Properties

Label 5175.2.a.bx.1.4
Level $5175$
Weight $2$
Character 5175.1
Self dual yes
Analytic conductor $41.323$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5175,2,Mod(1,5175)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5175, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5175.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5175 = 3^{2} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5175.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,0,4,0,0,3,9,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.3225830460\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.15317.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 4x^{2} + 5x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 115)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.69353\) of defining polynomial
Character \(\chi\) \(=\) 5175.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.69353 q^{2} +5.25508 q^{4} +2.74252 q^{7} +8.76763 q^{8} +3.38705 q^{11} +2.46356 q^{13} +7.38705 q^{14} +13.1057 q^{16} -2.64453 q^{17} +3.38705 q^{19} +9.12311 q^{22} -1.00000 q^{23} +6.63566 q^{26} +14.4122 q^{28} -9.20608 q^{29} -5.10809 q^{31} +17.7652 q^{32} -7.12311 q^{34} -5.50369 q^{37} +9.12311 q^{38} +1.20608 q^{41} -3.02511 q^{43} +17.7992 q^{44} -2.69353 q^{46} +8.21255 q^{47} +0.521423 q^{49} +12.9462 q^{52} -10.5417 q^{53} +24.0454 q^{56} -24.7968 q^{58} -8.28259 q^{59} +0.263945 q^{61} -13.7588 q^{62} +21.6397 q^{64} +7.66964 q^{67} -13.8972 q^{68} +0.0150161 q^{71} +5.53644 q^{73} -14.8243 q^{74} +17.7992 q^{76} +9.28906 q^{77} -8.67611 q^{79} +3.24861 q^{82} -3.52142 q^{83} -8.14822 q^{86} +29.6964 q^{88} +4.66318 q^{89} +6.75637 q^{91} -5.25508 q^{92} +22.1207 q^{94} +4.09799 q^{97} +1.40447 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 4 q^{4} + 3 q^{7} + 9 q^{8} - 4 q^{11} + 12 q^{14} + 8 q^{16} - q^{17} - 4 q^{19} + 20 q^{22} - 4 q^{23} + q^{26} + 22 q^{28} - 19 q^{29} - q^{31} + 20 q^{32} - 12 q^{34} + 3 q^{37} + 20 q^{38}+ \cdots + 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.69353 1.90461 0.952305 0.305148i \(-0.0987059\pi\)
0.952305 + 0.305148i \(0.0987059\pi\)
\(3\) 0 0
\(4\) 5.25508 2.62754
\(5\) 0 0
\(6\) 0 0
\(7\) 2.74252 1.03658 0.518288 0.855206i \(-0.326570\pi\)
0.518288 + 0.855206i \(0.326570\pi\)
\(8\) 8.76763 3.09983
\(9\) 0 0
\(10\) 0 0
\(11\) 3.38705 1.02123 0.510617 0.859808i \(-0.329417\pi\)
0.510617 + 0.859808i \(0.329417\pi\)
\(12\) 0 0
\(13\) 2.46356 0.683269 0.341634 0.939833i \(-0.389020\pi\)
0.341634 + 0.939833i \(0.389020\pi\)
\(14\) 7.38705 1.97427
\(15\) 0 0
\(16\) 13.1057 3.27642
\(17\) −2.64453 −0.641393 −0.320696 0.947182i \(-0.603917\pi\)
−0.320696 + 0.947182i \(0.603917\pi\)
