Properties

Label 520.2.k.a.441.3
Level $520$
Weight $2$
Character 520.441
Analytic conductor $4.152$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [520,2,Mod(441,520)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(520, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("520.441"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 520 = 2^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 520.k (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.15222090511\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 441.3
Root \(-0.854638 - 0.854638i\) of defining polynomial
Character \(\chi\) \(=\) 520.441
Dual form 520.2.k.a.441.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.539189 q^{3} -1.00000i q^{5} -1.70928i q^{7} -2.70928 q^{9} -2.09171i q^{11} +(-2.87936 + 2.17009i) q^{13} +0.539189i q^{15} -3.41855 q^{17} -2.24846i q^{19} +0.921622i q^{21} -0.879362 q^{23} -1.00000 q^{25} +3.07838 q^{27} -5.89269 q^{29} -7.85043i q^{31} +1.12783i q^{33} -1.70928 q^{35} -1.36910i q^{37} +(1.55252 - 1.17009i) q^{39} -2.18342i q^{41} -4.38243 q^{43} +2.70928i q^{45} -5.12783i q^{47} +4.07838 q^{49} +1.84324 q^{51} -2.18342 q^{53} -2.09171 q^{55} +1.21235i q^{57} +1.17009i q^{59} -1.02893 q^{61} +4.63090i q^{63} +(2.17009 + 2.87936i) q^{65} +4.63090i q^{67} +0.474142 q^{69} -13.0856i q^{71} +8.20620i q^{73} +0.539189 q^{75} -3.57531 q^{77} +16.0989 q^{79} +6.46800 q^{81} +8.72979i q^{83} +3.41855i q^{85} +3.17727 q^{87} -7.41855i q^{89} +(3.70928 + 4.92162i) q^{91} +4.23287i q^{93} -2.24846 q^{95} +7.57531i q^{97} +5.66701i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{9} + 8 q^{13} + 8 q^{17} + 20 q^{23} - 6 q^{25} + 12 q^{27} - 12 q^{29} + 4 q^{35} + 8 q^{39} - 36 q^{43} + 18 q^{49} + 24 q^{51} - 4 q^{53} - 8 q^{55} - 36 q^{61} + 2 q^{65} + 8 q^{69} + 20 q^{77}+ \cdots + 4 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/520\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(261\) \(391\) \(417\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.539189 −0.311301 −0.155650 0.987812i \(-0.549747\pi\)
−0.155650 + 0.987812i \(0.549747\pi\)
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 1.70928i 0.646045i −0.946391 0.323023i \(-0.895301\pi\)
0.946391 0.323023i \(-0.104699\pi\)
\(8\) 0 0
\(9\) −2.70928 −0.903092
\(10\) 0 0
\(11\) 2.09171i 0.630674i −0.948980 0.315337i \(-0.897882\pi\)
0.948980 0.315337i \(-0.102118\pi\)
\(12\) 0 0
\(13\) −2.87936 + 2.17009i −0.798591 + 0.601874i
\(14\) 0 0
\(15\) 0.539189i 0.139218i
\(16\) 0 0
\(17\) −3.41855 −0.829120 −0.414560 0.910022i \(-0.636065\pi\)
−0.414560 + 0.910022i \(0.636065\pi\)
\(18\) 0 0
\(19\) 2.24846i 0.515833i −0.966167 0.257917i \(-0.916964\pi\)
0.966167 0.257917i \(-0.0830360\pi\)
\(20\) 0 0
\(21\) 0.921622i 0.201114i
\(22\) 0 0
\(23\) −0.879362 −0.183360 −0.0916798 0.995789i \(-0.529224\pi\)
−0.0916798 + 0.995789i \(0.529224\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 3.07838 0.592434
\(28\) 0 0
\(29\) −5.89269 −1.09425 −0.547123 0.837052i \(-0.684277\pi\)
−0.547123 + 0.837052i \(0.684277\pi\)
\(30\) 0 0
\(31\) 7.85043i 1.40998i −0.709218 0.704990i \(-0.750952\pi\)
0.709218 0.704990i \(-0.249048\pi\)
\(32\) 0 0
\(33\) 1.12783i 0.196329i
\(34\) 0 0
\(35\) −1.70928 −0.288920
\(36\) 0 0
\(37\) 1.36910i 0.225079i −0.993647 0.112540i \(-0.964102\pi\)
0.993647 0.112540i \(-0.0358985\pi\)
\(38\) 0 0
\(39\) 1.55252 1.17009i 0.248602 0.187364i
\(40\) 0 0
\(41\) 2.18342i 0.340993i −0.985358 0.170496i \(-0.945463\pi\)
0.985358 0.170496i \(-0.0545371\pi\)
\(42\) 0 0
\(43\) −4.38243 −0.668315 −0.334157 0.942517i \(-0.608452\pi\)
−0.334157 + 0.942517i \(0.608452\pi\)
\(44\) 0 0
\(45\) 2.70928i 0.403875i
\(46\) 0 0
\(47\) 5.12783i 0.747970i −0.927435 0.373985i \(-0.877991\pi\)
0.927435 0.373985i \(-0.122009\pi\)
\(48\) 0 0
\(49\) 4.07838 0.582625
\(50\) 0 0
\(51\) 1.84324 0.258106
\(52\) 0 0
\(53\) −2.18342 −0.299915 −0.149958 0.988692i \(-0.547914\pi\)
−0.149958 + 0.988692i \(0.547914\pi\)
\(54\) 0 0
\(55\) −2.09171 −0.282046
\(56\) 0 0
\(57\) 1.21235i 0.160579i
\(58\) 0 0
\(59\) 1.17009i 0.152332i 0.997095 + 0.0761661i \(0.0242679\pi\)
−0.997095 + 0.0761661i \(0.975732\pi\)
\(60\) 0 0
\(61\) −1.02893 −0.131741 −0.0658705 0.997828i \(-0.520982\pi\)
−0.0658705 + 0.997828i \(0.520982\pi\)
\(62\) 0 0
\(63\) 4.63090i 0.583438i
\(64\) 0 0
\(65\) 2.17009 + 2.87936i 0.269166 + 0.357141i
\(66\) 0 0
\(67\) 4.63090i 0.565754i 0.959156 + 0.282877i \(0.0912889\pi\)
