0 0
\(447\) 15.3876i 0.727810i
\(448\) 0 0
\(449\) 5.83807i 0.275515i 0.990466 + 0.137758i \(0.0439895\pi\)
−0.990466 + 0.137758i \(0.956010\pi\)
\(450\) 0 0
\(451\) −54.4099 −2.56206
\(452\) 0 0
\(453\) 19.3319i 0.908290i
\(454\) 0 0
\(455\) 10.4286 0.903212i 0.488902 0.0423432i
\(456\) 0 0
\(457\) 12.0731i 0.564757i 0.959303 + 0.282379i \(0.0911234\pi\)
−0.959303 + 0.282379i \(0.908877\pi\)
\(458\) 0 0
\(459\) −14.1017 −0.658211
\(460\) 0 0
\(461\) 2.91750i 0.135882i −0.997689 0.0679408i \(-0.978357\pi\)
0.997689 0.0679408i \(-0.0216429\pi\)
\(462\) 0 0
\(463\) 13.9826i 0.649829i 0.945743 + 0.324914i \(0.105335\pi\)
−0.945743 + 0.324914i \(0.894665\pi\)
\(464\) 0 0
\(465\) 3.19850 0.148327
\(466\) 0 0
\(467\) 12.5698 0.581662 0.290831 0.956774i \(-0.406068\pi\)
0.290831 + 0.956774i \(0.406068\pi\)
\(468\) 0 0
\(469\) −16.0415 −0.740727
\(470\) 0 0
\(471\) −0.949145 −0.0437343
\(472\) 0 0
\(473\) 72.5674i 3.33665i
\(474\) 0 0
\(475\) 5.11753i 0.234808i
\(476\) 0 0
\(477\) −18.0415 −0.826063
\(478\) 0 0
\(479\) 39.0988i 1.78647i 0.449590 + 0.893235i \(0.351570\pi\)
−0.449590 + 0.893235i \(0.648430\pi\)
\(480\) 0 0
\(481\) 0.147643 + 1.70471i 0.00673195 + 0.0777282i
\(482\) 0 0
\(483\) 35.9496i 1.63576i
\(484\) 0 0
\(485\) −12.6637 −0.575029
\(486\) 0 0
\(487\) 17.9541i 0.813576i 0.913522 + 0.406788i \(0.133351\pi\)
−0.913522 + 0.406788i \(0.866649\pi\)
\(488\) 0 0
\(489\) 24.7971i 1.12136i
\(490\) 0 0
\(491\) 0.857279 0.0386885 0.0193442 0.999813i \(-0.493842\pi\)
0.0193442 + 0.999813i \(0.493842\pi\)
\(492\) 0 0
\(493\) −49.7975 −2.24277
\(494\) 0 0
\(495\) −10.9240 −0.490995
\(496\) 0 0
\(497\) −36.9590 −1.65784
\(498\) 0 0
\(499\) 36.8134i 1.64799i −0.566596 0.823996i \(-0.691740\pi\)
0.566596 0.823996i \(-0.308260\pi\)
\(500\) 0 0
\(501\) 14.1334i 0.631432i
\(502\) 0 0
\(503\) 28.9382 1.29029 0.645146 0.764059i \(-0.276796\pi\)
0.645146 + 0.764059i \(0.276796\pi\)
\(504\) 0 0
\(505\) 2.81579i 0.125301i
\(506\) 0 0
\(507\) 28.3575 4.94914i 1.25940 0.219799i
\(508\) 0 0
\(509\) 37.8765i 1.67885i −0.543479 0.839423i \(-0.682893\pi\)
0.543479 0.839423i \(-0.317107\pi\)
\(510\) 0 0
\(511\) 32.3368 1.43049
\(512\) 0 0
\(513\) 12.4286i 0.548738i
\(514\) 0 0
\(515\) 9.69381i 0.427160i
\(516\) 0 0
\(517\) 49.9911 2.19861
\(518\) 0 0
