Properties

Label 5175.2.a.by.1.3
Level $5175$
Weight $2$
Character 5175.1
Self dual yes
Analytic conductor $41.323$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5175,2,Mod(1,5175)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5175.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5175, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5175 = 3^{2} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5175.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,10,0,0,-6,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.3225830460\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.98838128.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 10x^{4} - x^{3} + 16x^{2} + 5x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 1035)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(3.52269\) of defining polynomial
Character \(\chi\) \(=\) 5175.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.605771 q^{2} -1.63304 q^{4} -3.25359 q^{7} +2.20079 q^{8} -0.759390 q^{11} +0.806561 q^{13} +1.97093 q^{14} +1.93291 q^{16} -5.43960 q^{17} +0.0290683 q^{19} +0.460016 q^{22} +1.00000 q^{23} -0.488591 q^{26} +5.31325 q^{28} +1.55297 q^{29} +4.63304 q^{31} -5.57248 q^{32} +3.29515 q^{34} -5.52390 q^{37} -0.0176087 q^{38} -5.76029 q^{41} -10.8320 q^{43} +1.24012 q^{44} -0.605771 q^{46} +0.299374 q^{47} +3.58587 q^{49} -1.31715 q^{52} -0.633536 q^{53} -7.16048 q^{56} -0.940742 q^{58} -5.27170 q^{59} +6.50669 q^{61} -2.80656 q^{62} -0.490173 q^{64} -9.24263 q^{67} +8.88310 q^{68} -10.9978 q^{71} -4.80656 q^{73} +3.34622 q^{74} -0.0474698 q^{76} +2.47075 q^{77} +11.6677 q^{79} +3.48941 q^{82} +4.30770 q^{83} +6.56173 q^{86} -1.67126 q^{88} +16.6163 q^{89} -2.62422 q^{91} -1.63304 q^{92} -0.181352 q^{94} -2.40449 q^{97} -2.17222 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 10 q^{4} - 6 q^{7} - 4 q^{11} - 12 q^{13} + 4 q^{14} + 14 q^{16} + 4 q^{17} + 8 q^{19} - 8 q^{22} + 6 q^{23} + 12 q^{26} - 24 q^{28} + 6 q^{29} + 8 q^{31} + 20 q^{32} - 12 q^{34} - 22 q^{37} + 36 q^{38}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.605771 −0.428345 −0.214172 0.976796i \(-0.568705\pi\)
−0.214172 + 0.976796i \(0.568705\pi\)
\(3\) 0 0
\(4\) −1.63304 −0.816521
\(5\) 0 0
\(6\) 0 0
\(7\) −3.25359 −1.22974 −0.614871 0.788627i \(-0.710792\pi\)
−0.614871 + 0.788627i \(0.710792\pi\)
\(8\) 2.20079 0.778097
\(9\) 0 0
\(10\) 0 0
\(11\) −0.759390 −0.228965 −0.114482 0.993425i \(-0.536521\pi\)
−0.114482 + 0.993425i \(0.536521\pi\)
\(12\) 0 0
\(13\) 0.806561 0.223700 0.111850 0.993725i \(-0.464322\pi\)
0.111850 + 0.993725i \(0.464322\pi\)
\(14\) 1.97093 0.526754
\(15\) 0 0
\(16\) 1.93291 0.483227
\(17\) −5.43960 −1.31930 −0.659649 0.751574i \(-0.729295\pi\)
−0.659649 + 0.751574i \(0.729295\pi\)
\(18\) 0 0
\(19\) 0.0290683 0.00666873 0.00333437 0.999994i \(-0.498939\pi\)
0.00333437 + 0.999994i \(0.498939\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0.460016 0.0980758
\(23\) 1.00000 0.208514
\(24\) 0 0
\(25\) 0 0
\(26\) −0.488591 −0.0958206
\(27\) 0 0
\(28\) 5.31325 1.00411
\(29\) 1.55297 0.288379 0.144189 0.989550i \(-0.453943\pi\)
0.144189 + 0.989550i \(0.453943\pi\)
\(30\) 0 0
\(31\) 4.63304 0.832119 0.416059 0.909337i \(-0.363411\pi\)
0.416059 + 0.909337i \(0.363411\pi\)
\(32\) −5.57248 −0.985085
\(33\) 0 0
\(34\) 3.29515 0.565114
\(35\) 0 0
\(36\) 0 0
\(37\) −5.52390 −0.908123 −0.454062 0.890970i \(-0.650025\pi\)
−0.454062 + 0.890970i \(0.650025\pi\)
\(38\) −0.0176087 −0.00285652
\(39\) 0 0
\(40\) 0 0
\(41\) −5.76029 −0.899606 −0.449803 0.893128i \(-0.648506\pi\)
−0.449803 + 0.893128i \(0.648506\pi\)
\(42\) 0 0
\(43\) −10.8320 −1.65187 −0.825935 0.563765i \(-0.809352\pi\)
−0.825935 + 0.563765i \(0.809352\pi\)
\(44\) 1.24012 0.186955
\(45\) 0 0
\(46\) −0.605771 −0.0893160
\(47\) 0.299374 0.0436682 0.0218341 0.999762i \(-0.493049\pi\)
0.0218341 + 0.999762i \(0.493049\pi\)
\(48\) 0 0
\(49\) 3.58587 0.512267
\(50\) 0 0
\(51\) 0 0
\(52\) −1.31715 −0.182656
\(53\) −0.633536 −0.0870228 −0.0435114 0.999053i \(-0.513854\pi\)
−0.0435114 + 0.999053i \(0.513854\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −7.16048 −0.956859
\(57\) 0 0
\(58\) −0.940742 −0.123526
\(59\) −5.27170 −0.686316 −0.343158 0.939278i \(-0.611497\pi\)
−0.343158 + 0.939278i \(0.611497\pi\)
\(60\) 0 0
\(61\) 6.50669 0.833097 0.416548 0.909114i \(-0.363240\pi\)
0.416548 + 0.909114i \(0.363240\pi\)