\(18\) 0 0
\(19\) 3.38705 0.777043 0.388521 0.921440i \(-0.372986\pi\)
0.388521 + 0.921440i \(0.372986\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 9.12311 1.94505
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) 0 0
\(26\) 6.63566 1.30136
\(27\) 0 0
\(28\) 14.4122 2.72364
\(29\) −9.20608 −1.70953 −0.854763 0.519018i \(-0.826298\pi\)
−0.854763 + 0.519018i \(0.826298\pi\)
\(30\) 0 0
\(31\) −5.10809 −0.917440 −0.458720 0.888581i \(-0.651692\pi\)
−0.458720 + 0.888581i \(0.651692\pi\)
\(32\) 17.7652 3.14048
\(33\) 0 0
\(34\) −7.12311 −1.22160
\(35\) 0 0
\(36\) 0 0
\(37\) −5.50369 −0.904801 −0.452401 0.891815i \(-0.649432\pi\)
−0.452401 + 0.891815i \(0.649432\pi\)
\(38\) 9.12311 1.47996
\(39\) 0 0
\(40\) 0 0
\(41\) 1.20608 0.188358 0.0941792 0.995555i \(-0.469977\pi\)
0.0941792 + 0.995555i \(0.469977\pi\)
\(42\) 0 0
\(43\) −3.02511 −0.461325 −0.230663 0.973034i \(-0.574089\pi\)
−0.230663 + 0.973034i \(0.574089\pi\)
\(44\) 17.7992 2.68333
\(45\) 0 0
\(46\) −2.69353 −0.397139
\(47\) 8.21255 1.19792 0.598962 0.800778i \(-0.295580\pi\)
0.598962 + 0.800778i \(0.295580\pi\)
\(48\) 0 0
\(49\) 0.521423 0.0744891
\(50\) 0 0
\(51\) 0 0
\(52\) 12.9462 1.79532
\(53\) −10.5417 −1.44802 −0.724009 0.689790i \(-0.757703\pi\)
−0.724009 + 0.689790i \(0.757703\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 24.0454 3.21321
\(57\) 0 0
\(58\) −24.7968 −3.25598
\(59\) −8.28259 −1.07830 −0.539151 0.842209i \(-0.681255\pi\)
−0.539151 + 0.842209i \(0.681255\pi\)
\(60\) 0 0
\(61\) 0.263945 0.0337947 0.0168973 0.999857i \(-0.494621\pi\)
0.0168973 + 0.999857i \(0.494621\pi\)
\(62\) −13.7588 −1.74737
\(63\) 0 0
\(64\) 21.6397 2.70497
\(65\) 0 0
\(66\) 0 0
\(67\) 7.66964 0.936996 0.468498 0.883465i \(-0.344795\pi\)
0.468498 + 0.883465i \(0.344795\pi\)
\(68\) −13.8972 −1.68528
\(69\) 0 0
\(70\) 0 0
\(71\) 0.0150161 0.00178208 0.000891041 1.00000i \(-0.499716\pi\)
0.000891041 1.00000i \(0.499716\pi\)
\(72\) 0 0
\(73\) 5.53644 0.647991 0.323996 0.946059i \(-0.394974\pi\)
0.323996 + 0.946059i \(0.394974\pi\)
\(74\) −14.8243 −1.72329
\(75\) 0 0
\(76\) 17.7992 2.04171
\(77\) 9.28906 1.05859
\(78\) 0 0
\(79\) −8.67611 −0.976138 −0.488069 0.872805i \(-0.662299\pi\)
−0.488069 + 0.872805i \(0.662299\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 3.24861 0.358749
\(83\) −3.52142 −0.386526 −0.193263 0.981147i \(-0.561907\pi\)
−0.193263 + 0.981147i \(0.561907\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −8.14822 −0.878645
\(87\) 0 0
\(88\) 29.6964 3.16565
\(89\) 4.66318 0.494296 0.247148 0.968978i \(-0.420507\pi\)
0.247148 + 0.968978i \(0.420507\pi\)
\(90\) 0 0
\(91\) 6.75637 0.708260
\(92\) −5.25508 −0.547880
\(93\) 0 0