\(519\) −8.13335 −0.357015
\(520\) 0 0
\(521\) 2.38271 0.104388 0.0521941 0.998637i \(-0.483379\pi\)
0.0521941 + 0.998637i \(0.483379\pi\)
\(522\) 0 0
\(523\) −8.42080 −0.368216 −0.184108 0.982906i \(-0.558940\pi\)
−0.184108 + 0.982906i \(0.558940\pi\)
\(524\) 0 0
\(525\) 6.42864i 0.280569i
\(526\) 0 0
\(527\) 8.38715i 0.365350i
\(528\) 0 0
\(529\) 8.27163 0.359636
\(530\) 0 0
\(531\) 1.31111i 0.0568972i
\(532\) 0 0
\(533\) 2.94914 + 34.0513i 0.127742 + 1.47493i
\(534\) 0 0
\(535\) 14.0207i 0.606170i
\(536\) 0 0
\(537\) 2.39700 0.103438
\(538\) 0 0
\(539\) 8.20003i 0.353200i
\(540\) 0 0
\(541\) 22.5018i 0.967427i 0.875227 + 0.483713i \(0.160712\pi\)
−0.875227 + 0.483713i \(0.839288\pi\)
\(542\) 0 0
\(543\) 4.03164 0.173014
\(544\) 0 0
\(545\) −3.80642 −0.163049
\(546\) 0 0
\(547\) 10.4494 0.446783 0.223392 0.974729i \(-0.428287\pi\)
0.223392 + 0.974729i \(0.428287\pi\)
\(548\) 0 0
\(549\) −7.33185 −0.312916
\(550\) 0 0
\(551\) 43.8894i 1.86975i
\(552\) 0 0
\(553\) 1.63158i 0.0693820i
\(554\) 0 0
\(555\) −1.05086 −0.0446063
\(556\) 0 0
\(557\) 10.8716i 0.460643i −0.973115 0.230322i \(-0.926022\pi\)
0.973115 0.230322i \(-0.0739778\pi\)
\(558\) 0 0
\(559\) −45.4148 + 3.93332i −1.92084 + 0.166362i
\(560\) 0 0
\(561\) 73.7975i 3.11573i
\(562\) 0 0
\(563\) −40.1354 −1.69150 −0.845752 0.533576i \(-0.820848\pi\)
−0.845752 + 0.533576i \(0.820848\pi\)
\(564\) 0 0
\(565\) 0.387152i 0.0162876i
\(566\) 0 0
\(567\) 32.1891i 1.35182i
\(568\) 0 0
\(569\) 20.3511 0.853161 0.426580 0.904450i \(-0.359718\pi\)
0.426580 + 0.904450i \(0.359718\pi\)
\(570\) 0 0
\(571\) 12.9491 0.541905 0.270952 0.962593i \(-0.412661\pi\)
0.270952 + 0.962593i \(0.412661\pi\)
\(572\) 0 0
\(573\) 33.7146 1.40845
\(574\) 0 0
\(575\) −5.59210 −0.233207
\(576\) 0 0
\(577\) 16.1160i 0.670918i −0.942055 0.335459i \(-0.891109\pi\)
0.942055 0.335459i \(-0.108891\pi\)
\(578\) 0 0
\(579\) 11.4795i 0.477072i
\(580\) 0 0
\(581\) 20.4286 0.847523
\(582\) 0 0
\(583\) 54.4099i 2.25343i
\(584\) 0 0
\(585\) 0.592104 + 6.83654i 0.0244805 + 0.282656i
\(586\) 0 0
\(587\) 28.1476i 1.16178i −0.813983 0.580889i \(-0.802705\pi\)
0.813983 0.580889i \(-0.197295\pi\)
\(588\) 0 0
\(589\) −7.39207 −0.304585
\(590\) 0 0
\(591\) 35.3590i 1.45448i
\(592\) 0 0
