Properties

Label 5175.2.a.by.1.6
Level $5175$
Weight $2$
Character 5175.1
Self dual yes
Analytic conductor $41.323$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5175,2,Mod(1,5175)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5175, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5175.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5175 = 3^{2} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5175.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,10,0,0,-6,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.3225830460\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.98838128.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 10x^{4} - x^{3} + 16x^{2} + 5x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 1035)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(0.139251\) of defining polynomial
Character \(\chi\) \(=\) 5175.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.70812 q^{2} +5.33392 q^{4} -1.21406 q^{7} +9.02867 q^{8} -2.12841 q^{11} +4.32055 q^{13} -3.28783 q^{14} +13.7829 q^{16} -1.98662 q^{17} +5.28783 q^{19} -5.76401 q^{22} +1.00000 q^{23} +11.7006 q^{26} -6.47571 q^{28} +7.10648 q^{29} -2.33392 q^{31} +19.2684 q^{32} -5.38002 q^{34} -5.81865 q^{37} +14.3201 q^{38} +11.5822 q^{41} -1.78112 q^{43} -11.3528 q^{44} +2.70812 q^{46} +7.89242 q^{47} -5.52605 q^{49} +23.0455 q^{52} -4.89046 q^{53} -10.9614 q^{56} +19.2452 q^{58} -0.118364 q^{59} -8.79626 q^{61} -6.32055 q^{62} +24.6154 q^{64} +1.16946 q^{67} -10.5965 q^{68} +14.3135 q^{71} -8.32055 q^{73} -15.7576 q^{74} +28.2049 q^{76} +2.58403 q^{77} +11.3895 q^{79} +31.3660 q^{82} -8.91130 q^{83} -4.82348 q^{86} -19.2167 q^{88} -2.07508 q^{89} -5.24541 q^{91} +5.33392 q^{92} +21.3736 q^{94} +18.9612 q^{97} -14.9652 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 10 q^{4} - 6 q^{7} - 4 q^{11} - 12 q^{13} + 4 q^{14} + 14 q^{16} + 4 q^{17} + 8 q^{19} - 8 q^{22} + 6 q^{23} + 12 q^{26} - 24 q^{28} + 6 q^{29} + 8 q^{31} + 20 q^{32} - 12 q^{34} - 22 q^{37} + 36 q^{38}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.70812 1.91493 0.957466 0.288548i \(-0.0931724\pi\)
0.957466 + 0.288548i \(0.0931724\pi\)
\(3\) 0 0
\(4\) 5.33392 2.66696
\(5\) 0 0
\(6\) 0 0
\(7\) −1.21406 −0.458872 −0.229436 0.973324i \(-0.573688\pi\)
−0.229436 + 0.973324i \(0.573688\pi\)
\(8\) 9.02867 3.19212
\(9\) 0 0
\(10\) 0 0
\(11\) −2.12841 −0.641741 −0.320871 0.947123i \(-0.603975\pi\)
−0.320871 + 0.947123i \(0.603975\pi\)
\(12\) 0 0
\(13\) 4.32055 1.19830 0.599152 0.800635i \(-0.295505\pi\)
0.599152 + 0.800635i \(0.295505\pi\)
\(14\) −3.28783 −0.878709
\(15\) 0 0
\(16\) 13.7829 3.44572
\(17\) −1.98662 −0.481827 −0.240913 0.970547i \(-0.577447\pi\)
−0.240913 + 0.970547i \(0.577447\pi\)
\(18\) 0 0
\(19\) 5.28783 1.21311 0.606556 0.795041i \(-0.292551\pi\)
0.606556 + 0.795041i \(0.292551\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −5.76401 −1.22889
\(23\) 1.00000 0.208514
\(24\) 0 0
\(25\) 0 0
\(26\) 11.7006 2.29467
\(27\) 0 0
\(28\) −6.47571 −1.22379
\(29\) 7.10648 1.31964 0.659820 0.751423i \(-0.270632\pi\)
0.659820 + 0.751423i \(0.270632\pi\)
\(30\) 0 0
\(31\) −2.33392 −0.419185 −0.209592 0.977789i \(-0.567214\pi\)
−0.209592 + 0.977789i \(0.567214\pi\)
\(32\) 19.2684 3.40620
\(33\) 0 0
\(34\) −5.38002 −0.922665
\(35\) 0 0
\(36\) 0 0
\(37\) −5.81865 −0.956581 −0.478290 0.878202i \(-0.658743\pi\)
−0.478290 + 0.878202i \(0.658743\pi\)
\(38\) 14.3201 2.32302
\(39\) 0 0
\(40\) 0 0
\(41\) 11.5822 1.80884 0.904418 0.426648i \(-0.140306\pi\)
0.904418 + 0.426648i \(0.140306\pi\)
\(42\) 0 0
\(43\) −1.78112 −0.271618 −0.135809 0.990735i \(-0.543363\pi\)
−0.135809 + 0.990735i \(0.543363\pi\)
\(44\) −11.3528 −1.71150
\(45\) 0 0
\(46\) 2.70812 0.399291
\(47\) 7.89242 1.15123 0.575614 0.817722i \(-0.304763\pi\)
0.575614 + 0.817722i \(0.304763\pi\)
\(48\) 0 0
\(49\) −5.52605 −0.789436
\(50\) 0 0
\(51\) 0 0
\(52\) 23.0455 3.19583
\(53\) −4.89046 −0.671757 −0.335878 0.941905i \(-0.609033\pi\)
−0.335878 + 0.941905i \(0.609033\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −10.9614 −1.46477
\(57\) 0 0
\(58\) 19.2452 2.52702
\(59\) −0.118364 −0.0154097 −0.00770486 0.999970i \(-0.502453\pi\)
−0.00770486 + 0.999970i \(0.502453\pi\)
\(60\) 0 0
\(61\) −8.79626 −1.12625 −0.563123 0.826373i \(-0.690400\pi\)
−0.563123 + 0.826373i \(0.690400\pi\)