\(62\) −2.80656 −0.356434
\(63\) 0 0
\(64\) −0.490173 −0.0612717
\(65\) 0 0
\(66\) 0 0
\(67\) −9.24263 −1.12917 −0.564583 0.825376i \(-0.690963\pi\)
−0.564583 + 0.825376i \(0.690963\pi\)
\(68\) 8.88310 1.07723
\(69\) 0 0
\(70\) 0 0
\(71\) −10.9978 −1.30520 −0.652599 0.757703i \(-0.726321\pi\)
−0.652599 + 0.757703i \(0.726321\pi\)
\(72\) 0 0
\(73\) −4.80656 −0.562565 −0.281283 0.959625i \(-0.590760\pi\)
−0.281283 + 0.959625i \(0.590760\pi\)
\(74\) 3.34622 0.388990
\(75\) 0 0
\(76\) −0.0474698 −0.00544516
\(77\) 2.47075 0.281568
\(78\) 0 0
\(79\) 11.6677 1.31271 0.656357 0.754450i \(-0.272096\pi\)
0.656357 + 0.754450i \(0.272096\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 3.48941 0.385341
\(83\) 4.30770 0.472832 0.236416 0.971652i \(-0.424027\pi\)
0.236416 + 0.971652i \(0.424027\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 6.56173 0.707569
\(87\) 0 0
\(88\) −1.67126 −0.178157
\(89\) 16.6163 1.76132 0.880661 0.473748i \(-0.157099\pi\)
0.880661 + 0.473748i \(0.157099\pi\)
\(90\) 0 0
\(91\) −2.62422 −0.275093
\(92\) −1.63304 −0.170256
\(93\) 0 0
\(94\) −0.181352 −0.0187050
\(95\) 0 0
\(96\) 0 0
\(97\) −2.40449 −0.244139 −0.122069 0.992522i \(-0.538953\pi\)
−0.122069 + 0.992522i \(0.538953\pi\)
\(98\) −2.17222 −0.219427
\(99\) 0 0
\(100\) 0 0
\(101\) 7.27907 0.724294 0.362147 0.932121i \(-0.382044\pi\)
0.362147 + 0.932121i \(0.382044\pi\)
\(102\) 0 0
\(103\) 7.73634 0.762284 0.381142 0.924517i \(-0.375531\pi\)
0.381142 + 0.924517i \(0.375531\pi\)
\(104\) 1.77507 0.174060
\(105\) 0 0
\(106\) 0.383777 0.0372757
\(107\) 5.11476 0.494462 0.247231 0.968957i \(-0.420479\pi\)
0.247231 + 0.968957i \(0.420479\pi\)
\(108\) 0 0
\(109\) −15.8090 −1.51423 −0.757113 0.653284i \(-0.773391\pi\)
−0.757113 + 0.653284i \(0.773391\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −6.28890 −0.594245
\(113\) 8.92145 0.839259 0.419630 0.907695i \(-0.362160\pi\)
0.419630 + 0.907695i \(0.362160\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −2.53606 −0.235467
\(117\) 0 0
\(118\) 3.19344 0.293980
\(119\) 17.6983 1.62240
\(120\) 0 0
\(121\) −10.4233 −0.947575
\(122\) −3.94156 −0.356852
\(123\) 0 0
\(124\) −7.56595 −0.679442
\(125\) 0 0
\(126\) 0 0
\(127\) 6.54363 0.580653 0.290327 0.956928i \(-0.406236\pi\)
0.290327 + 0.956928i \(0.406236\pi\)
\(128\) 11.4419 1.01133
\(129\) 0 0
\(130\) 0 0
\(131\) −17.2727 −1.50913 −0.754563 0.656228i \(-0.772151\pi\)
−0.754563 + 0.656228i \(0.772151\pi\)
\(132\) 0 0
\(133\) −0.0945766 −0.00820083
\(134\) 5.59891 0.483672
\(135\) 0 0
\(136\) −11.9714 −1.02654
\(137\) 15.4734 1.32198 0.660991 0.750394i \(-0.270136\pi\)
0.660991 + 0.750394i \(0.270136\pi\)
\(138\) 0 0
\(139\) −4.54603 −0.385589 −0.192795 0.981239i \(-0.561755\pi\)
−0.192795 + 0.981239i \(0.561755\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 6.66214 0.559075
\(143\) −0.612495 −0.0512194
\(144\) 0 0
\(145\) 0 0
\(146\) 2.91167 0.240972
\(147\) 0 0
\(148\) 9.02076 0.741502
\(149\) 7.83190 0.641614 0.320807 0.947145i \(-0.396046\pi\)
0.320807 + 0.947145i \(0.396046\pi\)
\(150\) 0 0
\(151\) −8.29142 −0.674747 −0.337373 0.941371i \(-0.609538\pi\)
−0.337373 + 0.941371i \(0.609538\pi\)
\(152\) 0.0639733 0.00518892
\(153\) 0 0
\(154\) −1.49671 −0.120608
\(155\) 0 0
\(156\) 0 0
\(157\) −10.0783 −0.804332 −0.402166 0.915567i \(-0.631743\pi\)
−0.402166 + 0.915567i \(0.631743\pi\)
\(158\) −7.06793 −0.562294
\(159\) 0 0
\(160\) 0 0
\(161\) −3.25359 −0.256419
\(162\) 0 0
\(163\) 3.65296 0.286122 0.143061 0.989714i \(-0.454305\pi\)
0.143061 + 0.989714i \(0.454305\pi\)
\(164\) 9.40679 0.734547
\(165\) 0 0
\(166\) −2.60948 −0.202535
\(167\) 17.6276 1.36407 0.682033 0.731321i \(-0.261096\pi\)
0.682033 + 0.731321i \(0.261096\pi\)
\(168\) 0 0
\(169\) −12.3495 −0.949958
\(170\) 0 0
\(171\) 0 0
\(172\) 17.6892 1.34879
\(173\) 6.56173 0.498879 0.249440 0.968390i \(-0.419754\pi\)
0.249440 + 0.968390i \(0.419754\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.46783 −0.110642
\(177\) 0 0
\(178\) −10.0657 −0.754452
\(179\) 1.92327 0.143752 0.0718759 0.997414i \(-0.477101\pi\)
0.0718759 + 0.997414i \(0.477101\pi\)
\(180\) 0 0
\(181\) 4.77012 0.354560 0.177280 0.984160i \(-0.443270\pi\)
0.177280 + 0.984160i \(0.443270\pi\)
\(182\) 1.58968 0.117835
\(183\) 0 0
\(184\) 2.20079 0.162244
\(185\) 0 0
\(186\) 0 0
\(187\) 4.13078 0.302073
\(188\) −0.488890 −0.0356560