\(593\) 14.3783i 0.590444i 0.955429 + 0.295222i \(0.0953937\pi\)
−0.955429 + 0.295222i \(0.904606\pi\)
\(594\) 0 0
\(595\) 16.8573 0.691081
\(596\) 0 0
\(597\) −41.6227 −1.70350
\(598\) 0 0
\(599\) −15.5714 −0.636229 −0.318114 0.948052i \(-0.603050\pi\)
−0.318114 + 0.948052i \(0.603050\pi\)
\(600\) 0 0
\(601\) 27.9813 1.14138 0.570690 0.821166i \(-0.306676\pi\)
0.570690 + 0.821166i \(0.306676\pi\)
\(602\) 0 0
\(603\) 10.5161i 0.428247i
\(604\) 0 0
\(605\) 21.9447i 0.892179i
\(606\) 0 0
\(607\) −17.3254 −0.703216 −0.351608 0.936147i \(-0.614365\pi\)
−0.351608 + 0.936147i \(0.614365\pi\)
\(608\) 0 0
\(609\) 55.1338i 2.23414i
\(610\) 0 0
\(611\) −2.70964 31.2859i −0.109620 1.26569i
\(612\) 0 0
\(613\) 40.6548i 1.64203i −0.570905 0.821016i \(-0.693408\pi\)
0.570905 0.821016i \(-0.306592\pi\)
\(614\) 0 0
\(615\) −20.9906 −0.846424
\(616\) 0 0
\(617\) 4.91750i 0.197971i 0.995089 + 0.0989856i \(0.0315598\pi\)
−0.995089 + 0.0989856i \(0.968440\pi\)
\(618\) 0 0
\(619\) 12.4351i 0.499809i −0.968271 0.249904i \(-0.919601\pi\)
0.968271 0.249904i \(-0.0803992\pi\)
\(620\) 0 0
\(621\) −13.5812 −0.544995
\(622\) 0 0
\(623\) −5.24443 −0.210114
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 65.0420 2.59753
\(628\) 0 0
\(629\) 2.75557i 0.109872i
\(630\) 0 0
\(631\) 25.3526i 1.00927i −0.863333 0.504635i \(-0.831627\pi\)
0.863333 0.504635i \(-0.168373\pi\)
\(632\) 0 0
\(633\) −15.3176 −0.608818
\(634\) 0 0
\(635\) 3.20495i 0.127185i
\(636\) 0 0
\(637\) −5.13182 + 0.444461i −0.203330 + 0.0176102i
\(638\) 0 0
\(639\) 24.2286i 0.958469i
\(640\) 0 0
\(641\) −35.0607 −1.38481 −0.692407 0.721507i \(-0.743450\pi\)
−0.692407 + 0.721507i \(0.743450\pi\)
\(642\) 0 0
\(643\) 40.4429i 1.59491i 0.603376 + 0.797457i \(0.293822\pi\)
−0.603376 + 0.797457i \(0.706178\pi\)
\(644\) 0 0
\(645\) 27.9956i 1.10232i
\(646\) 0 0
\(647\) −31.4084 −1.23479 −0.617395 0.786653i \(-0.711812\pi\)
−0.617395 + 0.786653i \(0.711812\pi\)
\(648\) 0 0
\(649\) −3.95407 −0.155211
\(650\) 0 0
\(651\) −9.28592 −0.363944
\(652\) 0 0
\(653\) 11.0923 0.434077 0.217038 0.976163i \(-0.430360\pi\)
0.217038 + 0.976163i \(0.430360\pi\)
\(654\) 0 0
\(655\) 0.949145i 0.0370862i
\(656\) 0 0
\(657\) 21.1985i 0.827032i
\(658\) 0 0
\(659\) −3.21279 −0.125152 −0.0625762 0.998040i \(-0.519932\pi\)
−0.0625762 + 0.998040i \(0.519932\pi\)