\(62\) −6.32055 −0.802710
\(63\) 0 0
\(64\) 24.6154 3.07692
\(65\) 0 0
\(66\) 0 0
\(67\) 1.16946 0.142873 0.0714364 0.997445i \(-0.477242\pi\)
0.0714364 + 0.997445i \(0.477242\pi\)
\(68\) −10.5965 −1.28501
\(69\) 0 0
\(70\) 0 0
\(71\) 14.3135 1.69870 0.849349 0.527831i \(-0.176995\pi\)
0.849349 + 0.527831i \(0.176995\pi\)
\(72\) 0 0
\(73\) −8.32055 −0.973846 −0.486923 0.873445i \(-0.661881\pi\)
−0.486923 + 0.873445i \(0.661881\pi\)
\(74\) −15.7576 −1.83179
\(75\) 0 0
\(76\) 28.2049 3.23532
\(77\) 2.58403 0.294477
\(78\) 0 0
\(79\) 11.3895 1.28142 0.640709 0.767784i \(-0.278641\pi\)
0.640709 + 0.767784i \(0.278641\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 31.3660 3.46379
\(83\) −8.91130 −0.978142 −0.489071 0.872244i \(-0.662664\pi\)
−0.489071 + 0.872244i \(0.662664\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.82348 −0.520129
\(87\) 0 0
\(88\) −19.2167 −2.04851
\(89\) −2.07508 −0.219958 −0.109979 0.993934i \(-0.535078\pi\)
−0.109979 + 0.993934i \(0.535078\pi\)
\(90\) 0 0
\(91\) −5.24541 −0.549868
\(92\) 5.33392 0.556100
\(93\) 0 0
\(94\) 21.3736 2.20452
\(95\) 0 0
\(96\) 0 0
\(97\) 18.9612 1.92522 0.962608 0.270899i \(-0.0873211\pi\)
0.962608 + 0.270899i \(0.0873211\pi\)
\(98\) −14.9652 −1.51172
\(99\) 0 0
\(100\) 0 0
\(101\) −7.32537 −0.728901 −0.364451 0.931223i \(-0.618743\pi\)
−0.364451 + 0.931223i \(0.618743\pi\)
\(102\) 0 0
\(103\) −17.3082 −1.70543 −0.852714 0.522378i \(-0.825045\pi\)
−0.852714 + 0.522378i \(0.825045\pi\)
\(104\) 39.0088 3.82512
\(105\) 0 0
\(106\) −13.2440 −1.28637
\(107\) 6.63363 0.641297 0.320649 0.947198i \(-0.396099\pi\)
0.320649 + 0.947198i \(0.396099\pi\)
\(108\) 0 0
\(109\) 19.6555 1.88266 0.941328 0.337494i \(-0.109579\pi\)
0.941328 + 0.337494i \(0.109579\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −16.7333 −1.58115
\(113\) 1.17497 0.110532 0.0552660 0.998472i \(-0.482399\pi\)
0.0552660 + 0.998472i \(0.482399\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 37.9054 3.51943
\(117\) 0 0
\(118\) −0.320545 −0.0295086
\(119\) 2.41188 0.221097
\(120\) 0 0
\(121\) −6.46985 −0.588168
\(122\) −23.8213 −2.15668
\(123\) 0 0
\(124\) −12.4490 −1.11795
\(125\) 0 0
\(126\) 0 0
\(127\) −1.72778 −0.153316 −0.0766578 0.997057i \(-0.524425\pi\)
−0.0766578 + 0.997057i \(0.524425\pi\)
\(128\) 28.1246 2.48589
\(129\) 0 0
\(130\) 0 0
\(131\) 19.3715 1.69249 0.846246 0.532793i \(-0.178857\pi\)
0.846246 + 0.532793i \(0.178857\pi\)
\(132\) 0 0
\(133\) −6.41975 −0.556663
\(134\) 3.16705 0.273592
\(135\) 0 0
\(136\) −17.9366 −1.53805
\(137\) −21.3565 −1.82461 −0.912305 0.409510i \(-0.865700\pi\)
−0.912305 + 0.409510i \(0.865700\pi\)
\(138\) 0 0
\(139\) −23.4240 −1.98680 −0.993398 0.114721i \(-0.963402\pi\)
−0.993398 + 0.114721i \(0.963402\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 38.7627 3.25289
\(143\) −9.19591 −0.769001
\(144\) 0 0
\(145\) 0 0
\(146\) −22.5330 −1.86485
\(147\) 0 0
\(148\) −31.0363 −2.55116
\(149\) 11.5603 0.947058 0.473529 0.880778i \(-0.342980\pi\)
0.473529 + 0.880778i \(0.342980\pi\)
\(150\) 0 0
\(151\) 5.42807 0.441730 0.220865 0.975304i \(-0.429112\pi\)
0.220865 + 0.975304i \(0.429112\pi\)
\(152\) 47.7420 3.87239
\(153\) 0 0
\(154\) 6.99786 0.563904
\(155\) 0 0
\(156\) 0 0
\(157\) −8.43891 −0.673498 −0.336749 0.941594i \(-0.609327\pi\)
−0.336749 + 0.941594i \(0.609327\pi\)
\(158\) 30.8441 2.45383
\(159\) 0 0
\(160\) 0 0
\(161\) −1.21406 −0.0956815
\(162\) 0 0
\(163\) −17.3089 −1.35574 −0.677870 0.735182i \(-0.737097\pi\)
−0.677870 + 0.735182i \(0.737097\pi\)
\(164\) 61.7785 4.82409
\(165\) 0 0
\(166\) −24.1329 −1.87307
\(167\) 3.71813 0.287718 0.143859 0.989598i \(-0.454049\pi\)
0.143859 + 0.989598i \(0.454049\pi\)
\(168\) 0 0
\(169\) 5.66711 0.435932
\(170\) 0 0
\(171\) 0 0
\(172\) −9.50033 −0.724393
\(173\) −4.82348 −0.366722 −0.183361 0.983046i \(-0.558698\pi\)
−0.183361 + 0.983046i \(0.558698\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −29.3357 −2.21126
\(177\) 0 0
\(178\) −5.61956 −0.421204
\(179\) −16.7043 −1.24854 −0.624271 0.781208i \(-0.714604\pi\)
−0.624271 + 0.781208i \(0.714604\pi\)
\(180\) 0 0
\(181\) 12.4764 0.927367 0.463684 0.886001i \(-0.346527\pi\)
0.463684 + 0.886001i \(0.346527\pi\)
\(182\) −14.2052 −1.05296
\(183\) 0 0
\(184\) 9.02867 0.665602
\(185\) 0 0
\(186\) 0 0
\(187\) 4.22836 0.309208
\(188\) 42.0976 3.07028
\(189\) 0 0