\(94\) 22.1207 2.28158
\(95\) 0 0
\(96\) 0 0
\(97\) 4.09799 0.416088 0.208044 0.978119i \(-0.433290\pi\)
0.208044 + 0.978119i \(0.433290\pi\)
\(98\) 1.40447 0.141873
\(99\) 0 0
\(100\) 0 0
\(101\) −12.2955 −1.22345 −0.611725 0.791070i \(-0.709524\pi\)
−0.611725 + 0.791070i \(0.709524\pi\)
\(102\) 0 0
\(103\) −6.05023 −0.596147 −0.298073 0.954543i \(-0.596344\pi\)
−0.298073 + 0.954543i \(0.596344\pi\)
\(104\) 21.5996 2.11801
\(105\) 0 0
\(106\) −28.3944 −2.75791
\(107\) 13.1547 1.27171 0.635856 0.771808i \(-0.280647\pi\)
0.635856 + 0.771808i \(0.280647\pi\)
\(108\) 0 0
\(109\) −17.1183 −1.63964 −0.819818 0.572624i \(-0.805925\pi\)
−0.819818 + 0.572624i \(0.805925\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 35.9426 3.39626
\(113\) 4.38058 0.412091 0.206045 0.978542i \(-0.433941\pi\)
0.206045 + 0.978542i \(0.433941\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −48.3787 −4.49185
\(117\) 0 0
\(118\) −22.3094 −2.05374
\(119\) −7.25268 −0.664852
\(120\) 0 0
\(121\) 0.472110 0.0429191
\(122\) 0.710942 0.0643657
\(123\) 0 0
\(124\) −26.8434 −2.41061
\(125\) 0 0
\(126\) 0 0
\(127\) 18.4588 1.63795 0.818975 0.573829i \(-0.194543\pi\)
0.818975 + 0.573829i \(0.194543\pi\)
\(128\) 22.7567 2.01143
\(129\) 0 0
\(130\) 0 0
\(131\) 3.86834 0.337979 0.168989 0.985618i \(-0.445950\pi\)
0.168989 + 0.985618i \(0.445950\pi\)
\(132\) 0 0
\(133\) 9.28906 0.805463
\(134\) 20.6584 1.78461
\(135\) 0 0
\(136\) −23.1863 −1.98821
\(137\) 20.6713 1.76607 0.883034 0.469308i \(-0.155497\pi\)
0.883034 + 0.469308i \(0.155497\pi\)
\(138\) 0 0
\(139\) 12.5802 1.06704 0.533519 0.845788i \(-0.320869\pi\)
0.533519 + 0.845788i \(0.320869\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0.0404462 0.00339417
\(143\) 8.34420 0.697777
\(144\) 0 0
\(145\) 0 0
\(146\) 14.9125 1.23417
\(147\) 0 0
\(148\) −28.9223 −2.37740
\(149\) −11.4850 −0.940891 −0.470446 0.882429i \(-0.655907\pi\)
−0.470446 + 0.882429i \(0.655907\pi\)
\(150\) 0 0
\(151\) −5.58667 −0.454636 −0.227318 0.973821i \(-0.572996\pi\)
−0.227318 + 0.973821i \(0.572996\pi\)
\(152\) 29.6964 2.40870
\(153\) 0 0
\(154\) 25.0203 2.01619
\(155\) 0 0
\(156\) 0 0
\(157\) −5.86563 −0.468128 −0.234064 0.972221i \(-0.575203\pi\)
−0.234064 + 0.972221i \(0.575203\pi\)
\(158\) −23.3693 −1.85916
\(159\) 0 0
\(160\) 0 0
\(161\) −2.74252 −0.216141
\(162\) 0 0
\(163\) −0.0465955 −0.00364964 −0.00182482 0.999998i \(-0.500581\pi\)
−0.00182482 + 0.999998i \(0.500581\pi\)
\(164\) 6.33805 0.494919
\(165\) 0 0
\(166\) −9.48504 −0.736182
\(167\) −2.24621 −0.173817 −0.0869085 0.996216i \(-0.527699\pi\)
−0.0869085 + 0.996216i \(0.527699\pi\)
\(168\) 0 0
\(169\) −6.93087 −0.533144
\(170\) 0 0
\(171\) 0 0