\(660\) 0 0
\(661\) 4.10171i 0.159538i −0.996813 0.0797690i \(-0.974582\pi\)
0.996813 0.0797690i \(-0.0254183\pi\)
\(662\) 0 0
\(663\) 46.1847 4.00000i 1.79366 0.155347i
\(664\) 0 0
\(665\) 14.8573i 0.576141i
\(666\) 0 0
\(667\) −47.9595 −1.85700
\(668\) 0 0
\(669\) 12.3269i 0.476587i
\(670\) 0 0
\(671\) 22.1116i 0.853607i
\(672\) 0 0
\(673\) −12.5906 −0.485331 −0.242665 0.970110i \(-0.578022\pi\)
−0.242665 + 0.970110i \(0.578022\pi\)
\(674\) 0 0
\(675\) 2.42864 0.0934784
\(676\) 0 0
\(677\) 4.53035 0.174115 0.0870577 0.996203i \(-0.472254\pi\)
0.0870577 + 0.996203i \(0.472254\pi\)
\(678\) 0 0
\(679\) 36.7654 1.41093
\(680\) 0 0
\(681\) 20.8889i 0.800465i
\(682\) 0 0
\(683\) 10.7699i 0.412097i 0.978542 + 0.206049i \(0.0660605\pi\)
−0.978542 + 0.206049i \(0.933940\pi\)
\(684\) 0 0
\(685\) 12.7971 0.488950
\(686\) 0 0
\(687\) 35.5210i 1.35521i
\(688\) 0 0
\(689\) −34.0513 + 2.94914i −1.29725 + 0.112353i
\(690\) 0 0
\(691\) 17.2607i 0.656629i 0.944568 + 0.328315i \(0.106481\pi\)
−0.944568 + 0.328315i \(0.893519\pi\)
\(692\) 0 0
\(693\) 31.7146 1.20474
\(694\) 0 0
\(695\) 6.66370i 0.252769i
\(696\) 0 0
\(697\) 55.0420i 2.08486i
\(698\) 0 0
\(699\) 63.4706 2.40068
\(700\) 0 0
\(701\) −27.0192 −1.02050 −0.510251 0.860026i \(-0.670447\pi\)
−0.510251 + 0.860026i \(0.670447\pi\)
\(702\) 0 0
\(703\) 2.42864 0.0915979
\(704\) 0 0
\(705\) 19.2859 0.726350
\(706\) 0 0
\(707\) 8.17484i 0.307447i
\(708\) 0 0
\(709\) 26.4385i 0.992918i 0.868060 + 0.496459i \(0.165367\pi\)
−0.868060 + 0.496459i \(0.834633\pi\)
\(710\) 0 0
\(711\) −1.06959 −0.0401128
\(712\) 0 0
\(713\) 8.07758i 0.302508i
\(714\) 0 0
\(715\) −20.6178 + 1.78568i −0.771061 + 0.0667807i
\(716\) 0 0
\(717\) 48.1388i 1.79777i
\(718\) 0 0
\(719\) 12.9491 0.482922 0.241461 0.970411i \(-0.422373\pi\)
0.241461 + 0.970411i \(0.422373\pi\)
\(720\) 0 0
\(721\) 28.1432i 1.04811i
\(722\) 0 0
\(723\) 27.7462i 1.03189i
\(724\) 0 0
\(725\) 8.57628 0.318515
\(726\) 0 0
\(727\) 5.04302 0.187035 0.0935176 0.995618i \(-0.470189\pi\)
0.0935176 + 0.995618i \(0.470189\pi\)
\(728\) 0 0
\(729\) −4.96836 −0.184013
\(730\) 0 0
\(731\) −73.4104 −2.71518
\(732\) 0 0
\(733\) 34.9906i 1.29241i −0.763165 0.646204i \(-0.776355\pi\)
0.763165 0.646204i \(-0.223645\pi\)
\(734\) 0 0
\(735\) 3.16346i 0.116686i