\(190\) 0 0
\(191\) −21.6287 −1.56500 −0.782501 0.622650i \(-0.786056\pi\)
−0.782501 + 0.622650i \(0.786056\pi\)
\(192\) 0 0
\(193\) −10.6678 −0.767888 −0.383944 0.923356i \(-0.625434\pi\)
−0.383944 + 0.923356i \(0.625434\pi\)
\(194\) 51.3492 3.68665
\(195\) 0 0
\(196\) −29.4755 −2.10540
\(197\) −1.49132 −0.106252 −0.0531261 0.998588i \(-0.516919\pi\)
−0.0531261 + 0.998588i \(0.516919\pi\)
\(198\) 0 0
\(199\) −8.84059 −0.626693 −0.313346 0.949639i \(-0.601450\pi\)
−0.313346 + 0.949639i \(0.601450\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −19.8380 −1.39580
\(203\) −8.62771 −0.605547
\(204\) 0 0
\(205\) 0 0
\(206\) −46.8727 −3.26578
\(207\) 0 0
\(208\) 59.5496 4.12902
\(209\) −11.2547 −0.778503
\(210\) 0 0
\(211\) −12.2722 −0.844854 −0.422427 0.906397i \(-0.638822\pi\)
−0.422427 + 0.906397i \(0.638822\pi\)
\(212\) −26.0853 −1.79155
\(213\) 0 0
\(214\) 17.9647 1.22804
\(215\) 0 0
\(216\) 0 0
\(217\) 2.83353 0.192352
\(218\) 53.2295 3.60516
\(219\) 0 0
\(220\) 0 0
\(221\) −8.58329 −0.577375
\(222\) 0 0
\(223\) 3.64396 0.244018 0.122009 0.992529i \(-0.461066\pi\)
0.122009 + 0.992529i \(0.461066\pi\)
\(224\) −23.3930 −1.56301
\(225\) 0 0
\(226\) 3.18197 0.211661
\(227\) 14.4140 0.956691 0.478346 0.878172i \(-0.341237\pi\)
0.478346 + 0.878172i \(0.341237\pi\)
\(228\) 0 0
\(229\) 4.86017 0.321169 0.160584 0.987022i \(-0.448662\pi\)
0.160584 + 0.987022i \(0.448662\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 64.1621 4.21245
\(233\) 11.0439 0.723510 0.361755 0.932273i \(-0.382178\pi\)
0.361755 + 0.932273i \(0.382178\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −0.631346 −0.0410971
\(237\) 0 0
\(238\) 6.53167 0.423386
\(239\) −23.5741 −1.52488 −0.762441 0.647058i \(-0.775999\pi\)
−0.762441 + 0.647058i \(0.775999\pi\)
\(240\) 0 0
\(241\) 14.9609 0.963716 0.481858 0.876249i \(-0.339962\pi\)
0.481858 + 0.876249i \(0.339962\pi\)
\(242\) −17.5211 −1.12630
\(243\) 0 0
\(244\) −46.9186 −3.00365
\(245\) 0 0
\(246\) 0 0
\(247\) 22.8463 1.45368
\(248\) −21.0722 −1.33809
\(249\) 0 0
\(250\) 0 0
\(251\) −4.41102 −0.278421 −0.139210 0.990263i \(-0.544456\pi\)
−0.139210 + 0.990263i \(0.544456\pi\)
\(252\) 0 0
\(253\) −2.12841 −0.133812
\(254\) −4.67903 −0.293589
\(255\) 0 0
\(256\) 26.9342 1.68339
\(257\) 1.18789 0.0740983 0.0370491 0.999313i \(-0.488204\pi\)
0.0370491 + 0.999313i \(0.488204\pi\)
\(258\) 0 0
\(259\) 7.06421 0.438949
\(260\) 0 0
\(261\) 0 0
\(262\) 52.4602 3.24100
\(263\) −12.9484 −0.798434 −0.399217 0.916856i \(-0.630718\pi\)
−0.399217 + 0.916856i \(0.630718\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −17.3855 −1.06597
\(267\) 0 0
\(268\) 6.23783 0.381036
\(269\) −3.72600 −0.227178 −0.113589 0.993528i \(-0.536235\pi\)
−0.113589 + 0.993528i \(0.536235\pi\)
\(270\) 0 0
\(271\) 4.11803 0.250152 0.125076 0.992147i \(-0.460082\pi\)
0.125076 + 0.992147i \(0.460082\pi\)
\(272\) −27.3814 −1.66024
\(273\) 0 0
\(274\) −57.8361 −3.49400
\(275\) 0 0
\(276\) 0 0
\(277\) −21.1443 −1.27044 −0.635219 0.772332i \(-0.719090\pi\)
−0.635219 + 0.772332i \(0.719090\pi\)
\(278\) −63.4350 −3.80458
\(279\) 0 0
\(280\) 0 0
\(281\) 27.0717 1.61496 0.807480 0.589895i \(-0.200831\pi\)
0.807480 + 0.589895i \(0.200831\pi\)
\(282\) 0 0
\(283\) −3.66229 −0.217700 −0.108850 0.994058i \(-0.534717\pi\)
−0.108850 + 0.994058i \(0.534717\pi\)
\(284\) 76.3470 4.53036
\(285\) 0 0
\(286\) −24.9036 −1.47258
\(287\) −14.0615 −0.830025
\(288\) 0 0
\(289\) −13.0533 −0.767843
\(290\) 0 0
\(291\) 0 0
\(292\) −44.3811 −2.59721
\(293\) 7.11899 0.415896 0.207948 0.978140i \(-0.433322\pi\)
0.207948 + 0.978140i \(0.433322\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −52.5347 −3.05352
\(297\) 0 0
\(298\) 31.3068 1.81355
\(299\) 4.32055 0.249864
\(300\) 0 0
\(301\) 2.16239 0.124638
\(302\) 14.6999 0.845882
\(303\) 0 0
\(304\) 72.8815 4.18004
\(305\) 0 0
\(306\) 0 0
\(307\) −23.6763 −1.35128 −0.675640 0.737232i \(-0.736133\pi\)
−0.675640 + 0.737232i \(0.736133\pi\)
\(308\) 13.7830 0.785360
\(309\) 0 0
\(310\) 0 0
\(311\) −14.1324 −0.801376 −0.400688 0.916215i \(-0.631229\pi\)
−0.400688 + 0.916215i \(0.631229\pi\)
\(312\) 0 0
\(313\) −23.6646 −1.33760 −0.668800 0.743442i \(-0.733192\pi\)
−0.668800 + 0.743442i \(0.733192\pi\)
\(314\) −22.8536 −1.28970
\(315\) 0 0
\(316\) 60.7506 3.41749
\(317\) 21.8223 1.22566 0.612832 0.790213i \(-0.290030\pi\)