\(189\) 0 0
\(190\) 0 0
\(191\) 6.92978 0.501421 0.250711 0.968062i \(-0.419336\pi\)
0.250711 + 0.968062i \(0.419336\pi\)
\(192\) 0 0
\(193\) 3.26608 0.235098 0.117549 0.993067i \(-0.462496\pi\)
0.117549 + 0.993067i \(0.462496\pi\)
\(194\) 1.45657 0.104575
\(195\) 0 0
\(196\) −5.85588 −0.418277
\(197\) 23.8278 1.69766 0.848831 0.528665i \(-0.177307\pi\)
0.848831 + 0.528665i \(0.177307\pi\)
\(198\) 0 0
\(199\) −12.7303 −0.902429 −0.451214 0.892416i \(-0.649009\pi\)
−0.451214 + 0.892416i \(0.649009\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −4.40945 −0.310248
\(203\) −5.05272 −0.354632
\(204\) 0 0
\(205\) 0 0
\(206\) −4.68645 −0.326520
\(207\) 0 0
\(208\) 1.55901 0.108098
\(209\) −0.0220742 −0.00152691
\(210\) 0 0
\(211\) 22.4213 1.54355 0.771773 0.635898i \(-0.219370\pi\)
0.771773 + 0.635898i \(0.219370\pi\)
\(212\) 1.03459 0.0710559
\(213\) 0 0
\(214\) −3.09837 −0.211800
\(215\) 0 0
\(216\) 0 0
\(217\) −15.0740 −1.02329
\(218\) 9.57662 0.648610
\(219\) 0 0
\(220\) 0 0
\(221\) −4.38737 −0.295127
\(222\) 0 0
\(223\) 9.19320 0.615622 0.307811 0.951447i \(-0.400403\pi\)
0.307811 + 0.951447i \(0.400403\pi\)
\(224\) 18.1306 1.21140
\(225\) 0 0
\(226\) −5.40435 −0.359492
\(227\) −25.1015 −1.66605 −0.833023 0.553238i \(-0.813392\pi\)
−0.833023 + 0.553238i \(0.813392\pi\)
\(228\) 0 0
\(229\) 6.34605 0.419359 0.209679 0.977770i \(-0.432758\pi\)
0.209679 + 0.977770i \(0.432758\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 3.41776 0.224387
\(233\) 26.0075 1.70381 0.851904 0.523697i \(-0.175448\pi\)
0.851904 + 0.523697i \(0.175448\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 8.60890 0.560392
\(237\) 0 0
\(238\) −10.7211 −0.694945
\(239\) 10.9137 0.705948 0.352974 0.935633i \(-0.385170\pi\)
0.352974 + 0.935633i \(0.385170\pi\)
\(240\) 0 0
\(241\) 0.336307 0.0216635 0.0108317 0.999941i \(-0.496552\pi\)
0.0108317 + 0.999941i \(0.496552\pi\)
\(242\) 6.31415 0.405889
\(243\) 0 0
\(244\) −10.6257 −0.680241
\(245\) 0 0
\(246\) 0 0
\(247\) 0.0234454 0.00149179
\(248\) 10.1964 0.647469
\(249\) 0 0
\(250\) 0 0
\(251\) 6.78486 0.428257 0.214128 0.976806i \(-0.431309\pi\)
0.214128 + 0.976806i \(0.431309\pi\)
\(252\) 0 0
\(253\) −0.759390 −0.0477425
\(254\) −3.96394 −0.248720
\(255\) 0 0
\(256\) −5.95082 −0.371926
\(257\) −5.34232 −0.333245 −0.166622 0.986021i \(-0.553286\pi\)
−0.166622 + 0.986021i \(0.553286\pi\)
\(258\) 0 0
\(259\) 17.9725 1.11676
\(260\) 0 0
\(261\) 0 0
\(262\) 10.4633 0.646426
\(263\) 25.2748 1.55851 0.779255 0.626707i \(-0.215598\pi\)
0.779255 + 0.626707i \(0.215598\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0.0572917 0.00351278
\(267\) 0 0
\(268\) 15.0936 0.921988
\(269\) 3.97605 0.242424 0.121212 0.992627i \(-0.461322\pi\)
0.121212 + 0.992627i \(0.461322\pi\)
\(270\) 0 0
\(271\) −22.1177 −1.34355 −0.671776 0.740754i \(-0.734468\pi\)
−0.671776 + 0.740754i \(0.734468\pi\)
\(272\) −10.5143 −0.637521
\(273\) 0 0
\(274\) −9.37333 −0.566264
\(275\) 0 0
\(276\) 0 0
\(277\) 0.495963 0.0297995 0.0148998 0.999889i \(-0.495257\pi\)
0.0148998 + 0.999889i \(0.495257\pi\)
\(278\) 2.75385 0.165165
\(279\) 0 0
\(280\) 0 0
\(281\) 32.4709 1.93705 0.968525 0.248915i \(-0.0800738\pi\)
0.968525 + 0.248915i \(0.0800738\pi\)
\(282\) 0 0
\(283\) 3.26383 0.194015 0.0970073 0.995284i \(-0.469073\pi\)
0.0970073 + 0.995284i \(0.469073\pi\)
\(284\) 17.9599 1.06572
\(285\) 0 0
\(286\) 0.371031 0.0219395
\(287\) 18.7416 1.10628
\(288\) 0 0
\(289\) 12.5893 0.740546
\(290\) 0 0
\(291\) 0 0
\(292\) 7.84932 0.459346
\(293\) −28.3698 −1.65738 −0.828689 0.559709i \(-0.810913\pi\)
−0.828689 + 0.559709i \(0.810913\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −12.1569 −0.706608
\(297\) 0 0
\(298\) −4.74434 −0.274832
\(299\) 0.806561 0.0466446
\(300\) 0 0
\(301\) 35.2430 2.03138
\(302\) 5.02270 0.289024
\(303\) 0 0
\(304\) 0.0561865 0.00322252
\(305\) 0 0
\(306\) 0 0
\(307\) 20.7502 1.18428 0.592139 0.805836i \(-0.298284\pi\)
0.592139 + 0.805836i \(0.298284\pi\)
\(308\) −4.03483 −0.229906
\(309\) 0 0
\(310\) 0 0
\(311\) 18.2147 1.03286 0.516430 0.856329i \(-0.327261\pi\)
0.516430 + 0.856329i \(0.327261\pi\)
\(312\) 0 0
\(313\) 18.5051 1.04597 0.522986 0.852342i \(-0.324818\pi\)
0.522986 + 0.852342i \(0.324818\pi\)
\(314\) 6.10511 0.344531
\(315\) 0 0
\(316\) −19.0538 −1.07186
\(317\) 2.12539 0.119374 0.0596870 0.998217i \(-0.480990\pi\)