\(736\) 0 0
\(737\) 31.7146 1.16822
\(738\) 0 0
\(739\) 17.1363i 0.630368i 0.949031 + 0.315184i \(0.102066\pi\)
−0.949031 + 0.315184i \(0.897934\pi\)
\(740\) 0 0
\(741\) −3.52543 40.7052i −0.129510 1.49534i
\(742\) 0 0
\(743\) 15.7190i 0.576674i 0.957529 + 0.288337i \(0.0931024\pi\)
−0.957529 + 0.288337i \(0.906898\pi\)
\(744\) 0 0
\(745\) 6.94914 0.254597
\(746\) 0 0
\(747\) 13.3921i 0.489990i
\(748\) 0 0
\(749\) 40.7052i 1.48734i
\(750\) 0 0
\(751\) −13.1111 −0.478430 −0.239215 0.970967i \(-0.576890\pi\)
−0.239215 + 0.970967i \(0.576890\pi\)
\(752\) 0 0
\(753\) 39.5210 1.44022
\(754\) 0 0
\(755\) 8.73038 0.317731
\(756\) 0 0
\(757\) −16.1432 −0.586734 −0.293367 0.956000i \(-0.594776\pi\)
−0.293367 + 0.956000i \(0.594776\pi\)
\(758\) 0 0
\(759\) 71.0736i 2.57981i
\(760\) 0 0
\(761\) 26.1936i 0.949516i 0.880116 + 0.474758i \(0.157464\pi\)
−0.880116 + 0.474758i \(0.842536\pi\)
\(762\) 0 0
\(763\) 11.0509 0.400068
\(764\) 0 0
\(765\) 11.0509i 0.399545i
\(766\) 0 0
\(767\) 0.214320 + 2.47457i 0.00773864 + 0.0893516i
\(768\) 0 0
\(769\) 20.8287i 0.751102i −0.926802 0.375551i \(-0.877453\pi\)
0.926802 0.375551i \(-0.122547\pi\)
\(770\) 0 0
\(771\) 47.8578 1.72355
\(772\) 0 0
\(773\) 11.9126i 0.428466i 0.976783 + 0.214233i \(0.0687251\pi\)
−0.976783 + 0.214233i \(0.931275\pi\)
\(774\) 0 0
\(775\) 1.44446i 0.0518866i
\(776\) 0 0
\(777\) 3.05086 0.109449
\(778\) 0 0
\(779\) 48.5116 1.73811
\(780\) 0 0
\(781\) 73.0692 2.61462
\(782\) 0 0
\(783\) 20.8287 0.744357
\(784\) 0 0
\(785\) 0.428639i 0.0152988i
\(786\) 0 0
\(787\) 21.1383i 0.753498i 0.926315 + 0.376749i \(0.122958\pi\)
−0.926315 + 0.376749i \(0.877042\pi\)
\(788\) 0 0
\(789\) −8.51606 −0.303180
\(790\) 0 0
\(791\) 1.12399i 0.0399643i
\(792\) 0 0
\(793\) −13.8381 + 1.19850i −0.491404 + 0.0425599i
\(794\) 0 0
\(795\) 20.9906i 0.744461i
\(796\) 0 0
\(797\) 24.9273 0.882972 0.441486 0.897268i \(-0.354452\pi\)
0.441486 + 0.897268i \(0.354452\pi\)
\(798\) 0 0
\(799\) 50.5718i 1.78910i
\(800\) 0 0
\(801\) 3.43801i 0.121476i
\(802\) 0 0
\(803\) −63.9309 −2.25607
\(804\) 0 0
\(805\) 16.2351 0.572211
\(806\) 0 0
\(807\) −12.3368 −0.434275
\(808\) 0 0
\(809\) −55.1195 −1.93790 −0.968950 0.247257i \(-0.920471\pi\)
−0.968950 + 0.247257i \(0.920471\pi\)
\(810\) 0 0