0.612832 + 0.790213i \(0.290030\pi\)
\(318\) 0 0
\(319\) −15.1255 −0.846868
\(320\) 0 0
\(321\) 0 0
\(322\) −3.28783 −0.183224
\(323\) −10.5049 −0.584509
\(324\) 0 0
\(325\) 0 0
\(326\) −46.8747 −2.59615
\(327\) 0 0
\(328\) 104.572 5.77401
\(329\) −9.58189 −0.528267
\(330\) 0 0
\(331\) −24.2825 −1.33469 −0.667343 0.744751i \(-0.732568\pi\)
−0.667343 + 0.744751i \(0.732568\pi\)
\(332\) −47.5322 −2.60867
\(333\) 0 0
\(334\) 10.0692 0.550960
\(335\) 0 0
\(336\) 0 0
\(337\) −15.6463 −0.852309 −0.426155 0.904650i \(-0.640132\pi\)
−0.426155 + 0.904650i \(0.640132\pi\)
\(338\) 15.3472 0.834779
\(339\) 0 0
\(340\) 0 0
\(341\) 4.96755 0.269008
\(342\) 0 0
\(343\) 15.2074 0.821123
\(344\) −16.0811 −0.867035
\(345\) 0 0
\(346\) −13.0626 −0.702248
\(347\) −28.8979 −1.55132 −0.775661 0.631150i \(-0.782583\pi\)
−0.775661 + 0.631150i \(0.782583\pi\)
\(348\) 0 0
\(349\) 31.8007 1.70225 0.851125 0.524962i \(-0.175921\pi\)
0.851125 + 0.524962i \(0.175921\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −41.0111 −2.18590
\(353\) 16.7406 0.891011 0.445505 0.895279i \(-0.353024\pi\)
0.445505 + 0.895279i \(0.353024\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −11.0683 −0.586619
\(357\) 0 0
\(358\) −45.2374 −2.39087
\(359\) −16.6840 −0.880546 −0.440273 0.897864i \(-0.645118\pi\)
−0.440273 + 0.897864i \(0.645118\pi\)
\(360\) 0 0
\(361\) 8.96113 0.471638
\(362\) 33.7877 1.77584
\(363\) 0 0
\(364\) −27.9786 −1.46648
\(365\) 0 0
\(366\) 0 0
\(367\) 14.5917 0.761682 0.380841 0.924641i \(-0.375635\pi\)
0.380841 + 0.924641i \(0.375635\pi\)
\(368\) 13.7829 0.718482
\(369\) 0 0
\(370\) 0 0
\(371\) 5.93733 0.308251
\(372\) 0 0
\(373\) −27.7827 −1.43853 −0.719266 0.694735i \(-0.755522\pi\)
−0.719266 + 0.694735i \(0.755522\pi\)
\(374\) 11.4509 0.592112
\(375\) 0 0
\(376\) 71.2580 3.67485
\(377\) 30.7039 1.58133
\(378\) 0 0
\(379\) 7.77228 0.399235 0.199618 0.979874i \(-0.436030\pi\)
0.199618 + 0.979874i \(0.436030\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −58.5733 −2.99687
\(383\) −2.40809 −0.123048 −0.0615239 0.998106i \(-0.519596\pi\)
−0.0615239 + 0.998106i \(0.519596\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −28.8898 −1.47045
\(387\) 0 0
\(388\) 101.137 5.13447
\(389\) 4.66485 0.236517 0.118259 0.992983i \(-0.462269\pi\)
0.118259 + 0.992983i \(0.462269\pi\)
\(390\) 0 0
\(391\) −1.98662 −0.100468
\(392\) −49.8929 −2.51997
\(393\) 0 0
\(394\) −4.03868 −0.203466
\(395\) 0 0
\(396\) 0 0
\(397\) −5.02754 −0.252325 −0.126163 0.992010i \(-0.540266\pi\)
−0.126163 + 0.992010i \(0.540266\pi\)
\(398\) −23.9414 −1.20007
\(399\) 0 0
\(400\) 0 0
\(401\) −3.70677 −0.185107 −0.0925537 0.995708i \(-0.529503\pi\)
−0.0925537 + 0.995708i \(0.529503\pi\)
\(402\) 0 0
\(403\) −10.0838 −0.502311
\(404\) −39.0729 −1.94395
\(405\) 0 0
\(406\) −23.3649 −1.15958
\(407\) 12.3845 0.613877
\(408\) 0 0
\(409\) −16.5945 −0.820544 −0.410272 0.911963i \(-0.634566\pi\)
−0.410272 + 0.911963i \(0.634566\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −92.3206 −4.54831
\(413\) 0.143702 0.00707110
\(414\) 0 0
\(415\) 0 0
\(416\) 83.2499 4.08166
\(417\) 0 0
\(418\) −30.4791 −1.49078
\(419\) −0.355499 −0.0173673 −0.00868363 0.999962i \(-0.502764\pi\)
−0.00868363 + 0.999962i \(0.502764\pi\)
\(420\) 0 0
\(421\) −23.6503 −1.15265 −0.576323 0.817222i \(-0.695513\pi\)
−0.576323 + 0.817222i \(0.695513\pi\)
\(422\) −33.2346 −1.61784
\(423\) 0 0
\(424\) −44.1543 −2.14432
\(425\) 0 0
\(426\) 0 0
\(427\) 10.6792 0.516803
\(428\) 35.3833 1.71032
\(429\) 0 0
\(430\) 0 0
\(431\) 4.97648 0.239709 0.119854 0.992791i \(-0.461757\pi\)
0.119854 + 0.992791i \(0.461757\pi\)
\(432\) 0 0
\(433\) 21.5379 1.03504 0.517522 0.855670i \(-0.326855\pi\)
0.517522 + 0.855670i \(0.326855\pi\)
\(434\) 7.67354 0.368342
\(435\) 0 0
\(436\) 104.841 5.02097
\(437\) 5.28783 0.252951
\(438\) 0 0
\(439\) −15.7267 −0.750593 −0.375297 0.926905i \(-0.622459\pi\)
−0.375297 + 0.926905i \(0.622459\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −23.2446 −1.10563
\(443\) 30.5028 1.44923 0.724617 0.689152i \(-0.242017\pi\)
0.724617 + 0.689152i \(0.242017\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 9.86829 0.467277
\(447\) 0 0
\(448\) −29.8846 −1.41191
\(449\) 25.4811 1.20253 0.601264 0.799051i \(-0.294664\pi\)
0.601264 + 0.799051i \(0.294664\pi\)
\(450\) 0 0
\(451\) −24.6517 −1.16080