0.0596870 + 0.998217i \(0.480990\pi\)
\(318\) 0 0
\(319\) −1.17931 −0.0660286
\(320\) 0 0
\(321\) 0 0
\(322\) 1.97093 0.109836
\(323\) −0.158120 −0.00879804
\(324\) 0 0
\(325\) 0 0
\(326\) −2.21286 −0.122559
\(327\) 0 0
\(328\) −12.6772 −0.699980
\(329\) −0.974041 −0.0537006
\(330\) 0 0
\(331\) 18.8396 1.03552 0.517760 0.855526i \(-0.326766\pi\)
0.517760 + 0.855526i \(0.326766\pi\)
\(332\) −7.03465 −0.386077
\(333\) 0 0
\(334\) −10.6783 −0.584291
\(335\) 0 0
\(336\) 0 0
\(337\) −13.1864 −0.718311 −0.359156 0.933278i \(-0.616935\pi\)
−0.359156 + 0.933278i \(0.616935\pi\)
\(338\) 7.48094 0.406910
\(339\) 0 0
\(340\) 0 0
\(341\) −3.51829 −0.190526
\(342\) 0 0
\(343\) 11.1082 0.599786
\(344\) −23.8390 −1.28531
\(345\) 0 0
\(346\) −3.97490 −0.213692
\(347\) −19.1319 −1.02705 −0.513527 0.858073i \(-0.671661\pi\)
−0.513527 + 0.858073i \(0.671661\pi\)
\(348\) 0 0
\(349\) 21.5097 1.15139 0.575695 0.817665i \(-0.304732\pi\)
0.575695 + 0.817665i \(0.304732\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 4.23169 0.225550
\(353\) 0.160343 0.00853422 0.00426711 0.999991i \(-0.498642\pi\)
0.00426711 + 0.999991i \(0.498642\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −27.1351 −1.43816
\(357\) 0 0
\(358\) −1.16506 −0.0615753
\(359\) −17.8421 −0.941672 −0.470836 0.882221i \(-0.656048\pi\)
−0.470836 + 0.882221i \(0.656048\pi\)
\(360\) 0 0
\(361\) −18.9992 −0.999956
\(362\) −2.88960 −0.151874
\(363\) 0 0
\(364\) 4.28546 0.224619
\(365\) 0 0
\(366\) 0 0
\(367\) 24.0011 1.25285 0.626425 0.779482i \(-0.284518\pi\)
0.626425 + 0.779482i \(0.284518\pi\)
\(368\) 1.93291 0.100760
\(369\) 0 0
\(370\) 0 0
\(371\) 2.06127 0.107016
\(372\) 0 0
\(373\) 2.49263 0.129063 0.0645317 0.997916i \(-0.479445\pi\)
0.0645317 + 0.997916i \(0.479445\pi\)
\(374\) −2.50231 −0.129391
\(375\) 0 0
\(376\) 0.658859 0.0339781
\(377\) 1.25256 0.0645103
\(378\) 0 0
\(379\) −4.40475 −0.226257 −0.113128 0.993580i \(-0.536087\pi\)
−0.113128 + 0.993580i \(0.536087\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −4.19786 −0.214781
\(383\) −3.80138 −0.194242 −0.0971208 0.995273i \(-0.530963\pi\)
−0.0971208 + 0.995273i \(0.530963\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −1.97850 −0.100703
\(387\) 0 0
\(388\) 3.92663 0.199344
\(389\) 19.0506 0.965903 0.482951 0.875647i \(-0.339565\pi\)
0.482951 + 0.875647i \(0.339565\pi\)
\(390\) 0 0
\(391\) −5.43960 −0.275093
\(392\) 7.89175 0.398594
\(393\) 0 0
\(394\) −14.4342 −0.727184
\(395\) 0 0
\(396\) 0 0
\(397\) −20.0028 −1.00391 −0.501955 0.864894i \(-0.667386\pi\)
−0.501955 + 0.864894i \(0.667386\pi\)
\(398\) 7.71166 0.386550
\(399\) 0 0
\(400\) 0 0
\(401\) −35.5317 −1.77437 −0.887184 0.461416i \(-0.847341\pi\)
−0.887184 + 0.461416i \(0.847341\pi\)
\(402\) 0 0
\(403\) 3.73683 0.186145
\(404\) −11.8870 −0.591401
\(405\) 0 0
\(406\) 3.06079 0.151905
\(407\) 4.19480 0.207928
\(408\) 0 0
\(409\) 17.3475 0.857781 0.428891 0.903356i \(-0.358905\pi\)
0.428891 + 0.903356i \(0.358905\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −12.6338 −0.622421
\(413\) 17.1520 0.843993
\(414\) 0 0
\(415\) 0 0
\(416\) −4.49455 −0.220363
\(417\) 0 0
\(418\) 0.0133719 0.000654042 0
\(419\) −31.4740 −1.53761 −0.768804 0.639485i \(-0.779148\pi\)
−0.768804 + 0.639485i \(0.779148\pi\)
\(420\) 0 0
\(421\) 9.78764 0.477020 0.238510 0.971140i \(-0.423341\pi\)
0.238510 + 0.971140i \(0.423341\pi\)
\(422\) −13.5822 −0.661170
\(423\) 0 0
\(424\) −1.39428 −0.0677122
\(425\) 0 0
\(426\) 0 0
\(427\) −21.1701 −1.02449
\(428\) −8.35261 −0.403739
\(429\) 0 0
\(430\) 0 0
\(431\) 18.9261 0.911639 0.455820 0.890072i \(-0.349346\pi\)
0.455820 + 0.890072i \(0.349346\pi\)
\(432\) 0 0
\(433\) −14.9973 −0.720724 −0.360362 0.932812i \(-0.617347\pi\)
−0.360362 + 0.932812i \(0.617347\pi\)
\(434\) 9.13141 0.438322
\(435\) 0 0
\(436\) 25.8167 1.23640
\(437\) 0.0290683 0.00139053
\(438\) 0 0
\(439\) −16.9421 −0.808603 −0.404301 0.914626i \(-0.632485\pi\)
−0.404301 + 0.914626i \(0.632485\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 2.65774 0.126416
\(443\) 29.4600 1.39969 0.699844 0.714296i \(-0.253253\pi\)
0.699844 + 0.714296i \(0.253253\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −5.56897 −0.263699
\(447\) 0 0
\(448\) 1.59482 0.0753484
\(449\) 37.8186 1.78477 0.892384 0.451276i \(-0.149031\pi\)
0.892384 + 0.451276i \(0.149031\pi\)
\(450\) 0 0
\(451\) 4.37431 0.205978
\(452\) −14.5691 −0.685273