−0.959156 + 0.282877i \(0.908711\pi\)
\(68\) 0 0
\(69\) 0.474142 0.0570800
\(70\) 0 0
\(71\) 13.0856i 1.55297i −0.630135 0.776485i \(-0.717001\pi\)
0.630135 0.776485i \(-0.282999\pi\)
\(72\) 0 0
\(73\) 8.20620i 0.960464i 0.877142 + 0.480232i \(0.159447\pi\)
−0.877142 + 0.480232i \(0.840553\pi\)
\(74\) 0 0
\(75\) 0.539189 0.0622602
\(76\) 0 0
\(77\) −3.57531 −0.407444
\(78\) 0 0
\(79\) 16.0989 1.81127 0.905634 0.424061i \(-0.139396\pi\)
0.905634 + 0.424061i \(0.139396\pi\)
\(80\) 0 0
\(81\) 6.46800 0.718667
\(82\) 0 0
\(83\) 8.72979i 0.958219i 0.877755 + 0.479110i \(0.159040\pi\)
−0.877755 + 0.479110i \(0.840960\pi\)
\(84\) 0 0
\(85\) 3.41855i 0.370794i
\(86\) 0 0
\(87\) 3.17727 0.340640
\(88\) 0 0
\(89\) 7.41855i 0.786365i −0.919460 0.393182i \(-0.871374\pi\)
0.919460 0.393182i \(-0.128626\pi\)
\(90\) 0 0
\(91\) 3.70928 + 4.92162i 0.388838 + 0.515926i
\(92\) 0 0
\(93\) 4.23287i 0.438928i
\(94\) 0 0
\(95\) −2.24846 −0.230688
\(96\) 0 0
\(97\) 7.57531i 0.769156i 0.923093 + 0.384578i \(0.125653\pi\)
−0.923093 + 0.384578i \(0.874347\pi\)
\(98\) 0 0
\(99\) 5.66701i 0.569556i
\(100\) 0 0
\(101\) 15.7587 1.56805 0.784026 0.620728i \(-0.213163\pi\)
0.784026 + 0.620728i \(0.213163\pi\)
\(102\) 0 0
\(103\) −0.355771 −0.0350552 −0.0175276 0.999846i \(-0.505579\pi\)
−0.0175276 + 0.999846i \(0.505579\pi\)
\(104\) 0 0
\(105\) 0.921622 0.0899411
\(106\) 0 0
\(107\) −2.04226 −0.197433 −0.0987164 0.995116i \(-0.531474\pi\)
−0.0987164 + 0.995116i \(0.531474\pi\)
\(108\) 0 0
\(109\) 5.41855i 0.519003i 0.965743 + 0.259502i \(0.0835583\pi\)
−0.965743 + 0.259502i \(0.916442\pi\)
\(110\) 0 0
\(111\) 0.738205i 0.0700673i
\(112\) 0 0
\(113\) −18.8371 −1.77205 −0.886023 0.463642i \(-0.846542\pi\)
−0.886023 + 0.463642i \(0.846542\pi\)
\(114\) 0 0
\(115\) 0.879362i 0.0820009i
\(116\) 0 0
\(117\) 7.80098 5.87936i 0.721201 0.543547i
\(118\) 0 0
\(119\) 5.84324i 0.535649i
\(120\) 0 0
\(121\) 6.62475 0.602250
\(122\) 0 0
\(123\) 1.17727i 0.106151i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 21.7165 1.92702 0.963512 0.267664i \(-0.0862518\pi\)
0.963512 + 0.267664i \(0.0862518\pi\)
\(128\) 0 0
\(129\) 2.36296 0.208047
\(130\) 0 0
\(131\) 2.73820 0.239238 0.119619 0.992820i \(-0.461833\pi\)
0.119619 + 0.992820i \(0.461833\pi\)
\(132\) 0 0
\(133\) −3.84324 −0.333252
\(134\) 0 0
\(135\) 3.07838i 0.264945i
\(136\) 0 0
\(137\) 18.5958i 1.58875i −0.607429 0.794374i \(-0.707799\pi\)
0.607429 0.794374i \(-0.292201\pi\)
\(138\) 0 0
\(139\) −13.5753 −1.15144 −0.575721 0.817646i \(-0.695279\pi\)
−0.575721 + 0.817646i \(0.695279\pi\)
\(140\) 0 0
\(141\) 2.76487i 0.232844i
\(142\) 0 0
\(143\) 4.53919 + 6.02279i 0.379586 + 0.503651i
\(144\) 0 0
\(145\) 5.89269i 0.489362i
\(146\) 0 0
\(147\) −2.19902 −0.181372
\(148\) 0 0
\(149\) 8.73820i 0.715862i 0.933748 + 0.357931i \(0.116518\pi\)
−0.933748 + 0.357931i \(0.883482\pi\)
\(150\) 0 0
\(151\) 17.0856i 1.39040i −0.718815 0.695202i \(-0.755315\pi\)
0.718815 0.695202i \(-0.244685\pi\)
\(152\) 0 0
\(153\) 9.26180 0.748772
\(154\) 0 0
\(155\) −7.85043 −0.630562
\(156\) 0 0
\(157\) 5.07838 0.405299 0.202649 0.979251i \(-0.435045\pi\)
0.202649 + 0.979251i \(0.435045\pi\)
\(158\) 0 0
\(159\) 1.17727 0.0933639
\(160\) 0 0
\(161\) 1.50307i 0.118459i
\(162\) 0 0
\(163\) 12.2329i 0.958152i 0.877773 + 0.479076i \(0.159028\pi\)
−0.877773 + 0.479076i \(0.840972\pi\)
\(164\) 0 0
\(165\) 1.12783 0.0878011
\(166\) 0 0
\(167\) 5.52586i 0.427604i 0.976877 + 0.213802i \(0.0685847\pi\)
−0.976877 + 0.213802i \(0.931415\pi\)
\(168\) 0 0
\(169\) 3.58145 12.4969i 0.275496 0.961302i
\(170\) 0 0
\(171\) 6.09171i 0.465845i
\(172\) 0 0
\(173\) −5.60197 −0.425910 −0.212955 0.977062i \(-0.568309\pi\)
−0.212955 + 0.977062i \(0.568309\pi\)
\(174\) 0 0
\(175\) 1.70928i 0.129209i
\(176\) 0 0
\(177\) 0.630898i 0.0474212i
\(178\) 0 0
\(179\) −8.28231 −0.619049 −0.309525 0.950891i \(-0.600170\pi\)
−0.309525 + 0.950891i \(0.600170\pi\)
\(180\) 0 0
\(181\) 6.57304 0.488570 0.244285 0.969703i \(-0.421447\pi\)
0.244285 + 0.969703i \(0.421447\pi\)
\(182\) 0 0
\(183\) 0.554787 0.0410111
\(184\) 0 0
\(185\) −1.36910 −0.100658
\(186\) 0 0
\(187\) 7.15061i 0.522905i
\(188\) 0 0
\(189\) 5.26180i 0.382739i
\(190\) 0 0
\(191\) −21.6742 −1.56829 −0.784145 0.620577i \(-0.786898\pi\)
−0.784145 + 0.620577i \(0.786898\pi\)
\(192\) 0 0
\(193\) 7.75872i 0.558485i 0.960221 + 0.279243i \(0.0900834\pi\)
−0.960221 + 0.279243i \(0.909917\pi\)