\(452\) 6.26721 0.294785
\(453\) 0 0
\(454\) 39.0349 1.83200
\(455\) 0 0
\(456\) 0 0
\(457\) 28.3815 1.32763 0.663816 0.747896i \(-0.268936\pi\)
0.663816 + 0.747896i \(0.268936\pi\)
\(458\) 13.1619 0.615016
\(459\) 0 0
\(460\) 0 0
\(461\) −18.8017 −0.875683 −0.437841 0.899052i \(-0.644257\pi\)
−0.437841 + 0.899052i \(0.644257\pi\)
\(462\) 0 0
\(463\) 0.281866 0.0130994 0.00654971 0.999979i \(-0.497915\pi\)
0.00654971 + 0.999979i \(0.497915\pi\)
\(464\) 97.9478 4.54711
\(465\) 0 0
\(466\) 29.9082 1.38547
\(467\) −4.12950 −0.191091 −0.0955453 0.995425i \(-0.530459\pi\)
−0.0955453 + 0.995425i \(0.530459\pi\)
\(468\) 0 0
\(469\) −1.41980 −0.0655604
\(470\) 0 0
\(471\) 0 0
\(472\) −1.06867 −0.0491896
\(473\) 3.79095 0.174308
\(474\) 0 0
\(475\) 0 0
\(476\) 12.8648 0.589657
\(477\) 0 0
\(478\) −63.8415 −2.92004
\(479\) −32.8864 −1.50262 −0.751308 0.659952i \(-0.770577\pi\)
−0.751308 + 0.659952i \(0.770577\pi\)
\(480\) 0 0
\(481\) −25.1398 −1.14627
\(482\) 40.5159 1.84545
\(483\) 0 0
\(484\) −34.5097 −1.56862
\(485\) 0 0
\(486\) 0 0
\(487\) 30.4470 1.37969 0.689844 0.723958i \(-0.257679\pi\)
0.689844 + 0.723958i \(0.257679\pi\)
\(488\) −79.4185 −3.59511
\(489\) 0 0
\(490\) 0 0
\(491\) −12.4504 −0.561881 −0.280940 0.959725i \(-0.590646\pi\)
−0.280940 + 0.959725i \(0.590646\pi\)
\(492\) 0 0
\(493\) −14.1179 −0.635838
\(494\) 61.8706 2.78369
\(495\) 0 0
\(496\) −32.1682 −1.44439
\(497\) −17.3775 −0.779486
\(498\) 0 0
\(499\) 14.5298 0.650442 0.325221 0.945638i \(-0.394561\pi\)
0.325221 + 0.945638i \(0.394561\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −11.9456 −0.533157
\(503\) 1.76847 0.0788523 0.0394261 0.999222i \(-0.487447\pi\)
0.0394261 + 0.999222i \(0.487447\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −5.76401 −0.256241
\(507\) 0 0
\(508\) −9.21584 −0.408887
\(509\) 26.3984 1.17009 0.585045 0.811001i \(-0.301077\pi\)
0.585045 + 0.811001i \(0.301077\pi\)
\(510\) 0 0
\(511\) 10.1017 0.446871
\(512\) 16.6918 0.737680
\(513\) 0 0
\(514\) 3.21694 0.141893
\(515\) 0 0
\(516\) 0 0
\(517\) −16.7983 −0.738790
\(518\) 19.1307 0.840556
\(519\) 0 0
\(520\) 0 0
\(521\) 41.9476 1.83776 0.918878 0.394541i \(-0.129096\pi\)
0.918878 + 0.394541i \(0.129096\pi\)
\(522\) 0 0
\(523\) −31.4020 −1.37311 −0.686557 0.727076i \(-0.740879\pi\)
−0.686557 + 0.727076i \(0.740879\pi\)
\(524\) 103.326 4.51381
\(525\) 0 0
\(526\) −35.0659 −1.52895
\(527\) 4.63662 0.201974
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 0 0
\(532\) −34.2425 −1.48460
\(533\) 50.0414 2.16753
\(534\) 0 0
\(535\) 0 0
\(536\) 10.5587 0.456066
\(537\) 0 0
\(538\) −10.0905 −0.435031
\(539\) 11.7617 0.506614
\(540\) 0 0
\(541\) −10.1302 −0.435533 −0.217766 0.976001i \(-0.569877\pi\)
−0.217766 + 0.976001i \(0.569877\pi\)
\(542\) 11.1521 0.479025
\(543\) 0 0
\(544\) −38.2790 −1.64120
\(545\) 0 0
\(546\) 0 0
\(547\) 7.92182 0.338713 0.169356 0.985555i \(-0.445831\pi\)
0.169356 + 0.985555i \(0.445831\pi\)
\(548\) −113.914 −4.86617
\(549\) 0 0
\(550\) 0 0
\(551\) 37.5779 1.60087
\(552\) 0 0
\(553\) −13.8275 −0.588007
\(554\) −57.2613 −2.43280
\(555\) 0 0
\(556\) −124.942 −5.29871
\(557\) 10.1854 0.431570 0.215785 0.976441i \(-0.430769\pi\)
0.215785 + 0.976441i \(0.430769\pi\)
\(558\) 0 0
\(559\) −7.69539 −0.325480
\(560\) 0 0
\(561\) 0 0
\(562\) 73.3134 3.09254
\(563\) 35.1935 1.48323 0.741615 0.670825i \(-0.234060\pi\)
0.741615 + 0.670825i \(0.234060\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −9.91792 −0.416881
\(567\) 0 0
\(568\) 129.232 5.42244
\(569\) −36.0976 −1.51329 −0.756644 0.653827i \(-0.773162\pi\)
−0.756644 + 0.653827i \(0.773162\pi\)
\(570\) 0 0
\(571\) −39.9923 −1.67362 −0.836812 0.547490i \(-0.815583\pi\)
−0.836812 + 0.547490i \(0.815583\pi\)
\(572\) −49.0503 −2.05090
\(573\) 0 0
\(574\) −38.0803 −1.58944
\(575\) 0 0
\(576\) 0 0
\(577\) 30.1288 1.25428 0.627139 0.778907i \(-0.284226\pi\)
0.627139 + 0.778907i \(0.284226\pi\)
\(578\) −35.3500 −1.47037
\(579\) 0 0
\(580\) 0 0
\(581\) 10.8189 0.448842
\(582\) 0 0
\(583\) 10.4089 0.431094
\(584\) −75.1234 −3.10863
\(585\) 0 0
\(586\) 19.2791 0.796412
\(587\) 29.8608 1.23249 0.616244 0.787555i \(-0.288653\pi\)
0.616244 + 0.787555i \(0.288653\pi\)
\(588\) 0 0
\(589\) −12.3414 −0.508518
\(590\) 0 0
\(591\) 0 0
\(592\) −80.1978 −3.29611
\(593\) 1.62566 0.0667577 0.0333788 0.999443i \(-0.489373\pi\)