\(811\) 1.91459i 0.0672303i 0.999435 + 0.0336151i \(0.0107020\pi\)
−0.999435 + 0.0336151i \(0.989298\pi\)
\(812\) 0 0
\(813\) 8.77970i 0.307918i
\(814\) 0 0
\(815\) 11.1985 0.392266
\(816\) 0 0
\(817\) 64.7007i 2.26359i
\(818\) 0 0
\(819\) −1.71900 19.8479i −0.0600669 0.693542i
\(820\) 0 0
\(821\) 51.9724i 1.81385i −0.421294 0.906924i \(-0.638424\pi\)
0.421294 0.906924i \(-0.361576\pi\)
\(822\) 0 0
\(823\) 28.8909 1.00707 0.503537 0.863974i \(-0.332032\pi\)
0.503537 + 0.863974i \(0.332032\pi\)
\(824\) 0 0
\(825\) 12.7096i 0.442493i
\(826\) 0 0
\(827\) 33.0178i 1.14814i −0.818805 0.574071i \(-0.805363\pi\)
0.818805 0.574071i \(-0.194637\pi\)
\(828\) 0 0
\(829\) 8.44293 0.293235 0.146618 0.989193i \(-0.453161\pi\)
0.146618 + 0.989193i \(0.453161\pi\)
\(830\) 0 0
\(831\) 15.4795 0.536978
\(832\) 0 0
\(833\) −8.29529 −0.287415
\(834\) 0 0
\(835\) −6.38271 −0.220883
\(836\) 0 0
\(837\) 3.50807i 0.121257i
\(838\) 0 0
\(839\) 20.1871i 0.696937i −0.937321 0.348468i \(-0.886702\pi\)
0.937321 0.348468i \(-0.113298\pi\)
\(840\) 0 0
\(841\) 44.5526 1.53630
\(842\) 0 0
\(843\) 39.9496i 1.37594i
\(844\) 0 0
\(845\) 2.23506 + 12.8064i 0.0768885 + 0.440554i
\(846\) 0 0
\(847\) 63.7101i 2.18911i
\(848\) 0 0
\(849\) 58.2721 1.99989
\(850\) 0 0
\(851\) 2.65386i 0.0909731i
\(852\) 0 0
\(853\) 26.8430i 0.919086i −0.888155 0.459543i \(-0.848013\pi\)
0.888155 0.459543i \(-0.151987\pi\)
\(854\) 0 0
\(855\) 9.73975 0.333092
\(856\) 0 0
\(857\) 8.51744 0.290950 0.145475 0.989362i \(-0.453529\pi\)
0.145475 + 0.989362i \(0.453529\pi\)
\(858\) 0 0
\(859\) 36.7368 1.25344 0.626722 0.779243i \(-0.284396\pi\)
0.626722 + 0.779243i \(0.284396\pi\)
\(860\) 0 0
\(861\) 60.9403 2.07684
\(862\) 0 0
\(863\) 13.9255i 0.474029i 0.971506 + 0.237015i \(0.0761689\pi\)
−0.971506 + 0.237015i \(0.923831\pi\)
\(864\) 0 0
\(865\) 3.67307i 0.124888i
\(866\) 0 0
\(867\) 37.0114 1.25697
\(868\) 0 0
\(869\) 3.22570i 0.109424i
\(870\) 0 0
\(871\) −1.71900 19.8479i −0.0582462 0.672521i
\(872\) 0 0
\(873\) 24.1017i 0.815719i
\(874\) 0 0
\(875\) −2.90321 −0.0981465
\(876\) 0 0
\(877\) 28.6923i 0.968870i −0.874827 0.484435i \(-0.839025\pi\)
0.874827 0.484435i \(-0.160975\pi\)
\(878\) 0 0
\(879\) 44.5433i 1.50241i
\(880\) 0 0
\(881\) −9.00492 −0.303384 −0.151692 0.988428i \(-0.548472\pi\)