\(172\) −15.8972 −1.21215
\(173\) 8.01293 0.609212 0.304606 0.952478i \(-0.401475\pi\)
0.304606 + 0.952478i \(0.401475\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 44.3896 3.34599
\(177\) 0 0
\(178\) 12.5604 0.941440
\(179\) 11.9615 0.894047 0.447024 0.894522i \(-0.352484\pi\)
0.447024 + 0.894522i \(0.352484\pi\)
\(180\) 0 0
\(181\) −17.4802 −1.29930 −0.649648 0.760235i \(-0.725084\pi\)
−0.649648 + 0.760235i \(0.725084\pi\)
\(182\) 18.1984 1.34896
\(183\) 0 0
\(184\) −8.76763 −0.646359
\(185\) 0 0
\(186\) 0 0
\(187\) −8.95715 −0.655012
\(188\) 43.1576 3.14759
\(189\) 0 0
\(190\) 0 0
\(191\) 13.1231 0.949555 0.474777 0.880106i \(-0.342529\pi\)
0.474777 + 0.880106i \(0.342529\pi\)
\(192\) 0 0
\(193\) 12.5438 0.902924 0.451462 0.892290i \(-0.350903\pi\)
0.451462 + 0.892290i \(0.350903\pi\)
\(194\) 11.0380 0.792485
\(195\) 0 0
\(196\) 2.74012 0.195723
\(197\) 3.88544 0.276826 0.138413 0.990375i \(-0.455800\pi\)
0.138413 + 0.990375i \(0.455800\pi\)
\(198\) 0 0
\(199\) 22.1612 1.57096 0.785481 0.618886i \(-0.212416\pi\)
0.785481 + 0.618886i \(0.212416\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −33.1183 −2.33020
\(203\) −25.2479 −1.77205
\(204\) 0 0
\(205\) 0 0
\(206\) −16.2964 −1.13543
\(207\) 0 0
\(208\) 32.2867 2.23868
\(209\) 11.4721 0.793542
\(210\) 0 0
\(211\) 4.81048 0.331167 0.165584 0.986196i \(-0.447049\pi\)
0.165584 + 0.986196i \(0.447049\pi\)
\(212\) −55.3976 −3.80473
\(213\) 0 0
\(214\) 35.4325 2.42211
\(215\) 0 0
\(216\) 0 0
\(217\) −14.0090 −0.950996
\(218\) −46.1086 −3.12287
\(219\) 0 0
\(220\) 0 0
\(221\) −6.51496 −0.438243
\(222\) 0 0
\(223\) −13.7815 −0.922876 −0.461438 0.887172i \(-0.652666\pi\)
−0.461438 + 0.887172i \(0.652666\pi\)
\(224\) 48.7215 3.25534
\(225\) 0 0
\(226\) 11.7992 0.784872
\(227\) 29.1012 1.93151 0.965757 0.259447i \(-0.0835402\pi\)
0.965757 + 0.259447i \(0.0835402\pi\)
\(228\) 0 0
\(229\) −9.38705 −0.620314 −0.310157 0.950685i \(-0.600382\pi\)
−0.310157 + 0.950685i \(0.600382\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −80.7156 −5.29924
\(233\) −12.6725 −0.830202 −0.415101 0.909775i \(-0.636254\pi\)
−0.415101 + 0.909775i \(0.636254\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −43.5257 −2.83328
\(237\) 0 0
\(238\) −19.5353 −1.26628
\(239\) −19.1883 −1.24119 −0.620596 0.784131i \(-0.713109\pi\)
−0.620596 + 0.784131i \(0.713109\pi\)
\(240\) 0 0
\(241\) 16.7741 1.08051 0.540257 0.841500i \(-0.318327\pi\)
0.540257 + 0.841500i \(0.318327\pi\)
\(242\) 1.27164 0.0817442
\(243\) 0 0
\(244\) 1.38705 0.0887968
\(245\) 0 0
\(246\) 0 0
\(247\) 8.34420 0.530929
\(248\) −44.7859 −2.84391
\(249\) 0 0
\(250\) 0 0
\(251\) 22.8114 1.43984 0.719921 0.694056i \(-0.244178\pi\)