\(194\) 0 0
\(195\) −1.17009 1.55252i −0.0837916 0.111178i
\(196\) 0 0
\(197\) 23.5441i 1.67745i −0.544556 0.838724i \(-0.683302\pi\)
0.544556 0.838724i \(-0.316698\pi\)
\(198\) 0 0
\(199\) 12.5958 0.892894 0.446447 0.894810i \(-0.352689\pi\)
0.446447 + 0.894810i \(0.352689\pi\)
\(200\) 0 0
\(201\) 2.49693i 0.176120i
\(202\) 0 0
\(203\) 10.0722i 0.706932i
\(204\) 0 0
\(205\) −2.18342 −0.152496
\(206\) 0 0
\(207\) 2.38243 0.165591
\(208\) 0 0
\(209\) −4.70313 −0.325322
\(210\) 0 0
\(211\) −16.2823 −1.12092 −0.560460 0.828181i \(-0.689376\pi\)
−0.560460 + 0.828181i \(0.689376\pi\)
\(212\) 0 0
\(213\) 7.05559i 0.483441i
\(214\) 0 0
\(215\) 4.38243i 0.298879i
\(216\) 0 0
\(217\) −13.4186 −0.910911
\(218\) 0 0
\(219\) 4.42469i 0.298993i
\(220\) 0 0
\(221\) 9.84324 7.41855i 0.662128 0.499026i
\(222\) 0 0
\(223\) 19.2846i 1.29139i −0.763595 0.645696i \(-0.776568\pi\)
0.763595 0.645696i \(-0.223432\pi\)
\(224\) 0 0
\(225\) 2.70928 0.180618
\(226\) 0 0
\(227\) 4.26406i 0.283016i −0.989937 0.141508i \(-0.954805\pi\)
0.989937 0.141508i \(-0.0451951\pi\)
\(228\) 0 0
\(229\) 7.91548i 0.523070i −0.965194 0.261535i \(-0.915771\pi\)
0.965194 0.261535i \(-0.0842286\pi\)
\(230\) 0 0
\(231\) 1.92777 0.126838
\(232\) 0 0
\(233\) 8.42469 0.551920 0.275960 0.961169i \(-0.411004\pi\)
0.275960 + 0.961169i \(0.411004\pi\)
\(234\) 0 0
\(235\) −5.12783 −0.334502
\(236\) 0 0
\(237\) −8.68035 −0.563849
\(238\) 0 0
\(239\) 18.0917i 1.17026i −0.810941 0.585128i \(-0.801044\pi\)
0.810941 0.585128i \(-0.198956\pi\)
\(240\) 0 0
\(241\) 3.44521i 0.221926i 0.993825 + 0.110963i \(0.0353935\pi\)
−0.993825 + 0.110963i \(0.964607\pi\)
\(242\) 0 0
\(243\) −12.7226 −0.816156
\(244\) 0 0
\(245\) 4.07838i 0.260558i
\(246\) 0 0
\(247\) 4.87936 + 6.47414i 0.310466 + 0.411940i
\(248\) 0 0
\(249\) 4.70701i 0.298295i
\(250\) 0 0
\(251\) −15.3340 −0.967875 −0.483938 0.875102i \(-0.660794\pi\)
−0.483938 + 0.875102i \(0.660794\pi\)
\(252\) 0 0
\(253\) 1.83937i 0.115640i
\(254\) 0 0
\(255\) 1.84324i 0.115428i
\(256\) 0 0
\(257\) 3.16290 0.197296 0.0986481 0.995122i \(-0.468548\pi\)
0.0986481 + 0.995122i \(0.468548\pi\)
\(258\) 0 0
\(259\) −2.34017 −0.145411
\(260\) 0 0
\(261\) 15.9649 0.988204
\(262\) 0 0
\(263\) −26.9783 −1.66355 −0.831775 0.555112i \(-0.812675\pi\)
−0.831775 + 0.555112i \(0.812675\pi\)
\(264\) 0 0
\(265\) 2.18342i 0.134126i
\(266\) 0 0
\(267\) 4.00000i 0.244796i
\(268\) 0 0
\(269\) −11.0784 −0.675461 −0.337730 0.941243i \(-0.609659\pi\)
−0.337730 + 0.941243i \(0.609659\pi\)
\(270\) 0 0
\(271\) 1.96615i 0.119435i 0.998215 + 0.0597176i \(0.0190200\pi\)
−0.998215 + 0.0597176i \(0.980980\pi\)
\(272\) 0 0
\(273\) −2.00000 2.65368i −0.121046 0.160608i
\(274\) 0 0
\(275\) 2.09171i 0.126135i
\(276\) 0 0
\(277\) −15.1773 −0.911914 −0.455957 0.890002i \(-0.650703\pi\)
−0.455957 + 0.890002i \(0.650703\pi\)
\(278\) 0 0
\(279\) 21.2690i 1.27334i
\(280\) 0 0
\(281\) 5.91548i 0.352888i −0.984311 0.176444i \(-0.943541\pi\)
0.984311 0.176444i \(-0.0564594\pi\)
\(282\) 0 0
\(283\) 19.9844 1.18795 0.593975 0.804484i \(-0.297558\pi\)
0.593975 + 0.804484i \(0.297558\pi\)
\(284\) 0 0
\(285\) 1.21235 0.0718132
\(286\) 0 0
\(287\) −3.73206 −0.220297
\(288\) 0 0
\(289\) −5.31351 −0.312559
\(290\) 0 0
\(291\) 4.08452i 0.239439i
\(292\) 0 0
\(293\) 30.5152i 1.78272i −0.453300 0.891358i \(-0.649753\pi\)
0.453300 0.891358i \(-0.350247\pi\)
\(294\) 0 0
\(295\) 1.17009 0.0681251
\(296\) 0 0
\(297\) 6.43907i 0.373633i
\(298\) 0 0
\(299\) 2.53200 1.90829i 0.146429 0.110359i
\(300\) 0 0
\(301\) 7.49079i 0.431762i
\(302\) 0 0
\(303\) −8.49693 −0.488136
\(304\) 0 0
\(305\) 1.02893i 0.0589163i
\(306\) 0 0
\(307\) 15.2534i 0.870557i 0.900296 + 0.435278i \(0.143350\pi\)
−0.900296 + 0.435278i \(0.856650\pi\)
\(308\) 0 0
\(309\) 0.191828 0.0109127
\(310\) 0 0
\(311\) 2.86830 0.162646 0.0813231 0.996688i \(-0.474085\pi\)
0.0813231 + 0.996688i \(0.474085\pi\)
\(312\) 0 0
\(313\) 14.5236 0.820922 0.410461 0.911878i \(-0.365368\pi\)
0.410461 + 0.911878i \(0.365368\pi\)
\(314\) 0 0
\(315\) 4.63090 0.260922
\(316\) 0 0
\(317\) 8.42082i 0.472960i 0.971636 + 0.236480i \(0.0759938\pi\)
−0.971636 + 0.236480i \(0.924006\pi\)
\(318\) 0 0
\(319\) 12.3258i 0.690112i
\(320\) 0 0
\(321\) 1.10116 0.0614610
\(322\) 0 0
\(323\) 7.68649i 0.427688i
\(324\) 0 0
\(325\) 2.87936 2.17009i 0.159718 0.120375i
\(326\) 0 0
\(327\) 2.92162i 0.161566i
\(328\) 0 0
\(329\) −8.76487 −0.483223
\(330\) 0 0