0.0333788 + 0.999443i \(0.489373\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 61.6619 2.52577
\(597\) 0 0
\(598\) 11.7006 0.478472
\(599\) −23.8860 −0.975957 −0.487979 0.872856i \(-0.662266\pi\)
−0.487979 + 0.872856i \(0.662266\pi\)
\(600\) 0 0
\(601\) −24.0286 −0.980149 −0.490074 0.871681i \(-0.663030\pi\)
−0.490074 + 0.871681i \(0.663030\pi\)
\(602\) 5.85600 0.238673
\(603\) 0 0
\(604\) 28.9529 1.17808
\(605\) 0 0
\(606\) 0 0
\(607\) −13.1188 −0.532476 −0.266238 0.963907i \(-0.585781\pi\)
−0.266238 + 0.963907i \(0.585781\pi\)
\(608\) 101.888 4.13210
\(609\) 0 0
\(610\) 0 0
\(611\) 34.0996 1.37952
\(612\) 0 0
\(613\) −45.8575 −1.85217 −0.926084 0.377316i \(-0.876847\pi\)
−0.926084 + 0.377316i \(0.876847\pi\)
\(614\) −64.1184 −2.58761
\(615\) 0 0
\(616\) 23.3303 0.940006
\(617\) 28.9724 1.16638 0.583192 0.812334i \(-0.301804\pi\)
0.583192 + 0.812334i \(0.301804\pi\)
\(618\) 0 0
\(619\) −24.7720 −0.995672 −0.497836 0.867271i \(-0.665872\pi\)
−0.497836 + 0.867271i \(0.665872\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −38.2723 −1.53458
\(623\) 2.51927 0.100933
\(624\) 0 0
\(625\) 0 0
\(626\) −64.0865 −2.56141
\(627\) 0 0
\(628\) −45.0125 −1.79619
\(629\) 11.5595 0.460906
\(630\) 0 0
\(631\) −35.5321 −1.41451 −0.707256 0.706958i \(-0.750067\pi\)
−0.707256 + 0.706958i \(0.750067\pi\)
\(632\) 102.832 4.09043
\(633\) 0 0
\(634\) 59.0975 2.34706
\(635\) 0 0
\(636\) 0 0
\(637\) −23.8756 −0.945984
\(638\) −40.9618 −1.62169
\(639\) 0 0
\(640\) 0 0
\(641\) −28.4375 −1.12321 −0.561606 0.827405i \(-0.689816\pi\)
−0.561606 + 0.827405i \(0.689816\pi\)
\(642\) 0 0
\(643\) 41.4662 1.63527 0.817634 0.575738i \(-0.195285\pi\)
0.817634 + 0.575738i \(0.195285\pi\)
\(644\) −6.47571 −0.255179
\(645\) 0 0
\(646\) −28.4486 −1.11930
\(647\) −2.93696 −0.115464 −0.0577320 0.998332i \(-0.518387\pi\)
−0.0577320 + 0.998332i \(0.518387\pi\)
\(648\) 0 0
\(649\) 0.251928 0.00988906
\(650\) 0 0
\(651\) 0 0
\(652\) −92.3245 −3.61571
\(653\) −24.4006 −0.954869 −0.477435 0.878667i \(-0.658433\pi\)
−0.477435 + 0.878667i \(0.658433\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 159.636 6.23274
\(657\) 0 0
\(658\) −25.9489 −1.01159
\(659\) −40.5705 −1.58040 −0.790202 0.612847i \(-0.790024\pi\)
−0.790202 + 0.612847i \(0.790024\pi\)
\(660\) 0 0
\(661\) 18.8622 0.733656 0.366828 0.930289i \(-0.380444\pi\)
0.366828 + 0.930289i \(0.380444\pi\)
\(662\) −65.7599 −2.55583
\(663\) 0 0
\(664\) −80.4571 −3.12234
\(665\) 0 0
\(666\) 0 0
\(667\) 7.10648 0.275164
\(668\) 19.8322 0.767332
\(669\) 0 0
\(670\) 0 0
\(671\) 18.7221 0.722758
\(672\) 0 0
\(673\) −17.4011 −0.670765 −0.335382 0.942082i \(-0.608866\pi\)
−0.335382 + 0.942082i \(0.608866\pi\)
\(674\) −42.3721 −1.63211
\(675\) 0 0
\(676\) 30.2279 1.16261
\(677\) 31.6827 1.21767 0.608833 0.793298i \(-0.291638\pi\)
0.608833 + 0.793298i \(0.291638\pi\)
\(678\) 0 0
\(679\) −23.0200 −0.883428
\(680\) 0 0
\(681\) 0 0
\(682\) 13.4527 0.515132
\(683\) −18.8558 −0.721496 −0.360748 0.932663i \(-0.617479\pi\)
−0.360748 + 0.932663i \(0.617479\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 41.1835 1.57239
\(687\) 0 0
\(688\) −24.5489 −0.935918
\(689\) −21.1295 −0.804968
\(690\) 0 0
\(691\) 47.2210 1.79637 0.898186 0.439616i \(-0.144885\pi\)
0.898186 + 0.439616i \(0.144885\pi\)
\(692\) −25.7281 −0.978034
\(693\) 0 0
\(694\) −78.2591 −2.97067
\(695\) 0 0
\(696\) 0 0
\(697\) −23.0095 −0.871545
\(698\) 86.1201 3.25969
\(699\) 0 0
\(700\) 0 0
\(701\) 14.4222 0.544718 0.272359 0.962196i \(-0.412196\pi\)
0.272359 + 0.962196i \(0.412196\pi\)
\(702\) 0 0
\(703\) −30.7680 −1.16044
\(704\) −52.3917 −1.97459
\(705\) 0 0
\(706\) 45.3355 1.70622
\(707\) 8.89345 0.334473
\(708\) 0 0
\(709\) 26.4996 0.995213 0.497607 0.867403i \(-0.334212\pi\)
0.497607 + 0.867403i \(0.334212\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −18.7352 −0.702131
\(713\) −2.33392 −0.0874061
\(714\) 0 0
\(715\) 0 0
\(716\) −89.0997 −3.32981
\(717\) 0 0
\(718\) −45.1822 −1.68619
\(719\) −1.39174 −0.0519031 −0.0259516 0.999663i \(-0.508262\pi\)
−0.0259516 + 0.999663i \(0.508262\pi\)
\(720\) 0 0
\(721\) 21.0132 0.782574
\(722\) 24.2678 0.903155
\(723\) 0 0
\(724\) 66.5484 2.47325
\(725\) 0 0
\(726\) 0 0
\(727\) 33.8951 1.25710 0.628550 0.777770i \(-0.283649\pi\)
0.628550 + 0.777770i \(0.283649\pi\)
\(728\) −47.3591 −1.75524
\(729\) 0 0