−0.151692 + 0.988428i \(0.548472\pi\)
\(882\) 0 0
\(883\) 37.0627 1.24726 0.623630 0.781720i \(-0.285657\pi\)
0.623630 + 0.781720i \(0.285657\pi\)
\(884\) 0 0
\(885\) −1.52543 −0.0512767
\(886\) 0 0
\(887\) 14.3892 0.483141 0.241570 0.970383i \(-0.422338\pi\)
0.241570 + 0.970383i \(0.422338\pi\)
\(888\) 0 0
\(889\) 9.30465i 0.312068i
\(890\) 0 0
\(891\) 63.6390i 2.13199i
\(892\) 0 0
\(893\) −44.5718 −1.49154
\(894\) 0 0
\(895\) 1.08250i 0.0361839i
\(896\) 0 0
\(897\) 44.4800 3.85236i 1.48514 0.128626i
\(898\) 0 0
\(899\) 12.3881i 0.413166i
\(900\) 0 0
\(901\) −55.0420 −1.83371
\(902\) 0 0
\(903\) 81.2770i 2.70473i
\(904\) 0 0
\(905\) 1.82071i 0.0605226i
\(906\) 0 0
\(907\) 3.47166 0.115275 0.0576373 0.998338i \(-0.481643\pi\)
0.0576373 + 0.998338i \(0.481643\pi\)
\(908\) 0 0
\(909\) 5.35905 0.177748
\(910\) 0 0
\(911\) −27.1842 −0.900653 −0.450326 0.892864i \(-0.648692\pi\)
−0.450326 + 0.892864i \(0.648692\pi\)
\(912\) 0 0
\(913\) −40.3881 −1.33665
\(914\) 0 0
\(915\) 8.53035i 0.282005i
\(916\) 0 0
\(917\) 2.75557i 0.0909969i
\(918\) 0 0
\(919\) −3.71762 −0.122633 −0.0613165 0.998118i \(-0.519530\pi\)
−0.0613165 + 0.998118i \(0.519530\pi\)
\(920\) 0 0
\(921\) 6.78721i 0.223646i
\(922\) 0 0
\(923\) −3.96052 45.7288i −0.130362 1.50518i
\(924\) 0 0
\(925\) 0.474572i 0.0156038i
\(926\) 0 0
\(927\) 18.4494 0.605957
\(928\) 0 0
\(929\) 56.8256i 1.86439i −0.361958 0.932194i \(-0.617892\pi\)
0.361958 0.932194i \(-0.382108\pi\)
\(930\) 0 0
\(931\) 7.31111i 0.239612i
\(932\) 0 0
\(933\) −62.5433 −2.04757
\(934\) 0 0
\(935\) −33.3274 −1.08992
\(936\) 0 0
\(937\) −51.8894 −1.69515 −0.847576 0.530673i \(-0.821939\pi\)
−0.847576 + 0.530673i \(0.821939\pi\)
\(938\) 0 0
\(939\) 40.0830 1.30806
\(940\) 0 0
\(941\) 50.4929i 1.64602i 0.568026 + 0.823010i \(0.307707\pi\)
−0.568026 + 0.823010i \(0.692293\pi\)
\(942\) 0 0
\(943\) 53.0103i 1.72625i
\(944\) 0 0
\(945\) −7.05086 −0.229364
\(946\) 0 0
\(947\) 39.5353i 1.28472i 0.766401 + 0.642362i \(0.222045\pi\)
−0.766401 + 0.642362i \(0.777955\pi\)
\(948\) 0 0
\(949\) 3.46520 + 40.0098i 0.112485 + 1.29877i
\(950\) 0 0
\(951\) 36.0731i 1.16975i
\(952\) 0 0
\(953\) 17.7047 0.573512 0.286756 0.958004i \(-0.407423\pi\)
0.286756 + 0.958004i \(0.407423\pi\)
\(954\) 0 0
\(955\) 15.2257i 0.492692i
\(956\) 0 0
