Properties

Label 5175.2
Level 5175
Weight 2
Dimension 686961
Nonzero newspaces 48
Sturm bound 3801600

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 5175 = 3^{2} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 48 \)
Sturm bound: \(3801600\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(5175))\).

Total New Old
Modular forms 960256 694709 265547
Cusp forms 940545 686961 253584
Eisenstein series 19711 7748 11963

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(5175))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
5175.2.a \(\chi_{5175}(1, \cdot)\) 5175.2.a.a 1 1
5175.2.a.b 1
5175.2.a.c 1
5175.2.a.d 1
5175.2.a.e 1
5175.2.a.f 1
5175.2.a.g 1
5175.2.a.h 1
5175.2.a.i 1
5175.2.a.j 1
5175.2.a.k 1
5175.2.a.l 1
5175.2.a.m 1
5175.2.a.n 1
5175.2.a.o 1
5175.2.a.p 1
5175.2.a.q 1
5175.2.a.r 1
5175.2.a.s 1
5175.2.a.t 1
5175.2.a.u 1
5175.2.a.v 1
5175.2.a.w 1
5175.2.a.x 1
5175.2.a.y 1
5175.2.a.z 1
5175.2.a.ba 2
5175.2.a.bb 2
5175.2.a.bc 2
5175.2.a.bd 2
5175.2.a.be 2
5175.2.a.bf 2
5175.2.a.bg 2
5175.2.a.bh 2
5175.2.a.bi 2
5175.2.a.bj 2
5175.2.a.bk 2
5175.2.a.bl 2
5175.2.a.bm 2
5175.2.a.bn 2
5175.2.a.bo 2
5175.2.a.bp 2
5175.2.a.bq 3
5175.2.a.br 3
5175.2.a.bs 3
5175.2.a.bt 3
5175.2.a.bu 3
5175.2.a.bv 4
5175.2.a.bw 4
5175.2.a.bx 4
5175.2.a.by 6
5175.2.a.bz 6
5175.2.a.ca 7
5175.2.a.cb 7
5175.2.a.cc 7
5175.2.a.cd 7
5175.2.a.ce 7
5175.2.a.cf 7
5175.2.a.cg 7
5175.2.a.ch 7
5175.2.a.ci 10
5175.2.a.cj 10
5175.2.b \(\chi_{5175}(2899, \cdot)\) n/a 166 1
5175.2.c \(\chi_{5175}(2276, \cdot)\) n/a 152 1
5175.2.h \(\chi_{5175}(5174, \cdot)\) n/a 144 1
5175.2.i \(\chi_{5175}(1726, \cdot)\) n/a 836 2
5175.2.j \(\chi_{5175}(2393, \cdot)\) n/a 264 2
5175.2.k \(\chi_{5175}(2368, \cdot)\) n/a 356 2
5175.2.n \(\chi_{5175}(1036, \cdot)\) n/a 1104 4
5175.2.o \(\chi_{5175}(1724, \cdot)\) n/a 856 2
5175.2.t \(\chi_{5175}(551, \cdot)\) n/a 900 2
5175.2.u \(\chi_{5175}(1174, \cdot)\) n/a 792 2
5175.2.x \(\chi_{5175}(1034, \cdot)\) n/a 960 4
5175.2.y \(\chi_{5175}(206, \cdot)\) n/a 960 4
5175.2.z \(\chi_{5175}(829, \cdot)\) n/a 1096 4
5175.2.bc \(\chi_{5175}(676, \cdot)\) n/a 1870 10
5175.2.bf \(\chi_{5175}(668, \cdot)\) n/a 1584 4
5175.2.bg \(\chi_{5175}(643, \cdot)\) n/a 1712 4
5175.2.bh \(\chi_{5175}(346, \cdot)\) n/a 5280 8
5175.2.bk \(\chi_{5175}(298, \cdot)\) n/a 2384 8
5175.2.bl \(\chi_{5175}(323, \cdot)\) n/a 1760 8
5175.2.bm \(\chi_{5175}(224, \cdot)\) n/a 1440 10
5175.2.br \(\chi_{5175}(251, \cdot)\) n/a 1520 10
5175.2.bs \(\chi_{5175}(1099, \cdot)\) n/a 1780 10
5175.2.bv \(\chi_{5175}(139, \cdot)\) n/a 5280 8
5175.2.bw \(\chi_{5175}(896, \cdot)\) n/a 5728 8
5175.2.bx \(\chi_{5175}(344, \cdot)\) n/a 5728 8
5175.2.ca \(\chi_{5175}(151, \cdot)\) n/a 9000 20
5175.2.cd \(\chi_{5175}(343, \cdot)\) n/a 3560 20
5175.2.ce \(\chi_{5175}(593, \cdot)\) n/a 2880 20
5175.2.cf \(\chi_{5175}(271, \cdot)\) n/a 11920 40
5175.2.cg \(\chi_{5175}(22, \cdot)\) n/a 11456 16
5175.2.ch \(\chi_{5175}(47, \cdot)\) n/a 10560 16
5175.2.ck \(\chi_{5175}(49, \cdot)\) n/a 8560 20
5175.2.cl \(\chi_{5175}(176, \cdot)\) n/a 9000 20
5175.2.cq \(\chi_{5175}(74, \cdot)\) n/a 8560 20
5175.2.ct \(\chi_{5175}(64, \cdot)\) n/a 11920 40
5175.2.cu \(\chi_{5175}(296, \cdot)\) n/a 9600 40
5175.2.cv \(\chi_{5175}(44, \cdot)\) n/a 9600 40
5175.2.cy \(\chi_{5175}(7, \cdot)\) n/a 17120 40
5175.2.cz \(\chi_{5175}(32, \cdot)\) n/a 17120 40
5175.2.dc \(\chi_{5175}(16, \cdot)\) n/a 57280 80
5175.2.dd \(\chi_{5175}(8, \cdot)\) n/a 19200 80
5175.2.de \(\chi_{5175}(28, \cdot)\) n/a 23840 80
5175.2.dj \(\chi_{5175}(14, \cdot)\) n/a 57280 80
5175.2.dk \(\chi_{5175}(11, \cdot)\) n/a 57280 80
5175.2.dl \(\chi_{5175}(4, \cdot)\) n/a 57280 80
5175.2.dq \(\chi_{5175}(2, \cdot)\) n/a 114560 160
5175.2.dr \(\chi_{5175}(67, \cdot)\) n/a 114560 160

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(5175))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(5175)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(115))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(207))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(225))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(345))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(575))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1035))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1725))\)\(^{\oplus 2}\)