\(331\) 24.2485i 1.33282i −0.745587 0.666408i \(-0.767831\pi\)
0.745587 0.666408i \(-0.232169\pi\)
\(332\) 0 0
\(333\) 3.70928i 0.203267i
\(334\) 0 0
\(335\) 4.63090 0.253013
\(336\) 0 0
\(337\) −27.3028 −1.48728 −0.743640 0.668580i \(-0.766902\pi\)
−0.743640 + 0.668580i \(0.766902\pi\)
\(338\) 0 0
\(339\) 10.1568 0.551639
\(340\) 0 0
\(341\) −16.4208 −0.889237
\(342\) 0 0
\(343\) 18.9360i 1.02245i
\(344\) 0 0
\(345\) 0.474142i 0.0255270i
\(346\) 0 0
\(347\) −4.04226 −0.217000 −0.108500 0.994096i \(-0.534605\pi\)
−0.108500 + 0.994096i \(0.534605\pi\)
\(348\) 0 0
\(349\) 29.4908i 1.57861i −0.614004 0.789303i \(-0.710442\pi\)
0.614004 0.789303i \(-0.289558\pi\)
\(350\) 0 0
\(351\) −8.86376 + 6.68035i −0.473113 + 0.356570i
\(352\) 0 0
\(353\) 22.9444i 1.22121i −0.791936 0.610604i \(-0.790927\pi\)
0.791936 0.610604i \(-0.209073\pi\)
\(354\) 0 0
\(355\) −13.0856 −0.694510
\(356\) 0 0
\(357\) 3.15061i 0.166748i
\(358\) 0 0
\(359\) 3.22795i 0.170364i −0.996365 0.0851822i \(-0.972853\pi\)
0.996365 0.0851822i \(-0.0271472\pi\)
\(360\) 0 0
\(361\) 13.9444 0.733916
\(362\) 0 0
\(363\) −3.57199 −0.187481
\(364\) 0 0
\(365\) 8.20620 0.429532
\(366\) 0 0
\(367\) −1.33525 −0.0696996 −0.0348498 0.999393i \(-0.511095\pi\)
−0.0348498 + 0.999393i \(0.511095\pi\)
\(368\) 0 0
\(369\) 5.91548i 0.307948i
\(370\) 0 0
\(371\) 3.73206i 0.193759i
\(372\) 0 0
\(373\) −10.9216 −0.565500 −0.282750 0.959194i \(-0.591247\pi\)
−0.282750 + 0.959194i \(0.591247\pi\)
\(374\) 0 0
\(375\) 0.539189i 0.0278436i
\(376\) 0 0
\(377\) 16.9672 12.7877i 0.873855 0.658598i
\(378\) 0 0
\(379\) 18.4052i 0.945413i 0.881220 + 0.472706i \(0.156723\pi\)
−0.881220 + 0.472706i \(0.843277\pi\)
\(380\) 0 0
\(381\) −11.7093 −0.599884
\(382\) 0 0
\(383\) 22.8865i 1.16945i −0.811232 0.584724i \(-0.801203\pi\)
0.811232 0.584724i \(-0.198797\pi\)
\(384\) 0 0
\(385\) 3.57531i 0.182214i
\(386\) 0 0
\(387\) 11.8732 0.603550
\(388\) 0 0
\(389\) 20.5236 1.04059 0.520294 0.853987i \(-0.325822\pi\)
0.520294 + 0.853987i \(0.325822\pi\)
\(390\) 0 0
\(391\) 3.00614 0.152027
\(392\) 0 0
\(393\) −1.47641 −0.0744750
\(394\) 0 0
\(395\) 16.0989i 0.810023i
\(396\) 0 0
\(397\) 17.6658i 0.886621i 0.896368 + 0.443310i \(0.146196\pi\)
−0.896368 + 0.443310i \(0.853804\pi\)
\(398\) 0 0
\(399\) 2.07223 0.103741
\(400\) 0 0
\(401\) 30.6681i 1.53149i 0.643144 + 0.765745i \(0.277629\pi\)
−0.643144 + 0.765745i \(0.722371\pi\)
\(402\) 0 0
\(403\) 17.0361 + 22.6042i 0.848629 + 1.12600i
\(404\) 0 0
\(405\) 6.46800i 0.321397i
\(406\) 0 0
\(407\) −2.86376 −0.141951
\(408\) 0 0
\(409\) 37.0205i 1.83055i 0.402833 + 0.915273i \(0.368025\pi\)
−0.402833 + 0.915273i \(0.631975\pi\)
\(410\) 0 0
\(411\) 10.0267i 0.494579i
\(412\) 0 0
\(413\) 2.00000 0.0984136
\(414\) 0 0
\(415\) 8.72979 0.428529
\(416\) 0 0
\(417\) 7.31965 0.358445
\(418\) 0 0
\(419\) −28.0144 −1.36859 −0.684296 0.729204i \(-0.739890\pi\)
−0.684296 + 0.729204i \(0.739890\pi\)
\(420\) 0 0
\(421\) 27.8888i 1.35922i 0.733575 + 0.679609i \(0.237850\pi\)
−0.733575 + 0.679609i \(0.762150\pi\)
\(422\) 0 0
\(423\) 13.8927i 0.675486i
\(424\) 0 0
\(425\) 3.41855 0.165824
\(426\) 0 0
\(427\) 1.75872i 0.0851106i
\(428\) 0 0
\(429\) −2.44748 3.24742i −0.118165 0.156787i
\(430\) 0 0
\(431\) 7.53692i 0.363041i −0.983387 0.181520i \(-0.941898\pi\)
0.983387 0.181520i \(-0.0581018\pi\)
\(432\) 0 0
\(433\) 13.2039 0.634541 0.317270 0.948335i \(-0.397234\pi\)
0.317270 + 0.948335i \(0.397234\pi\)
\(434\) 0 0
\(435\) 3.17727i 0.152339i
\(436\) 0 0
\(437\) 1.97721i 0.0945830i
\(438\) 0 0
\(439\) 30.5380 1.45750 0.728749 0.684781i \(-0.240102\pi\)
0.728749 + 0.684781i \(0.240102\pi\)
\(440\) 0 0
\(441\) −11.0494 −0.526164
\(442\) 0 0
\(443\) 9.76979 0.464177 0.232088 0.972695i \(-0.425444\pi\)
0.232088 + 0.972695i \(0.425444\pi\)
\(444\) 0 0
\(445\) −7.41855 −0.351673
\(446\) 0 0
\(447\) 4.71154i 0.222848i
\(448\) 0 0
\(449\) 10.9627i 0.517360i 0.965963 + 0.258680i \(0.0832875\pi\)
−0.965963 + 0.258680i \(0.916713\pi\)
\(450\) 0 0
\(451\) −4.56707 −0.215055
\(452\) 0 0
\(453\) 9.21235i 0.432834i
\(454\) 0 0
\(455\) 4.92162 3.70928i 0.230729 0.173894i
\(456\) 0 0
\(457\) 19.4596i 0.910281i 0.890420 + 0.455141i \(0.150411\pi\)
−0.890420 + 0.455141i \(0.849589\pi\)
\(458\) 0 0
\(459\) −10.5236 −0.491199
\(460\) 0 0
\(461\) 12.2823i 0.572044i 0.958223 + 0.286022i \(0.0923331\pi\)
−0.958223 + 0.286022i \(0.907667\pi\)
\(462\) 0 0
\(463\) 35.5357i 1.65148i −0.564048 0.825742i \(-0.690757\pi\)