0.719921 + 0.694056i \(0.244178\pi\)
\(252\) 0 0
\(253\) −3.38705 −0.212942
\(254\) 49.7191 3.11966
\(255\) 0 0
\(256\) 18.0162 1.12602
\(257\) −23.7526 −1.48165 −0.740824 0.671699i \(-0.765565\pi\)
−0.740824 + 0.671699i \(0.765565\pi\)
\(258\) 0 0
\(259\) −15.0940 −0.937895
\(260\) 0 0
\(261\) 0 0
\(262\) 10.4195 0.643718
\(263\) 16.5895 1.02295 0.511476 0.859297i \(-0.329099\pi\)
0.511476 + 0.859297i \(0.329099\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 25.0203 1.53409
\(267\) 0 0
\(268\) 40.3046 2.46199
\(269\) 8.47495 0.516727 0.258363 0.966048i \(-0.416817\pi\)
0.258363 + 0.966048i \(0.416817\pi\)
\(270\) 0 0
\(271\) −21.3029 −1.29406 −0.647030 0.762465i \(-0.723989\pi\)
−0.647030 + 0.762465i \(0.723989\pi\)
\(272\) −34.6584 −2.10147
\(273\) 0 0
\(274\) 55.6787 3.36367
\(275\) 0 0
\(276\) 0 0
\(277\) −21.9615 −1.31954 −0.659770 0.751467i \(-0.729346\pi\)
−0.659770 + 0.751467i \(0.729346\pi\)
\(278\) 33.8851 2.03229
\(279\) 0 0
\(280\) 0 0
\(281\) −19.9020 −1.18725 −0.593627 0.804740i \(-0.702305\pi\)
−0.593627 + 0.804740i \(0.702305\pi\)
\(282\) 0 0
\(283\) 8.87781 0.527731 0.263865 0.964559i \(-0.415003\pi\)
0.263865 + 0.964559i \(0.415003\pi\)
\(284\) 0.0789107 0.00468249
\(285\) 0 0
\(286\) 22.4753 1.32899
\(287\) 3.30771 0.195248
\(288\) 0 0
\(289\) −10.0065 −0.588616
\(290\) 0 0
\(291\) 0 0
\(292\) 29.0944 1.70262
\(293\) 23.9709 1.40039 0.700197 0.713950i \(-0.253096\pi\)
0.700197 + 0.713950i \(0.253096\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −48.2543 −2.80473
\(297\) 0 0
\(298\) −30.9353 −1.79203
\(299\) −2.46356 −0.142471
\(300\) 0 0
\(301\) −8.29644 −0.478199
\(302\) −15.0478 −0.865905
\(303\) 0 0
\(304\) 44.3896 2.54592
\(305\) 0 0
\(306\) 0 0
\(307\) −12.0632 −0.688481 −0.344240 0.938882i \(-0.611864\pi\)
−0.344240 + 0.938882i \(0.611864\pi\)
\(308\) 48.8147 2.78148
\(309\) 0 0
\(310\) 0 0
\(311\) 6.81257 0.386305 0.193153 0.981169i \(-0.438129\pi\)
0.193153 + 0.981169i \(0.438129\pi\)
\(312\) 0 0
\(313\) 6.38539 0.360923 0.180462 0.983582i \(-0.442241\pi\)
0.180462 + 0.983582i \(0.442241\pi\)
\(314\) −15.7992 −0.891601
\(315\) 0 0
\(316\) −45.5936 −2.56484
\(317\) 16.8114 0.944222 0.472111 0.881539i \(-0.343492\pi\)
0.472111 + 0.881539i \(0.343492\pi\)
\(318\) 0 0
\(319\) −31.1815 −1.74583
\(320\) 0 0
\(321\) 0 0
\(322\) −7.38705 −0.411664
\(323\) −8.95715 −0.498389
\(324\) 0 0
\(325\) 0 0
\(326\) −0.125506 −0.00695115
\(327\) 0 0
\(328\) 10.5745 0.583878
\(329\) 22.5231 1.24174
\(330\) 0 0
\(331\) 3.29114 0.180898 0.0904488 0.995901i \(-0.471170\pi\)
0.0904488 + 0.995901i \(0.471170\pi\)
\(332\) −18.5054 −1.01561
\(333\) 0 0
\(334\) −6.05023 −0.331054
\(335\) 0 0
\(336\) 0 0