\(730\) 0 0
\(731\) 3.53840 0.130873
\(732\) 0 0
\(733\) 31.7370 1.17223 0.586117 0.810227i \(-0.300656\pi\)
0.586117 + 0.810227i \(0.300656\pi\)
\(734\) 39.5162 1.45857
\(735\) 0 0
\(736\) 19.2684 0.710242
\(737\) −2.48910 −0.0916873
\(738\) 0 0
\(739\) −29.3281 −1.07885 −0.539425 0.842034i \(-0.681358\pi\)
−0.539425 + 0.842034i \(0.681358\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 16.0790 0.590279
\(743\) −34.3962 −1.26187 −0.630937 0.775834i \(-0.717329\pi\)
−0.630937 + 0.775834i \(0.717329\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −75.2388 −2.75469
\(747\) 0 0
\(748\) 22.5537 0.824646
\(749\) −8.05364 −0.294274
\(750\) 0 0
\(751\) −10.8039 −0.394240 −0.197120 0.980379i \(-0.563159\pi\)
−0.197120 + 0.980379i \(0.563159\pi\)
\(752\) 108.780 3.96681
\(753\) 0 0
\(754\) 83.1498 3.02814
\(755\) 0 0
\(756\) 0 0
\(757\) 46.6785 1.69656 0.848279 0.529549i \(-0.177639\pi\)
0.848279 + 0.529549i \(0.177639\pi\)
\(758\) 21.0483 0.764508
\(759\) 0 0
\(760\) 0 0
\(761\) −4.95595 −0.179653 −0.0898264 0.995957i \(-0.528631\pi\)
−0.0898264 + 0.995957i \(0.528631\pi\)
\(762\) 0 0
\(763\) −23.8630 −0.863899
\(764\) −115.366 −4.17380
\(765\) 0 0
\(766\) −6.52141 −0.235628
\(767\) −0.511399 −0.0184655
\(768\) 0 0
\(769\) −17.8075 −0.642155 −0.321078 0.947053i \(-0.604045\pi\)
−0.321078 + 0.947053i \(0.604045\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −56.9015 −2.04793
\(773\) −45.9947 −1.65431 −0.827157 0.561971i \(-0.810043\pi\)
−0.827157 + 0.561971i \(0.810043\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 171.194 6.14551
\(777\) 0 0
\(778\) 12.6330 0.452915
\(779\) 61.2447 2.19432
\(780\) 0 0
\(781\) −30.4650 −1.09012
\(782\) −5.38002 −0.192389
\(783\) 0 0
\(784\) −76.1649 −2.72018
\(785\) 0 0
\(786\) 0 0
\(787\) 14.1742 0.505255 0.252627 0.967564i \(-0.418705\pi\)
0.252627 + 0.967564i \(0.418705\pi\)
\(788\) −7.95459 −0.283371
\(789\) 0 0
\(790\) 0 0
\(791\) −1.42649 −0.0507201
\(792\) 0 0
\(793\) −38.0046 −1.34958
\(794\) −13.6152 −0.483185
\(795\) 0 0
\(796\) −47.1550 −1.67136
\(797\) 35.4453 1.25554 0.627769 0.778399i \(-0.283968\pi\)
0.627769 + 0.778399i \(0.283968\pi\)
\(798\) 0 0
\(799\) −15.6793 −0.554692
\(800\) 0 0
\(801\) 0 0
\(802\) −10.0384 −0.354468
\(803\) 17.7096 0.624957
\(804\) 0 0
\(805\) 0 0
\(806\) −27.3082 −0.961890
\(807\) 0 0
\(808\) −66.1383 −2.32674
\(809\) 38.0117 1.33642 0.668210 0.743973i \(-0.267061\pi\)
0.668210 + 0.743973i \(0.267061\pi\)
\(810\) 0 0
\(811\) 8.96681 0.314867 0.157434 0.987530i \(-0.449678\pi\)
0.157434 + 0.987530i \(0.449678\pi\)
\(812\) −46.0196 −1.61497
\(813\) 0 0
\(814\) 33.5388 1.17553
\(815\) 0 0
\(816\) 0 0
\(817\) −9.41823 −0.329502
\(818\) −44.9399 −1.57129
\(819\) 0 0
\(820\) 0 0
\(821\) 23.6910 0.826821 0.413411 0.910545i \(-0.364337\pi\)
0.413411 + 0.910545i \(0.364337\pi\)
\(822\) 0 0
\(823\) 26.9890 0.940776 0.470388 0.882460i \(-0.344114\pi\)
0.470388 + 0.882460i \(0.344114\pi\)
\(824\) −156.270 −5.44392
\(825\) 0 0
\(826\) 0.389162 0.0135407
\(827\) 17.1055 0.594817 0.297408 0.954750i \(-0.403878\pi\)
0.297408 + 0.954750i \(0.403878\pi\)
\(828\) 0 0
\(829\) 35.7258 1.24081 0.620404 0.784283i \(-0.286969\pi\)
0.620404 + 0.784283i \(0.286969\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 106.352 3.68709
\(833\) 10.9782 0.380371
\(834\) 0 0
\(835\) 0 0
\(836\) −60.0317 −2.07624
\(837\) 0 0
\(838\) −0.962734 −0.0332571
\(839\) 35.0696 1.21074 0.605369 0.795945i \(-0.293026\pi\)
0.605369 + 0.795945i \(0.293026\pi\)
\(840\) 0 0
\(841\) 21.5021 0.741452
\(842\) −64.0479 −2.20724
\(843\) 0 0
\(844\) −65.4590 −2.25319
\(845\) 0 0
\(846\) 0 0
\(847\) 7.85480 0.269894
\(848\) −67.4047 −2.31469
\(849\) 0 0
\(850\) 0 0
\(851\) −5.81865 −0.199461
\(852\) 0 0
\(853\) 37.2116 1.27410 0.637050 0.770823i \(-0.280155\pi\)
0.637050 + 0.770823i \(0.280155\pi\)
\(854\) 28.9206 0.989642
\(855\) 0 0
\(856\) 59.8929 2.04710
\(857\) −2.47751 −0.0846302 −0.0423151 0.999104i \(-0.513473\pi\)
−0.0423151 + 0.999104i \(0.513473\pi\)
\(858\) 0 0
\(859\) 13.2049 0.450545 0.225273 0.974296i \(-0.427673\pi\)
0.225273 + 0.974296i \(0.427673\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 13.4769 0.459026
\(863\) −30.1713 −1.02704 −0.513521 0.858077i \(-0.671659\pi\)
−0.513521 + 0.858077i \(0.671659\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 58.3272 1.98204