\(453\) 0 0
\(454\) 15.2058 0.713642
\(455\) 0 0
\(456\) 0 0
\(457\) −8.19036 −0.383129 −0.191565 0.981480i \(-0.561356\pi\)
−0.191565 + 0.981480i \(0.561356\pi\)
\(458\) −3.84425 −0.179630
\(459\) 0 0
\(460\) 0 0
\(461\) 16.4728 0.767214 0.383607 0.923497i \(-0.374682\pi\)
0.383607 + 0.923497i \(0.374682\pi\)
\(462\) 0 0
\(463\) −13.6276 −0.633330 −0.316665 0.948537i \(-0.602563\pi\)
−0.316665 + 0.948537i \(0.602563\pi\)
\(464\) 3.00175 0.139353
\(465\) 0 0
\(466\) −15.7546 −0.729817
\(467\) 4.42450 0.204741 0.102371 0.994746i \(-0.467357\pi\)
0.102371 + 0.994746i \(0.467357\pi\)
\(468\) 0 0
\(469\) 30.0718 1.38858
\(470\) 0 0
\(471\) 0 0
\(472\) −11.6019 −0.534021
\(473\) 8.22574 0.378220
\(474\) 0 0
\(475\) 0 0
\(476\) −28.9020 −1.32472
\(477\) 0 0
\(478\) −6.61119 −0.302389
\(479\) −23.4710 −1.07242 −0.536208 0.844086i \(-0.680144\pi\)
−0.536208 + 0.844086i \(0.680144\pi\)
\(480\) 0 0
\(481\) −4.45536 −0.203147
\(482\) −0.203725 −0.00927943
\(483\) 0 0
\(484\) 17.0217 0.773715
\(485\) 0 0
\(486\) 0 0
\(487\) 3.73378 0.169194 0.0845969 0.996415i \(-0.473040\pi\)
0.0845969 + 0.996415i \(0.473040\pi\)
\(488\) 14.3199 0.648230
\(489\) 0 0
\(490\) 0 0
\(491\) 26.9239 1.21506 0.607530 0.794297i \(-0.292160\pi\)
0.607530 + 0.794297i \(0.292160\pi\)
\(492\) 0 0
\(493\) −8.44753 −0.380457
\(494\) −0.0142025 −0.000639002 0
\(495\) 0 0
\(496\) 8.95525 0.402103
\(497\) 35.7824 1.60506
\(498\) 0 0
\(499\) −18.8192 −0.842461 −0.421231 0.906954i \(-0.638402\pi\)
−0.421231 + 0.906954i \(0.638402\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −4.11007 −0.183441
\(503\) 18.3550 0.818410 0.409205 0.912443i \(-0.365806\pi\)
0.409205 + 0.912443i \(0.365806\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0.460016 0.0204502
\(507\) 0 0
\(508\) −10.6860 −0.474115
\(509\) 7.00770 0.310611 0.155305 0.987867i \(-0.450364\pi\)
0.155305 + 0.987867i \(0.450364\pi\)
\(510\) 0 0
\(511\) 15.6386 0.691811
\(512\) −19.2790 −0.852018
\(513\) 0 0
\(514\) 3.23622 0.142744
\(515\) 0 0
\(516\) 0 0
\(517\) −0.227342 −0.00999847
\(518\) −10.8872 −0.478357
\(519\) 0 0
\(520\) 0 0
\(521\) 5.60958 0.245760 0.122880 0.992422i \(-0.460787\pi\)
0.122880 + 0.992422i \(0.460787\pi\)
\(522\) 0 0
\(523\) 11.9919 0.524371 0.262185 0.965018i \(-0.415557\pi\)
0.262185 + 0.965018i \(0.415557\pi\)
\(524\) 28.2071 1.23223
\(525\) 0 0
\(526\) −15.3107 −0.667579
\(527\) −25.2019 −1.09781
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 0 0
\(532\) 0.154447 0.00669615
\(533\) −4.64602 −0.201242
\(534\) 0 0
\(535\) 0 0
\(536\) −20.3411 −0.878601
\(537\) 0 0
\(538\) −2.40857 −0.103841
\(539\) −2.72308 −0.117291
\(540\) 0 0
\(541\) 37.3061 1.60391 0.801957 0.597382i \(-0.203793\pi\)
0.801957 + 0.597382i \(0.203793\pi\)
\(542\) 13.3982 0.575504
\(543\) 0 0
\(544\) 30.3121 1.29962
\(545\) 0 0
\(546\) 0 0
\(547\) 19.3357 0.826735 0.413368 0.910564i \(-0.364352\pi\)
0.413368 + 0.910564i \(0.364352\pi\)
\(548\) −25.2687 −1.07943
\(549\) 0 0
\(550\) 0 0
\(551\) 0.0451422 0.00192312
\(552\) 0 0
\(553\) −37.9618 −1.61430
\(554\) −0.300440 −0.0127645
\(555\) 0 0
\(556\) 7.42386 0.314842
\(557\) 17.6322 0.747099 0.373550 0.927610i \(-0.378141\pi\)
0.373550 + 0.927610i \(0.378141\pi\)
\(558\) 0 0
\(559\) −8.73670 −0.369523
\(560\) 0 0
\(561\) 0 0
\(562\) −19.6699 −0.829725
\(563\) 25.7172 1.08385 0.541924 0.840427i \(-0.317696\pi\)
0.541924 + 0.840427i \(0.317696\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −1.97713 −0.0831051
\(567\) 0 0
\(568\) −24.2038 −1.01557
\(569\) 6.48889 0.272028 0.136014 0.990707i \(-0.456571\pi\)
0.136014 + 0.990707i \(0.456571\pi\)
\(570\) 0 0
\(571\) −40.4991 −1.69483 −0.847417 0.530928i \(-0.821843\pi\)
−0.847417 + 0.530928i \(0.821843\pi\)
\(572\) 1.00023 0.0418217
\(573\) 0 0
\(574\) −11.3531 −0.473871
\(575\) 0 0
\(576\) 0 0
\(577\) 46.4119 1.93215 0.966076 0.258259i \(-0.0831487\pi\)
0.966076 + 0.258259i \(0.0831487\pi\)
\(578\) −7.62622 −0.317209
\(579\) 0 0
\(580\) 0 0
\(581\) −14.0155 −0.581461
\(582\) 0 0
\(583\) 0.481101 0.0199252
\(584\) −10.5782 −0.437730
\(585\) 0 0
\(586\) 17.1856 0.709929
\(587\) −23.0323 −0.950644 −0.475322 0.879812i \(-0.657668\pi\)
−0.475322 + 0.879812i \(0.657668\pi\)
\(588\) 0 0
\(589\) 0.134675 0.00554918
\(590\) 0 0
\(591\) 0 0
\(592\) −10.6772 −0.438830
\(593\) −23.0064 −0.944759 −0.472380 0.881395i \(-0.656605\pi\)