\(957\) 109.001i 3.52352i
\(958\) 0 0
\(959\) −37.1526 −1.19972
\(960\) 0 0
\(961\) 28.9135 0.932695
\(962\) 0 0
\(963\) −26.6844 −0.859894
\(964\) 0 0
\(965\) −5.18421 −0.166886
\(966\) 0 0
\(967\) 54.1990i 1.74292i 0.490465 + 0.871461i \(0.336827\pi\)
−0.490465 + 0.871461i \(0.663173\pi\)
\(968\) 0 0
\(969\) 65.7975i 2.11372i
\(970\) 0 0
\(971\) 45.2226 1.45126 0.725632 0.688083i \(-0.241548\pi\)
0.725632 + 0.688083i \(0.241548\pi\)
\(972\) 0 0
\(973\) 19.3461i 0.620209i
\(974\) 0 0
\(975\) −7.95407 + 0.688892i −0.254734 + 0.0220622i
\(976\) 0 0
\(977\) 49.3230i 1.57798i −0.614405 0.788991i \(-0.710604\pi\)
0.614405 0.788991i \(-0.289396\pi\)
\(978\) 0 0
\(979\) 10.3684 0.331376
\(980\) 0 0
\(981\) 7.24443i 0.231297i
\(982\) 0 0
\(983\) 32.2939i 1.03002i 0.857186 + 0.515008i \(0.172211\pi\)
−0.857186 + 0.515008i \(0.827789\pi\)
\(984\) 0 0
\(985\) −15.9684 −0.508794
\(986\) 0 0
\(987\) −55.9911 −1.78222
\(988\) 0 0
\(989\) −70.7007 −2.24815
\(990\) 0 0
\(991\) −30.9086 −0.981844 −0.490922 0.871203i \(-0.663340\pi\)
−0.490922 + 0.871203i \(0.663340\pi\)
\(992\) 0 0
\(993\) 37.3832i 1.18632i
\(994\) 0 0
\(995\) 18.7971i 0.595907i
\(996\) 0 0
\(997\) 53.0005 1.67854 0.839271 0.543713i \(-0.182982\pi\)
0.839271 + 0.543713i \(0.182982\pi\)
\(998\) 0 0
\(999\) 1.15257i 0.0364656i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 520.2.k.a.441.6 yes 6
3.2 odd 2 4680.2.g.j.2521.1 6
4.3 odd 2 1040.2.k.b.961.2 6
5.2 odd 4 2600.2.f.d.649.1 6
5.3 odd 4 2600.2.f.c.649.6 6
5.4 even 2 2600.2.k.b.2001.2 6
13.5 odd 4 6760.2.a.v.1.3 3
13.8 odd 4 6760.2.a.u.1.3 3
13.12 even 2 inner 520.2.k.a.441.5 6
39.38 odd 2 4680.2.g.j.2521.6 6
52.51 odd 2 1040.2.k.b.961.1 6
65.12 odd 4 2600.2.f.c.649.1 6
65.38 odd 4 2600.2.f.d.649.6 6
65.64 even 2 2600.2.k.b.2001.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
520.2.k.a.441.5 6 13.12 even 2 inner
520.2.k.a.441.6 yes 6 1.1 even 1 trivial
1040.2.k.b.961.1 6 52.51 odd 2
1040.2.k.b.961.2 6 4.3 odd 2
2600.2.f.c.649.1 6 65.12 odd 4
2600.2.f.c.649.6 6 5.3 odd 4
2600.2.f.d.649.1 6 5.2 odd 4
2600.2.f.d.649.6 6 65.38 odd 4
2600.2.k.b.2001.1 6 65.64 even 2
2600.2.k.b.2001.2 6 5.4 even 2
4680.2.g.j.2521.1 6 3.2 odd 2
4680.2.g.j.2521.6 6 39.38 odd 2
6760.2.a.u.1.3 3 13.8 odd 4
6760.2.a.v.1.3 3 13.5 odd 4