0.564048 0.825742i \(-0.309243\pi\)
\(464\) 0 0
\(465\) 4.23287 0.196294
\(466\) 0 0
\(467\) 35.8420 1.65857 0.829285 0.558825i \(-0.188748\pi\)
0.829285 + 0.558825i \(0.188748\pi\)
\(468\) 0 0
\(469\) 7.91548 0.365503
\(470\) 0 0
\(471\) −2.73820 −0.126170
\(472\) 0 0
\(473\) 9.16677i 0.421489i
\(474\) 0 0
\(475\) 2.24846i 0.103167i
\(476\) 0 0
\(477\) 5.91548 0.270851
\(478\) 0 0
\(479\) 12.6030i 0.575846i 0.957654 + 0.287923i \(0.0929648\pi\)
−0.957654 + 0.287923i \(0.907035\pi\)
\(480\) 0 0
\(481\) 2.97107 + 3.94214i 0.135469 + 0.179746i
\(482\) 0 0
\(483\) 0.810439i 0.0368763i
\(484\) 0 0
\(485\) 7.57531 0.343977
\(486\) 0 0
\(487\) 11.5525i 0.523495i −0.965136 0.261747i \(-0.915701\pi\)
0.965136 0.261747i \(-0.0842987\pi\)
\(488\) 0 0
\(489\) 6.59583i 0.298274i
\(490\) 0 0
\(491\) −10.1568 −0.458368 −0.229184 0.973383i \(-0.573606\pi\)
−0.229184 + 0.973383i \(0.573606\pi\)
\(492\) 0 0
\(493\) 20.1445 0.907261
\(494\) 0 0
\(495\) 5.66701 0.254713
\(496\) 0 0
\(497\) −22.3668 −1.00329
\(498\) 0 0
\(499\) 36.9165i 1.65261i −0.563222 0.826305i \(-0.690439\pi\)
0.563222 0.826305i \(-0.309561\pi\)
\(500\) 0 0
\(501\) 2.97948i 0.133113i
\(502\) 0 0
\(503\) 26.3246 1.17375 0.586877 0.809676i \(-0.300357\pi\)
0.586877 + 0.809676i \(0.300357\pi\)
\(504\) 0 0
\(505\) 15.7587i 0.701254i
\(506\) 0 0
\(507\) −1.93108 + 6.73820i −0.0857622 + 0.299254i
\(508\) 0 0
\(509\) 32.6491i 1.44715i 0.690247 + 0.723574i \(0.257502\pi\)
−0.690247 + 0.723574i \(0.742498\pi\)
\(510\) 0 0
\(511\) 14.0267 0.620503
\(512\) 0 0
\(513\) 6.92162i 0.305597i
\(514\) 0 0
\(515\) 0.355771i 0.0156772i
\(516\) 0 0
\(517\) −10.7259 −0.471725
\(518\) 0 0
\(519\) 3.02052 0.132586
\(520\) 0 0
\(521\) −9.52586 −0.417335 −0.208668 0.977987i \(-0.566913\pi\)
−0.208668 + 0.977987i \(0.566913\pi\)
\(522\) 0 0
\(523\) 37.0193 1.61874 0.809370 0.587299i \(-0.199809\pi\)
0.809370 + 0.587299i \(0.199809\pi\)
\(524\) 0 0
\(525\) 0.921622i 0.0402229i
\(526\) 0 0
\(527\) 26.8371i 1.16904i
\(528\) 0 0
\(529\) −22.2267 −0.966379
\(530\) 0 0
\(531\) 3.17009i 0.137570i
\(532\) 0 0
\(533\) 4.73820 + 6.28685i 0.205234 + 0.272314i
\(534\) 0 0
\(535\) 2.04226i 0.0882946i
\(536\) 0 0
\(537\) 4.46573 0.192711
\(538\) 0 0
\(539\) 8.53078i 0.367447i
\(540\) 0 0
\(541\) 14.5380i 0.625036i 0.949912 + 0.312518i \(0.101172\pi\)
−0.949912 + 0.312518i \(0.898828\pi\)
\(542\) 0 0
\(543\) −3.54411 −0.152092
\(544\) 0 0
\(545\) 5.41855 0.232105
\(546\) 0 0
\(547\) −7.03612 −0.300843 −0.150421 0.988622i \(-0.548063\pi\)
−0.150421 + 0.988622i \(0.548063\pi\)
\(548\) 0 0
\(549\) 2.78765 0.118974
\(550\) 0 0
\(551\) 13.2495i 0.564448i
\(552\) 0 0
\(553\) 27.5174i 1.17016i
\(554\) 0 0
\(555\) 0.738205 0.0313350
\(556\) 0 0
\(557\) 13.8348i 0.586201i 0.956082 + 0.293100i \(0.0946870\pi\)
−0.956082 + 0.293100i \(0.905313\pi\)
\(558\) 0 0
\(559\) 12.6186 9.51026i 0.533710 0.402241i
\(560\) 0 0
\(561\) 3.85553i 0.162781i
\(562\) 0 0
\(563\) 27.3328 1.15194 0.575970 0.817471i \(-0.304624\pi\)
0.575970 + 0.817471i \(0.304624\pi\)
\(564\) 0 0
\(565\) 18.8371i 0.792483i
\(566\) 0 0
\(567\) 11.0556i 0.464291i
\(568\) 0 0
\(569\) 16.0183 0.671520 0.335760 0.941948i \(-0.391007\pi\)
0.335760 + 0.941948i \(0.391007\pi\)
\(570\) 0 0
\(571\) 14.7382 0.616775 0.308387 0.951261i \(-0.400211\pi\)
0.308387 + 0.951261i \(0.400211\pi\)
\(572\) 0 0
\(573\) 11.6865 0.488210
\(574\) 0 0
\(575\) 0.879362 0.0366719
\(576\) 0 0
\(577\) 26.5152i 1.10384i 0.833897 + 0.551921i \(0.186105\pi\)
−0.833897 + 0.551921i \(0.813895\pi\)
\(578\) 0 0
\(579\) 4.18342i 0.173857i
\(580\) 0 0
\(581\) 14.9216 0.619053
\(582\) 0 0
\(583\) 4.56707i 0.189149i
\(584\) 0 0
\(585\) −5.87936 7.80098i −0.243082 0.322531i
\(586\) 0 0
\(587\) 30.9711i 1.27831i 0.769077 + 0.639156i \(0.220716\pi\)
−0.769077 + 0.639156i \(0.779284\pi\)
\(588\) 0 0
\(589\) −17.6514 −0.727314
\(590\) 0 0
\(591\) 12.6947i 0.522191i
\(592\) 0 0
\(593\) 27.8888i 1.14526i 0.819815 + 0.572628i \(0.194076\pi\)
−0.819815 + 0.572628i \(0.805924\pi\)
\(594\) 0 0
\(595\) 5.84324 0.239550
\(596\) 0 0
\(597\) −6.79153 −0.277959
\(598\) 0 0
\(599\) −21.0784 −0.861239 −0.430620 0.902534i \(-0.641705\pi\)
−0.430620 + 0.902534i \(0.641705\pi\)
\(600\) 0 0
\(601\) −16.3545 −0.667116 −0.333558 0.942730i \(-0.608249\pi\)
−0.333558 + 0.942730i \(0.608249\pi\)
\(602\) 0 0
\(603\) 12.5464i 0.510928i
\(604\) 0 0
\(605\) 6.62475i 0.269335i
\(606\) 0 0