−0.472380 + 0.881395i \(0.656605\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −12.7898 −0.523892
\(597\) 0 0
\(598\) −0.488591 −0.0199800
\(599\) −3.41317 −0.139459 −0.0697293 0.997566i \(-0.522214\pi\)
−0.0697293 + 0.997566i \(0.522214\pi\)
\(600\) 0 0
\(601\) 44.6751 1.82233 0.911167 0.412037i \(-0.135183\pi\)
0.911167 + 0.412037i \(0.135183\pi\)
\(602\) −21.3492 −0.870128
\(603\) 0 0
\(604\) 13.5402 0.550945
\(605\) 0 0
\(606\) 0 0
\(607\) 34.2006 1.38816 0.694080 0.719898i \(-0.255811\pi\)
0.694080 + 0.719898i \(0.255811\pi\)
\(608\) −0.161983 −0.00656927
\(609\) 0 0
\(610\) 0 0
\(611\) 0.241463 0.00976856
\(612\) 0 0
\(613\) 20.6739 0.835009 0.417505 0.908675i \(-0.362905\pi\)
0.417505 + 0.908675i \(0.362905\pi\)
\(614\) −12.5699 −0.507279
\(615\) 0 0
\(616\) 5.43760 0.219087
\(617\) −10.9355 −0.440245 −0.220123 0.975472i \(-0.570646\pi\)
−0.220123 + 0.975472i \(0.570646\pi\)
\(618\) 0 0
\(619\) 22.7683 0.915136 0.457568 0.889175i \(-0.348721\pi\)
0.457568 + 0.889175i \(0.348721\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −11.0339 −0.442420
\(623\) −54.0626 −2.16597
\(624\) 0 0
\(625\) 0 0
\(626\) −11.2099 −0.448036
\(627\) 0 0
\(628\) 16.4582 0.656754
\(629\) 30.0478 1.19808
\(630\) 0 0
\(631\) −27.7031 −1.10284 −0.551422 0.834227i \(-0.685914\pi\)
−0.551422 + 0.834227i \(0.685914\pi\)
\(632\) 25.6781 1.02142
\(633\) 0 0
\(634\) −1.28750 −0.0511332
\(635\) 0 0
\(636\) 0 0
\(637\) 2.89222 0.114594
\(638\) 0.714390 0.0282830
\(639\) 0 0
\(640\) 0 0
\(641\) 34.7903 1.37413 0.687067 0.726594i \(-0.258898\pi\)
0.687067 + 0.726594i \(0.258898\pi\)
\(642\) 0 0
\(643\) −42.5726 −1.67890 −0.839449 0.543439i \(-0.817122\pi\)
−0.839449 + 0.543439i \(0.817122\pi\)
\(644\) 5.31325 0.209372
\(645\) 0 0
\(646\) 0.0957846 0.00376859
\(647\) 10.0030 0.393259 0.196630 0.980478i \(-0.437000\pi\)
0.196630 + 0.980478i \(0.437000\pi\)
\(648\) 0 0
\(649\) 4.00327 0.157142
\(650\) 0 0
\(651\) 0 0
\(652\) −5.96544 −0.233625
\(653\) 28.6000 1.11920 0.559602 0.828762i \(-0.310954\pi\)
0.559602 + 0.828762i \(0.310954\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −11.1341 −0.434714
\(657\) 0 0
\(658\) 0.590045 0.0230024
\(659\) −10.6150 −0.413501 −0.206750 0.978394i \(-0.566289\pi\)
−0.206750 + 0.978394i \(0.566289\pi\)
\(660\) 0 0
\(661\) −29.6190 −1.15204 −0.576022 0.817434i \(-0.695396\pi\)
−0.576022 + 0.817434i \(0.695396\pi\)
\(662\) −11.4125 −0.443559
\(663\) 0 0
\(664\) 9.48035 0.367909
\(665\) 0 0
\(666\) 0 0
\(667\) 1.55297 0.0601311
\(668\) −28.7867 −1.11379
\(669\) 0 0
\(670\) 0 0
\(671\) −4.94112 −0.190750
\(672\) 0 0
\(673\) −41.7219 −1.60826 −0.804130 0.594454i \(-0.797368\pi\)
−0.804130 + 0.594454i \(0.797368\pi\)
\(674\) 7.98796 0.307685
\(675\) 0 0
\(676\) 20.1672 0.775661
\(677\) 40.2597 1.54731 0.773653 0.633610i \(-0.218428\pi\)
0.773653 + 0.633610i \(0.218428\pi\)
\(678\) 0 0
\(679\) 7.82322 0.300228
\(680\) 0 0
\(681\) 0 0
\(682\) 2.13128 0.0816107
\(683\) −4.98626 −0.190794 −0.0953970 0.995439i \(-0.530412\pi\)
−0.0953970 + 0.995439i \(0.530412\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −6.72901 −0.256915
\(687\) 0 0
\(688\) −20.9373 −0.798229
\(689\) −0.510985 −0.0194670
\(690\) 0 0
\(691\) −8.04362 −0.305994 −0.152997 0.988227i \(-0.548892\pi\)
−0.152997 + 0.988227i \(0.548892\pi\)
\(692\) −10.7156 −0.407345
\(693\) 0 0
\(694\) 11.5895 0.439933
\(695\) 0 0
\(696\) 0 0
\(697\) 31.3337 1.18685
\(698\) −13.0300 −0.493191
\(699\) 0 0
\(700\) 0 0
\(701\) −32.2539 −1.21821 −0.609106 0.793089i \(-0.708472\pi\)
−0.609106 + 0.793089i \(0.708472\pi\)
\(702\) 0 0
\(703\) −0.160571 −0.00605603
\(704\) 0.372233 0.0140291
\(705\) 0 0
\(706\) −0.0971314 −0.00365559
\(707\) −23.6831 −0.890696
\(708\) 0 0
\(709\) 34.4906 1.29532 0.647660 0.761929i \(-0.275748\pi\)
0.647660 + 0.761929i \(0.275748\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 36.5689 1.37048
\(713\) 4.63304 0.173509
\(714\) 0 0
\(715\) 0 0
\(716\) −3.14078 −0.117376
\(717\) 0 0
\(718\) 10.8082 0.403360
\(719\) −23.1282 −0.862536 −0.431268 0.902224i \(-0.641934\pi\)
−0.431268 + 0.902224i \(0.641934\pi\)
\(720\) 0 0
\(721\) −25.1709 −0.937413
\(722\) 11.5091 0.428326
\(723\) 0 0
\(724\) −7.78981 −0.289506
\(725\) 0 0
\(726\) 0 0
\(727\) −41.9820 −1.55703 −0.778513 0.627628i \(-0.784026\pi\)
−0.778513 + 0.627628i \(0.784026\pi\)
\(728\) −5.77536 −0.214049
\(729\) 0 0