\(867\) 0 0
\(868\) 15.1138 0.512996
\(869\) −24.2416 −0.822338
\(870\) 0 0
\(871\) 5.05272 0.171205
\(872\) 177.463 6.00965
\(873\) 0 0
\(874\) 14.3201 0.484384
\(875\) 0 0
\(876\) 0 0
\(877\) −15.2627 −0.515385 −0.257692 0.966227i \(-0.582962\pi\)
−0.257692 + 0.966227i \(0.582962\pi\)
\(878\) −42.5898 −1.43733
\(879\) 0 0
\(880\) 0 0
\(881\) 9.62761 0.324362 0.162181 0.986761i \(-0.448147\pi\)
0.162181 + 0.986761i \(0.448147\pi\)
\(882\) 0 0
\(883\) 43.9311 1.47840 0.739199 0.673487i \(-0.235204\pi\)
0.739199 + 0.673487i \(0.235204\pi\)
\(884\) −45.7826 −1.53984
\(885\) 0 0
\(886\) 82.6054 2.77518
\(887\) 35.4705 1.19098 0.595491 0.803362i \(-0.296958\pi\)
0.595491 + 0.803362i \(0.296958\pi\)
\(888\) 0 0
\(889\) 2.09763 0.0703523
\(890\) 0 0
\(891\) 0 0
\(892\) 19.4366 0.650786
\(893\) 41.7338 1.39657
\(894\) 0 0
\(895\) 0 0
\(896\) −34.1451 −1.14071
\(897\) 0 0
\(898\) 69.0059 2.30276
\(899\) −16.5860 −0.553173
\(900\) 0 0
\(901\) 9.71550 0.323670
\(902\) −66.7598 −2.22286
\(903\) 0 0
\(904\) 10.6084 0.352831
\(905\) 0 0
\(906\) 0 0
\(907\) −15.5274 −0.515579 −0.257790 0.966201i \(-0.582994\pi\)
−0.257790 + 0.966201i \(0.582994\pi\)
\(908\) 76.8832 2.55146
\(909\) 0 0
\(910\) 0 0
\(911\) −6.70505 −0.222148 −0.111074 0.993812i \(-0.535429\pi\)
−0.111074 + 0.993812i \(0.535429\pi\)
\(912\) 0 0
\(913\) 18.9669 0.627714
\(914\) 76.8607 2.54233
\(915\) 0 0
\(916\) 25.9238 0.856545
\(917\) −23.5182 −0.776638
\(918\) 0 0
\(919\) −0.198341 −0.00654266 −0.00327133 0.999995i \(-0.501041\pi\)
−0.00327133 + 0.999995i \(0.501041\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −50.9173 −1.67687
\(923\) 61.8421 2.03556
\(924\) 0 0
\(925\) 0 0
\(926\) 0.763327 0.0250845
\(927\) 0 0
\(928\) 136.930 4.49496
\(929\) 36.5756 1.20001 0.600003 0.799998i \(-0.295166\pi\)
0.600003 + 0.799998i \(0.295166\pi\)
\(930\) 0 0
\(931\) −29.2208 −0.957674
\(932\) 58.9073 1.92957
\(933\) 0 0
\(934\) −11.1832 −0.365925
\(935\) 0 0
\(936\) 0 0
\(937\) −34.5234 −1.12783 −0.563915 0.825833i \(-0.690706\pi\)
−0.563915 + 0.825833i \(0.690706\pi\)
\(938\) −3.84500 −0.125544
\(939\) 0 0
\(940\) 0 0
\(941\) 16.3274 0.532257 0.266129 0.963938i \(-0.414255\pi\)
0.266129 + 0.963938i \(0.414255\pi\)
\(942\) 0 0
\(943\) 11.5822 0.377168
\(944\) −1.63140 −0.0530976
\(945\) 0 0
\(946\) 10.2664 0.333788
\(947\) −23.1333 −0.751731 −0.375865 0.926674i \(-0.622654\pi\)
−0.375865 + 0.926674i \(0.622654\pi\)
\(948\) 0 0
\(949\) −35.9493 −1.16696
\(950\) 0 0
\(951\) 0 0
\(952\) 21.7761 0.705767
\(953\) 45.7304 1.48135 0.740677 0.671862i \(-0.234505\pi\)
0.740677 + 0.671862i \(0.234505\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −125.742 −4.06680
\(957\) 0 0
\(958\) −89.0603 −2.87741
\(959\) 25.9282 0.837264
\(960\) 0 0
\(961\) −25.5528 −0.824284
\(962\) −68.0815 −2.19504
\(963\) 0 0
\(964\) 79.8003 2.57019
\(965\) 0 0
\(966\) 0 0
\(967\) −0.302509 −0.00972803 −0.00486402 0.999988i \(-0.501548\pi\)
−0.00486402 + 0.999988i \(0.501548\pi\)
\(968\) −58.4141 −1.87750
\(969\) 0 0
\(970\) 0 0
\(971\) −9.02535 −0.289637 −0.144819 0.989458i \(-0.546260\pi\)
−0.144819 + 0.989458i \(0.546260\pi\)
\(972\) 0 0
\(973\) 28.4382 0.911686
\(974\) 82.4543 2.64201
\(975\) 0 0
\(976\) −121.238 −3.88073
\(977\) −3.64104 −0.116487 −0.0582436 0.998302i \(-0.518550\pi\)
−0.0582436 + 0.998302i \(0.518550\pi\)
\(978\) 0 0
\(979\) 4.41663 0.141156
\(980\) 0 0
\(981\) 0 0
\(982\) −33.7173 −1.07596
\(983\) −21.0997 −0.672976 −0.336488 0.941688i \(-0.609239\pi\)
−0.336488 + 0.941688i \(0.609239\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −38.2330 −1.21759
\(987\) 0 0
\(988\) 121.860 3.87690
\(989\) −1.78112 −0.0566362
\(990\) 0 0
\(991\) −48.9360 −1.55450 −0.777252 0.629189i \(-0.783387\pi\)
−0.777252 + 0.629189i \(0.783387\pi\)
\(992\) −44.9709 −1.42783
\(993\) 0 0
\(994\) −47.0603 −1.49266
\(995\) 0 0
\(996\) 0 0
\(997\) 9.67207 0.306318 0.153159 0.988202i \(-0.451055\pi\)
0.153159 + 0.988202i \(0.451055\pi\)
\(998\) 39.3484 1.24555
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5175.2.a.by.1.6 6
3.2 odd 2 5175.2.a.bz.1.1 6
5.4 even 2 1035.2.a.q.1.1 yes 6
15.14 odd 2 1035.2.a.p.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1035.2.a.p.1.6 6 15.14 odd 2
1035.2.a.q.1.1 yes 6 5.4 even 2
5175.2.a.by.1.6 6 1.1 even 1 trivial
5175.2.a.bz.1.1 6 3.2 odd 2