\(607\) −33.1617 −1.34599 −0.672995 0.739647i \(-0.734993\pi\)
−0.672995 + 0.739647i \(0.734993\pi\)
\(608\) 0 0
\(609\) 5.43084i 0.220069i
\(610\) 0 0
\(611\) 11.1278 + 14.7649i 0.450184 + 0.597323i
\(612\) 0 0
\(613\) 40.3012i 1.62775i −0.581039 0.813876i \(-0.697354\pi\)
0.581039 0.813876i \(-0.302646\pi\)
\(614\) 0 0
\(615\) 1.17727 0.0474723
\(616\) 0 0
\(617\) 14.2823i 0.574984i −0.957783 0.287492i \(-0.907178\pi\)
0.957783 0.287492i \(-0.0928215\pi\)
\(618\) 0 0
\(619\) 19.0277i 0.764788i −0.923999 0.382394i \(-0.875100\pi\)
0.923999 0.382394i \(-0.124900\pi\)
\(620\) 0 0
\(621\) −2.70701 −0.108628
\(622\) 0 0
\(623\) −12.6803 −0.508027
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 2.53588 0.101273
\(628\) 0 0
\(629\) 4.68035i 0.186618i
\(630\) 0 0
\(631\) 3.25461i 0.129564i 0.997899 + 0.0647819i \(0.0206352\pi\)
−0.997899 + 0.0647819i \(0.979365\pi\)
\(632\) 0 0
\(633\) 8.77924 0.348944
\(634\) 0 0
\(635\) 21.7165i 0.861792i
\(636\) 0 0
\(637\) −11.7431 + 8.85043i −0.465280 + 0.350667i
\(638\) 0 0
\(639\) 35.4524i 1.40248i
\(640\) 0 0
\(641\) −16.8904 −0.667132 −0.333566 0.942727i \(-0.608252\pi\)
−0.333566 + 0.942727i \(0.608252\pi\)
\(642\) 0 0
\(643\) 48.9132i 1.92895i −0.264176 0.964474i \(-0.585100\pi\)
0.264176 0.964474i \(-0.414900\pi\)
\(644\) 0 0
\(645\) 2.36296i 0.0930414i
\(646\) 0 0
\(647\) 0.669282 0.0263122 0.0131561 0.999913i \(-0.495812\pi\)
0.0131561 + 0.999913i \(0.495812\pi\)
\(648\) 0 0
\(649\) 2.44748 0.0960720
\(650\) 0 0
\(651\) 7.23513 0.283567
\(652\) 0 0
\(653\) −14.6537 −0.573443 −0.286721 0.958014i \(-0.592565\pi\)
−0.286721 + 0.958014i \(0.592565\pi\)
\(654\) 0 0
\(655\) 2.73820i 0.106991i
\(656\) 0 0
\(657\) 22.2329i 0.867387i
\(658\) 0 0
\(659\) −18.2245 −0.709924 −0.354962 0.934881i \(-0.615506\pi\)
−0.354962 + 0.934881i \(0.615506\pi\)
\(660\) 0 0
\(661\) 0.523590i 0.0203653i 0.999948 + 0.0101827i \(0.00324130\pi\)
−0.999948 + 0.0101827i \(0.996759\pi\)
\(662\) 0 0
\(663\) −5.30737 + 4.00000i −0.206121 + 0.155347i
\(664\) 0 0
\(665\) 3.84324i 0.149035i
\(666\) 0 0
\(667\) 5.18181 0.200640
\(668\) 0 0
\(669\) 10.3980i 0.402011i
\(670\) 0 0
\(671\) 2.15222i 0.0830856i
\(672\) 0 0
\(673\) −23.8843 −0.920671 −0.460336 0.887745i \(-0.652271\pi\)
−0.460336 + 0.887745i \(0.652271\pi\)
\(674\) 0 0
\(675\) −3.07838 −0.118487
\(676\) 0 0
\(677\) −4.55479 −0.175055 −0.0875273 0.996162i \(-0.527897\pi\)
−0.0875273 + 0.996162i \(0.527897\pi\)
\(678\) 0 0
\(679\) 12.9483 0.496910
\(680\) 0 0
\(681\) 2.29914i 0.0881030i
\(682\) 0 0
\(683\) 17.3112i 0.662396i −0.943561 0.331198i \(-0.892547\pi\)
0.943561 0.331198i \(-0.107453\pi\)
\(684\) 0 0
\(685\) −18.5958 −0.710510
\(686\) 0 0
\(687\) 4.26794i 0.162832i
\(688\) 0 0
\(689\) 6.28685 4.73820i 0.239510 0.180511i
\(690\) 0 0
\(691\) 17.6404i 0.671071i 0.942028 + 0.335535i \(0.108917\pi\)
−0.942028 + 0.335535i \(0.891083\pi\)
\(692\) 0 0
\(693\) 9.68649 0.367959
\(694\) 0 0
\(695\) 13.5753i 0.514941i
\(696\) 0 0
\(697\) 7.46412i 0.282724i
\(698\) 0 0
\(699\) −4.54250 −0.171813
\(700\) 0 0
\(701\) −32.8059 −1.23906 −0.619531 0.784972i \(-0.712677\pi\)
−0.619531 + 0.784972i \(0.712677\pi\)
\(702\) 0 0
\(703\) −3.07838 −0.116103
\(704\) 0 0
\(705\) 2.76487 0.104131
\(706\) 0 0
\(707\) 26.9360i 1.01303i
\(708\) 0 0
\(709\) 4.55025i 0.170888i −0.996343 0.0854442i \(-0.972769\pi\)
0.996343 0.0854442i \(-0.0272309\pi\)
\(710\) 0 0
\(711\) −43.6163 −1.63574
\(712\) 0 0
\(713\) 6.90337i 0.258533i
\(714\) 0 0
\(715\) 6.02279 4.53919i 0.225239 0.169756i
\(716\) 0 0
\(717\) 9.75485i 0.364301i
\(718\) 0 0
\(719\) 14.7382 0.549642 0.274821 0.961495i \(-0.411381\pi\)
0.274821 + 0.961495i \(0.411381\pi\)
\(720\) 0 0
\(721\) 0.608111i 0.0226472i
\(722\) 0 0
\(723\) 1.85762i 0.0690856i
\(724\) 0 0
\(725\) 5.89269 0.218849
\(726\) 0 0
\(727\) −36.6791 −1.36035 −0.680177 0.733048i \(-0.738097\pi\)
−0.680177 + 0.733048i \(0.738097\pi\)
\(728\) 0 0
\(729\) −12.5441 −0.464597
\(730\) 0 0
\(731\) 14.9816 0.554113
\(732\) 0 0
\(733\) 12.8227i 0.473618i 0.971556 + 0.236809i \(0.0761016\pi\)
−0.971556 + 0.236809i \(0.923898\pi\)
\(734\) 0 0
\(735\) 2.19902i 0.0811119i
\(736\) 0 0
\(737\) 9.68649 0.356806
\(738\) 0 0
\(739\) 54.1061i 1.99032i −0.0982451 0.995162i \(-0.531323\pi\)
0.0982451 0.995162i \(-0.468677\pi\)
\(740\) 0 0
\(741\) −2.63090 3.49079i −0.0966484 0.128237i
\(742\) 0 0
\(743\) 24.0494i 0.882289i −0.897436 0.441144i \(-0.854573\pi\)