\(730\) 0 0
\(731\) 58.9220 2.17931
\(732\) 0 0
\(733\) −6.33790 −0.234096 −0.117048 0.993126i \(-0.537343\pi\)
−0.117048 + 0.993126i \(0.537343\pi\)
\(734\) −14.5392 −0.536651
\(735\) 0 0
\(736\) −5.57248 −0.205404
\(737\) 7.01876 0.258539
\(738\) 0 0
\(739\) −38.1035 −1.40166 −0.700831 0.713328i \(-0.747187\pi\)
−0.700831 + 0.713328i \(0.747187\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −1.24866 −0.0458396
\(743\) −47.4077 −1.73922 −0.869611 0.493738i \(-0.835630\pi\)
−0.869611 + 0.493738i \(0.835630\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −1.50996 −0.0552836
\(747\) 0 0
\(748\) −6.74574 −0.246649
\(749\) −16.6413 −0.608061
\(750\) 0 0
\(751\) 24.2044 0.883230 0.441615 0.897205i \(-0.354406\pi\)
0.441615 + 0.897205i \(0.354406\pi\)
\(752\) 0.578663 0.0211017
\(753\) 0 0
\(754\) −0.758766 −0.0276326
\(755\) 0 0
\(756\) 0 0
\(757\) −45.9553 −1.67028 −0.835138 0.550041i \(-0.814612\pi\)
−0.835138 + 0.550041i \(0.814612\pi\)
\(758\) 2.66827 0.0969158
\(759\) 0 0
\(760\) 0 0
\(761\) 43.6112 1.58090 0.790452 0.612523i \(-0.209845\pi\)
0.790452 + 0.612523i \(0.209845\pi\)
\(762\) 0 0
\(763\) 51.4360 1.86211
\(764\) −11.3166 −0.409421
\(765\) 0 0
\(766\) 2.30277 0.0832024
\(767\) −4.25194 −0.153529
\(768\) 0 0
\(769\) −33.5219 −1.20883 −0.604416 0.796669i \(-0.706594\pi\)
−0.604416 + 0.796669i \(0.706594\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −5.33365 −0.191962
\(773\) 28.2390 1.01569 0.507843 0.861450i \(-0.330443\pi\)
0.507843 + 0.861450i \(0.330443\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −5.29177 −0.189964
\(777\) 0 0
\(778\) −11.5403 −0.413739
\(779\) −0.167442 −0.00599923
\(780\) 0 0
\(781\) 8.35162 0.298844
\(782\) 3.29515 0.117834
\(783\) 0 0
\(784\) 6.93116 0.247542
\(785\) 0 0
\(786\) 0 0
\(787\) 18.9710 0.676244 0.338122 0.941102i \(-0.390208\pi\)
0.338122 + 0.941102i \(0.390208\pi\)
\(788\) −38.9118 −1.38618
\(789\) 0 0
\(790\) 0 0
\(791\) −29.0268 −1.03207
\(792\) 0 0
\(793\) 5.24805 0.186364
\(794\) 12.1171 0.430020
\(795\) 0 0
\(796\) 20.7891 0.736852
\(797\) −29.0624 −1.02944 −0.514722 0.857357i \(-0.672105\pi\)
−0.514722 + 0.857357i \(0.672105\pi\)
\(798\) 0 0
\(799\) −1.62848 −0.0576113
\(800\) 0 0
\(801\) 0 0
\(802\) 21.5241 0.760041
\(803\) 3.65006 0.128808
\(804\) 0 0
\(805\) 0 0
\(806\) −2.26366 −0.0797341
\(807\) 0 0
\(808\) 16.0197 0.563571
\(809\) 42.5832 1.49715 0.748573 0.663052i \(-0.230739\pi\)
0.748573 + 0.663052i \(0.230739\pi\)
\(810\) 0 0
\(811\) −46.5666 −1.63517 −0.817587 0.575805i \(-0.804689\pi\)
−0.817587 + 0.575805i \(0.804689\pi\)
\(812\) 8.25131 0.289564
\(813\) 0 0
\(814\) −2.54108 −0.0890649
\(815\) 0 0
\(816\) 0 0
\(817\) −0.314869 −0.0110159
\(818\) −10.5086 −0.367426
\(819\) 0 0
\(820\) 0 0
\(821\) −13.8087 −0.481929 −0.240964 0.970534i \(-0.577464\pi\)
−0.240964 + 0.970534i \(0.577464\pi\)
\(822\) 0 0
\(823\) 44.7579 1.56016 0.780082 0.625678i \(-0.215178\pi\)
0.780082 + 0.625678i \(0.215178\pi\)
\(824\) 17.0261 0.593131
\(825\) 0 0
\(826\) −10.3902 −0.361520
\(827\) −7.56243 −0.262972 −0.131486 0.991318i \(-0.541975\pi\)
−0.131486 + 0.991318i \(0.541975\pi\)
\(828\) 0 0
\(829\) 21.0279 0.730328 0.365164 0.930943i \(-0.381013\pi\)
0.365164 + 0.930943i \(0.381013\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −0.395355 −0.0137065
\(833\) −19.5057 −0.675833
\(834\) 0 0
\(835\) 0 0
\(836\) 0.0360481 0.00124675
\(837\) 0 0
\(838\) 19.0661 0.658626
\(839\) −57.6216 −1.98932 −0.994659 0.103213i \(-0.967088\pi\)
−0.994659 + 0.103213i \(0.967088\pi\)
\(840\) 0 0
\(841\) −26.5883 −0.916838
\(842\) −5.92906 −0.204329
\(843\) 0 0
\(844\) −36.6149 −1.26034
\(845\) 0 0
\(846\) 0 0
\(847\) 33.9133 1.16527
\(848\) −1.22457 −0.0420518
\(849\) 0 0
\(850\) 0 0
\(851\) −5.52390 −0.189357
\(852\) 0 0
\(853\) 21.6926 0.742741 0.371370 0.928485i \(-0.378888\pi\)
0.371370 + 0.928485i \(0.378888\pi\)
\(854\) 12.8242 0.438837
\(855\) 0 0
\(856\) 11.2565 0.384739
\(857\) 29.3518 1.00264 0.501319 0.865262i \(-0.332848\pi\)
0.501319 + 0.865262i \(0.332848\pi\)
\(858\) 0 0
\(859\) −14.1869 −0.484051 −0.242025 0.970270i \(-0.577812\pi\)
−0.242025 + 0.970270i \(0.577812\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −11.4649 −0.390496
\(863\) −36.9884 −1.25910 −0.629550 0.776960i \(-0.716761\pi\)
−0.629550 + 0.776960i \(0.716761\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 9.08493 0.308718