0.897436 0.441144i \(-0.145427\pi\)
\(744\) 0 0
\(745\) 8.73820 0.320143
\(746\) 0 0
\(747\) 23.6514i 0.865360i
\(748\) 0 0
\(749\) 3.49079i 0.127551i
\(750\) 0 0
\(751\) −31.7009 −1.15678 −0.578390 0.815760i \(-0.696319\pi\)
−0.578390 + 0.815760i \(0.696319\pi\)
\(752\) 0 0
\(753\) 8.26794 0.301300
\(754\) 0 0
\(755\) −17.0856 −0.621807
\(756\) 0 0
\(757\) 11.3919 0.414045 0.207023 0.978336i \(-0.433623\pi\)
0.207023 + 0.978336i \(0.433623\pi\)
\(758\) 0 0
\(759\) 0.991767i 0.0359989i
\(760\) 0 0
\(761\) 35.4186i 1.28392i −0.766738 0.641961i \(-0.778121\pi\)
0.766738 0.641961i \(-0.221879\pi\)
\(762\) 0 0
\(763\) 9.26180 0.335300
\(764\) 0 0
\(765\) 9.26180i 0.334861i
\(766\) 0 0
\(767\) −2.53919 3.36910i −0.0916848 0.121651i
\(768\) 0 0
\(769\) 18.1399i 0.654143i −0.945000 0.327071i \(-0.893938\pi\)
0.945000 0.327071i \(-0.106062\pi\)
\(770\) 0 0
\(771\) −1.70540 −0.0614185
\(772\) 0 0
\(773\) 29.4680i 1.05989i −0.848032 0.529945i \(-0.822213\pi\)
0.848032 0.529945i \(-0.177787\pi\)
\(774\) 0 0
\(775\) 7.85043i 0.281996i
\(776\) 0 0
\(777\) 1.26180 0.0452667
\(778\) 0 0
\(779\) −4.90934 −0.175895
\(780\) 0 0
\(781\) −27.3712 −0.979418
\(782\) 0 0
\(783\) −18.1399 −0.648268
\(784\) 0 0
\(785\) 5.07838i 0.181255i
\(786\) 0 0
\(787\) 1.79380i 0.0639419i −0.999489 0.0319710i \(-0.989822\pi\)
0.999489 0.0319710i \(-0.0101784\pi\)
\(788\) 0 0
\(789\) 14.5464 0.517865
\(790\) 0 0
\(791\) 32.1978i 1.14482i
\(792\) 0 0
\(793\) 2.96266 2.23287i 0.105207 0.0792914i
\(794\) 0 0
\(795\) 1.17727i 0.0417536i
\(796\) 0 0
\(797\) 17.9109 0.634438 0.317219 0.948352i \(-0.397251\pi\)
0.317219 + 0.948352i \(0.397251\pi\)
\(798\) 0 0
\(799\) 17.5297i 0.620157i
\(800\) 0 0
\(801\) 20.0989i 0.710160i
\(802\) 0 0
\(803\) 17.1650 0.605739
\(804\) 0 0
\(805\) 1.50307 0.0529763
\(806\) 0 0
\(807\) 5.97334 0.210271
\(808\) 0 0
\(809\) 8.56075 0.300980 0.150490 0.988612i \(-0.451915\pi\)
0.150490 + 0.988612i \(0.451915\pi\)
\(810\) 0 0
\(811\) 36.8443i 1.29378i 0.762584 + 0.646889i \(0.223930\pi\)
−0.762584 + 0.646889i \(0.776070\pi\)
\(812\) 0 0
\(813\) 1.06013i 0.0371803i
\(814\) 0 0
\(815\) 12.2329 0.428499
\(816\) 0 0
\(817\) 9.85374i 0.344739i
\(818\) 0 0
\(819\) −10.0494 13.3340i −0.351156 0.465929i
\(820\) 0 0
\(821\) 53.0805i 1.85252i −0.376884 0.926261i \(-0.623004\pi\)
0.376884 0.926261i \(-0.376996\pi\)
\(822\) 0 0
\(823\) −46.0132 −1.60392 −0.801959 0.597379i \(-0.796209\pi\)
−0.801959 + 0.597379i \(0.796209\pi\)
\(824\) 0 0
\(825\) 1.12783i 0.0392659i
\(826\) 0 0
\(827\) 27.0843i 0.941815i −0.882183 0.470907i \(-0.843927\pi\)
0.882183 0.470907i \(-0.156073\pi\)
\(828\) 0 0
\(829\) 16.9132 0.587420 0.293710 0.955895i \(-0.405110\pi\)
0.293710 + 0.955895i \(0.405110\pi\)
\(830\) 0 0
\(831\) 8.18342 0.283880
\(832\) 0 0
\(833\) −13.9421 −0.483067
\(834\) 0 0
\(835\) 5.52586 0.191230
\(836\) 0 0
\(837\) 24.1666i 0.835320i
\(838\) 0 0
\(839\) 55.3679i 1.91151i 0.294161 + 0.955756i \(0.404960\pi\)
−0.294161 + 0.955756i \(0.595040\pi\)
\(840\) 0 0
\(841\) 5.72383 0.197373
\(842\) 0 0
\(843\) 3.18956i 0.109854i
\(844\) 0 0
\(845\) −12.4969 3.58145i −0.429907 0.123206i
\(846\) 0 0
\(847\) 11.3235i 0.389081i
\(848\) 0 0
\(849\) −10.7754 −0.369810
\(850\) 0 0
\(851\) 1.20394i 0.0412704i
\(852\) 0 0
\(853\) 1.85166i 0.0633995i 0.999497 + 0.0316997i \(0.0100920\pi\)
−0.999497 + 0.0316997i \(0.989908\pi\)
\(854\) 0 0
\(855\) 6.09171 0.208332
\(856\) 0 0
\(857\) 51.3439 1.75387 0.876937 0.480606i \(-0.159583\pi\)
0.876937 + 0.480606i \(0.159583\pi\)
\(858\) 0 0
\(859\) −15.0349 −0.512984 −0.256492 0.966546i \(-0.582567\pi\)
−0.256492 + 0.966546i \(0.582567\pi\)
\(860\) 0 0
\(861\) 2.01229 0.0685785
\(862\) 0 0
\(863\) 20.4307i 0.695468i 0.937593 + 0.347734i \(0.113049\pi\)
−0.937593 + 0.347734i \(0.886951\pi\)
\(864\) 0 0
\(865\) 5.60197i 0.190473i
\(866\) 0 0
\(867\) 2.86499 0.0973000
\(868\) 0 0
\(869\) 33.6742i 1.14232i
\(870\) 0 0
\(871\) −10.0494 13.3340i −0.340513 0.451806i
\(872\) 0 0
\(873\) 20.5236i 0.694618i
\(874\) 0 0
\(875\) 1.70928 0.0577841
\(876\) 0 0
\(877\) 36.4079i 1.22941i 0.788758 + 0.614703i \(0.210724\pi\)
−0.788758 + 0.614703i \(0.789276\pi\)
\(878\) 0 0
\(879\) 16.4534i 0.554961i
\(880\) 0 0
\(881\) −0.814315 −0.0274350 −0.0137175 0.999906i \(-0.504367\pi\)
−0.0137175 + 0.999906i \(0.504367\pi\)
\(882\) 0 0
\(883\) −37.4219 −1.25935 −0.629673 0.776860i \(-0.716811\pi\)
−0.629673 + 0.776860i \(0.716811\pi\)
\(884\) 0 0
\(885\) −0.630898 −0.0212074
\(886\) 0 0
\(887\) −23.4752 −0.788220 −0.394110 0.919063i \(-0.628947\pi\)
−0.394110 + 0.919063i \(0.628947\pi\)
\(888\) 0 0
\(889\) 37.1194i 1.24495i
\(890\) 0 0
\(891\) 13.5292i 0.453244i
\(892\) 0 0
\(893\) −11.5297 −0.385828
\(894\) 0 0
\(895\) 8.28231i 0.276847i
\(896\) 0 0
\(897\) −1.36523 + 1.02893i −0.0455836 + 0.0343550i
\(898\) 0 0
\(899\) 46.2602i 1.54286i
\(900\) 0 0
\(901\) 7.46412 0.248666
\(902\) 0 0
\(903\) 4.03895i 0.134408i
\(904\) 0 0
\(905\) 6.57304i 0.218495i
\(906\) 0 0
\(907\) −43.7575 −1.45294 −0.726472 0.687196i \(-0.758841\pi\)
−0.726472 + 0.687196i \(0.758841\pi\)
\(908\) 0 0
\(909\) −42.6947 −1.41609
\(910\) 0 0
\(911\) −14.2413 −0.471835 −0.235917 0.971773i \(-0.575809\pi\)
−0.235917 + 0.971773i \(0.575809\pi\)
\(912\) 0 0
\(913\) 18.2602 0.604324
\(914\) 0 0
\(915\) 0.554787i 0.0183407i
\(916\) 0 0
\(917\) 4.68035i 0.154559i
\(918\) 0 0
\(919\) 53.8408 1.77604 0.888022 0.459801i \(-0.152079\pi\)
0.888022 + 0.459801i \(0.152079\pi\)
\(920\) 0 0
\(921\) 8.22446i 0.271005i
\(922\) 0 0
\(923\) 28.3968 + 37.6781i 0.934692 + 1.24019i
\(924\) 0 0
\(925\) 1.36910i 0.0450158i
\(926\) 0 0
\(927\) 0.963883 0.0316581
\(928\) 0 0
\(929\) 53.3874i 1.75158i 0.482690 + 0.875791i \(0.339660\pi\)
−0.482690 + 0.875791i \(0.660340\pi\)
\(930\) 0 0
\(931\) 9.17009i 0.300537i
\(932\) 0 0
\(933\) −1.54655 −0.0506319
\(934\) 0 0
\(935\) 7.15061 0.233850
\(936\) 0 0
\(937\) 5.24951 0.171494 0.0857470 0.996317i \(-0.472672\pi\)
0.0857470 + 0.996317i \(0.472672\pi\)
\(938\) 0 0
\(939\) −7.83096 −0.255554
\(940\) 0 0
\(941\) 47.2639i 1.54076i 0.637586 + 0.770379i \(0.279933\pi\)
−0.637586 + 0.770379i \(0.720067\pi\)
\(942\) 0 0
\(943\) 1.92001i 0.0625243i
\(944\) 0 0
\(945\) −5.26180 −0.171166
\(946\) 0 0
\(947\) 22.2595i 0.723337i −0.932307 0.361669i \(-0.882207\pi\)
0.932307 0.361669i \(-0.117793\pi\)
\(948\) 0 0
\(949\) −17.8082 23.6286i −0.578078 0.767018i
\(950\) 0 0
\(951\) 4.54041i 0.147233i
\(952\) 0 0
\(953\) 12.0579 0.390592 0.195296 0.980744i \(-0.437433\pi\)
0.195296 + 0.980744i \(0.437433\pi\)
\(954\) 0 0
\(955\) 21.6742i 0.701361i
\(956\) 0 0
\(957\) 6.64593i 0.214832i
\(958\) 0 0
\(959\) −31.7854 −1.02640
\(960\) 0 0
\(961\) −30.6293 −0.988042
\(962\) 0 0
\(963\) 5.53305 0.178300
\(964\) 0 0
\(965\) 7.75872 0.249762
\(966\) 0 0
\(967\) 16.6842i 0.536528i −0.963345 0.268264i \(-0.913550\pi\)
0.963345 0.268264i \(-0.0864500\pi\)
\(968\) 0 0
\(969\) 4.14447i 0.133140i
\(970\) 0 0
\(971\) 43.8531 1.40731 0.703656 0.710541i \(-0.251550\pi\)
0.703656 + 0.710541i \(0.251550\pi\)
\(972\) 0 0
\(973\) 23.2039i 0.743884i
\(974\) 0 0
\(975\) −1.55252 + 1.17009i −0.0497204 + 0.0374728i
\(976\) 0 0
\(977\) 21.5136i 0.688280i −0.938918 0.344140i \(-0.888170\pi\)
0.938918 0.344140i \(-0.111830\pi\)
\(978\) 0 0
\(979\) −15.5174 −0.495940
\(980\) 0 0
\(981\) 14.6803i 0.468707i
\(982\) 0 0
\(983\) 27.9481i 0.891406i 0.895181 + 0.445703i \(0.147046\pi\)
−0.895181 + 0.445703i \(0.852954\pi\)
\(984\) 0 0
\(985\) −23.5441 −0.750178
\(986\) 0 0
\(987\) 4.72592 0.150428
\(988\) 0 0
\(989\) 3.85374 0.122542
\(990\) 0 0
\(991\) 20.4436 0.649412 0.324706 0.945815i \(-0.394735\pi\)
0.324706 + 0.945815i \(0.394735\pi\)
\(992\) 0 0
\(993\) 13.0745i 0.414907i
\(994\) 0 0
\(995\) 12.5958i 0.399315i
\(996\) 0 0
\(997\) 14.4514 0.457679 0.228840 0.973464i \(-0.426507\pi\)
0.228840 + 0.973464i \(0.426507\pi\)
\(998\) 0 0
\(999\) 4.21461i 0.133344i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 520.2.k.a.441.3 6
3.2 odd 2 4680.2.g.j.2521.4 6
4.3 odd 2 1040.2.k.b.961.3 6
5.2 odd 4 2600.2.f.c.649.4 6
5.3 odd 4 2600.2.f.d.649.3 6
5.4 even 2 2600.2.k.b.2001.4 6
13.5 odd 4 6760.2.a.u.1.2 3
13.8 odd 4 6760.2.a.v.1.2 3
13.12 even 2 inner 520.2.k.a.441.4 yes 6
39.38 odd 2 4680.2.g.j.2521.3 6
52.51 odd 2 1040.2.k.b.961.4 6
65.12 odd 4 2600.2.f.d.649.4 6
65.38 odd 4 2600.2.f.c.649.3 6
65.64 even 2 2600.2.k.b.2001.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
520.2.k.a.441.3 6 1.1 even 1 trivial
520.2.k.a.441.4 yes 6 13.12 even 2 inner
1040.2.k.b.961.3 6 4.3 odd 2
1040.2.k.b.961.4 6 52.51 odd 2
2600.2.f.c.649.3 6 65.38 odd 4
2600.2.f.c.649.4 6 5.2 odd 4
2600.2.f.d.649.3 6 5.3 odd 4
2600.2.f.d.649.4 6 65.12 odd 4
2600.2.k.b.2001.3 6 65.64 even 2
2600.2.k.b.2001.4 6 5.4 even 2
4680.2.g.j.2521.3 6 39.38 odd 2
4680.2.g.j.2521.4 6 3.2 odd 2
6760.2.a.u.1.2 3 13.5 odd 4
6760.2.a.v.1.2 3 13.8 odd 4