\(867\) 0 0
\(868\) 24.6165 0.835539
\(869\) −8.86031 −0.300565
\(870\) 0 0
\(871\) −7.45474 −0.252594
\(872\) −34.7923 −1.17821
\(873\) 0 0
\(874\) −0.0176087 −0.000595625 0
\(875\) 0 0
\(876\) 0 0
\(877\) 3.21780 0.108657 0.0543287 0.998523i \(-0.482698\pi\)
0.0543287 + 0.998523i \(0.482698\pi\)
\(878\) 10.2630 0.346361
\(879\) 0 0
\(880\) 0 0
\(881\) 52.6836 1.77495 0.887477 0.460852i \(-0.152456\pi\)
0.887477 + 0.460852i \(0.152456\pi\)
\(882\) 0 0
\(883\) 6.07047 0.204287 0.102144 0.994770i \(-0.467430\pi\)
0.102144 + 0.994770i \(0.467430\pi\)
\(884\) 7.16476 0.240977
\(885\) 0 0
\(886\) −17.8460 −0.599549
\(887\) 7.90948 0.265574 0.132787 0.991145i \(-0.457607\pi\)
0.132787 + 0.991145i \(0.457607\pi\)
\(888\) 0 0
\(889\) −21.2903 −0.714054
\(890\) 0 0
\(891\) 0 0
\(892\) −15.0129 −0.502669
\(893\) 0.00870230 0.000291211 0
\(894\) 0 0
\(895\) 0 0
\(896\) −37.2273 −1.24368
\(897\) 0 0
\(898\) −22.9094 −0.764496
\(899\) 7.19496 0.239965
\(900\) 0 0
\(901\) 3.44618 0.114809
\(902\) −2.64983 −0.0882296
\(903\) 0 0
\(904\) 19.6342 0.653025
\(905\) 0 0
\(906\) 0 0
\(907\) −44.5820 −1.48032 −0.740160 0.672430i \(-0.765250\pi\)
−0.740160 + 0.672430i \(0.765250\pi\)
\(908\) 40.9918 1.36036
\(909\) 0 0
\(910\) 0 0
\(911\) 4.99864 0.165612 0.0828062 0.996566i \(-0.473612\pi\)
0.0828062 + 0.996566i \(0.473612\pi\)
\(912\) 0 0
\(913\) −3.27123 −0.108262
\(914\) 4.96148 0.164111
\(915\) 0 0
\(916\) −10.3634 −0.342415
\(917\) 56.1984 1.85584
\(918\) 0 0
\(919\) −42.0674 −1.38768 −0.693838 0.720131i \(-0.744082\pi\)
−0.693838 + 0.720131i \(0.744082\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −9.97872 −0.328632
\(923\) −8.87039 −0.291973
\(924\) 0 0
\(925\) 0 0
\(926\) 8.25522 0.271283
\(927\) 0 0
\(928\) −8.65388 −0.284078
\(929\) −55.0370 −1.80570 −0.902852 0.429951i \(-0.858531\pi\)
−0.902852 + 0.429951i \(0.858531\pi\)
\(930\) 0 0
\(931\) 0.104235 0.00341617
\(932\) −42.4714 −1.39120
\(933\) 0 0
\(934\) −2.68023 −0.0876999
\(935\) 0 0
\(936\) 0 0
\(937\) −31.2596 −1.02121 −0.510603 0.859817i \(-0.670578\pi\)
−0.510603 + 0.859817i \(0.670578\pi\)
\(938\) −18.2166 −0.594793
\(939\) 0 0
\(940\) 0 0
\(941\) −4.14617 −0.135161 −0.0675806 0.997714i \(-0.521528\pi\)
−0.0675806 + 0.997714i \(0.521528\pi\)
\(942\) 0 0
\(943\) −5.76029 −0.187581
\(944\) −10.1897 −0.331647
\(945\) 0 0
\(946\) −4.98291 −0.162008
\(947\) 34.8241 1.13163 0.565816 0.824532i \(-0.308561\pi\)
0.565816 + 0.824532i \(0.308561\pi\)
\(948\) 0 0
\(949\) −3.87678 −0.125846
\(950\) 0 0
\(951\) 0 0
\(952\) 38.9502 1.26238
\(953\) 22.7088 0.735611 0.367805 0.929903i \(-0.380109\pi\)
0.367805 + 0.929903i \(0.380109\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −17.8225 −0.576421
\(957\) 0 0
\(958\) 14.2180 0.459364
\(959\) −50.3442 −1.62570
\(960\) 0 0
\(961\) −9.53492 −0.307578
\(962\) 2.69893 0.0870169
\(963\) 0 0
\(964\) −0.549204 −0.0176887
\(965\) 0 0
\(966\) 0 0
\(967\) 40.1338 1.29062 0.645308 0.763922i \(-0.276729\pi\)
0.645308 + 0.763922i \(0.276729\pi\)
\(968\) −22.9396 −0.737305
\(969\) 0 0
\(970\) 0 0
\(971\) 2.29254 0.0735710 0.0367855 0.999323i \(-0.488288\pi\)
0.0367855 + 0.999323i \(0.488288\pi\)
\(972\) 0 0
\(973\) 14.7909 0.474176
\(974\) −2.26182 −0.0724733
\(975\) 0 0
\(976\) 12.5768 0.402575
\(977\) −21.7795 −0.696786 −0.348393 0.937348i \(-0.613273\pi\)
−0.348393 + 0.937348i \(0.613273\pi\)
\(978\) 0 0
\(979\) −12.6182 −0.403281
\(980\) 0 0
\(981\) 0 0
\(982\) −16.3097 −0.520464
\(983\) −29.9728 −0.955983 −0.477991 0.878365i \(-0.658635\pi\)
−0.477991 + 0.878365i \(0.658635\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 5.11726 0.162967
\(987\) 0 0
\(988\) −0.0382873 −0.00121808
\(989\) −10.8320 −0.344439
\(990\) 0 0
\(991\) 28.6163 0.909027 0.454513 0.890740i \(-0.349813\pi\)
0.454513 + 0.890740i \(0.349813\pi\)
\(992\) −25.8175 −0.819708
\(993\) 0 0
\(994\) −21.6759 −0.687518
\(995\) 0 0
\(996\) 0 0
\(997\) 26.1503 0.828189 0.414094 0.910234i \(-0.364098\pi\)
0.414094 + 0.910234i \(0.364098\pi\)
\(998\) 11.4001 0.360864
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5175.2.a.by.1.3 6
3.2 odd 2 5175.2.a.bz.1.4 6
5.4 even 2 1035.2.a.q.1.4 yes 6
15.14 odd 2 1035.2.a.p.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1035.2.a.p.1.3 6 15.14 odd 2
1035.2.a.q.1.4 yes 6 5.4 even 2
5175.2.a.by.1.3 6 1.1 even 1 trivial
5175.2.a.bz.1.4 6 3.2 odd 2