\(337\) 7.90201 0.430450 0.215225 0.976565i \(-0.430952\pi\)
0.215225 + 0.976565i \(0.430952\pi\)
\(338\) −18.6685 −1.01543
\(339\) 0 0
\(340\) 0 0
\(341\) −17.3014 −0.936921
\(342\) 0 0
\(343\) −17.7676 −0.959362
\(344\) −26.5231 −1.43003
\(345\) 0 0
\(346\) 21.5830 1.16031
\(347\) −19.4024 −1.04158 −0.520789 0.853686i \(-0.674362\pi\)
−0.520789 + 0.853686i \(0.674362\pi\)
\(348\) 0 0
\(349\) −33.1664 −1.77536 −0.887680 0.460462i \(-0.847684\pi\)
−0.887680 + 0.460462i \(0.847684\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 60.1717 3.20716
\(353\) −29.8960 −1.59121 −0.795603 0.605819i \(-0.792846\pi\)
−0.795603 + 0.605819i \(0.792846\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 24.5054 1.29878
\(357\) 0 0
\(358\) 32.2187 1.70281
\(359\) 24.9725 1.31800 0.659000 0.752143i \(-0.270980\pi\)
0.659000 + 0.752143i \(0.270980\pi\)
\(360\) 0 0
\(361\) −7.52789 −0.396205
\(362\) −47.0835 −2.47465
\(363\) 0 0
\(364\) 35.5052 1.86098
\(365\) 0 0
\(366\) 0 0
\(367\) −15.8179 −0.825686 −0.412843 0.910802i \(-0.635464\pi\)
−0.412843 + 0.910802i \(0.635464\pi\)
\(368\) −13.1057 −0.683181
\(369\) 0 0
\(370\) 0 0
\(371\) −28.9109 −1.50098
\(372\) 0 0
\(373\) −22.6283 −1.17165 −0.585826 0.810437i \(-0.699230\pi\)
−0.585826 + 0.810437i \(0.699230\pi\)
\(374\) −24.1263 −1.24754
\(375\) 0 0
\(376\) 72.0046 3.71335
\(377\) −22.6797 −1.16807
\(378\) 0 0
\(379\) 10.2721 0.527641 0.263821 0.964572i \(-0.415017\pi\)
0.263821 + 0.964572i \(0.415017\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 35.3474 1.80853
\(383\) 6.21463 0.317553 0.158776 0.987315i \(-0.449245\pi\)
0.158776 + 0.987315i \(0.449245\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 33.7871 1.71972
\(387\) 0 0
\(388\) 21.5353 1.09329
\(389\) −27.6414 −1.40147 −0.700737 0.713420i \(-0.747145\pi\)
−0.700737 + 0.713420i \(0.747145\pi\)
\(390\) 0 0
\(391\) 2.64453 0.133740
\(392\) 4.57165 0.230903
\(393\) 0 0
\(394\) 10.4655 0.527246
\(395\) 0 0
\(396\) 0 0
\(397\) −1.07171 −0.0537875 −0.0268938 0.999638i \(-0.508562\pi\)
−0.0268938 + 0.999638i \(0.508562\pi\)
\(398\) 59.6916 2.99207
\(399\) 0 0
\(400\) 0 0
\(401\) −1.49798 −0.0748053 −0.0374027 0.999300i \(-0.511908\pi\)
−0.0374027 + 0.999300i \(0.511908\pi\)
\(402\) 0 0
\(403\) −12.5841 −0.626858
\(404\) −64.6139 −3.21466
\(405\) 0 0
\(406\) −68.0058 −3.37507
\(407\) −18.6413 −0.924014
\(408\) 0 0
\(409\) 20.9373 1.03528 0.517642 0.855597i \(-0.326810\pi\)
0.517642 + 0.855597i \(0.326810\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −31.7944 −1.56640
\(413\) −22.7152 −1.11774
\(414\) 0 0
\(415\) 0 0
\(416\) 43.7657 2.14579
\(417\) 0 0
\(418\) 30.9004 1.51139
\(419\) 18.7564 0.916309 0.458154 0.888873i \(-0.348511\pi\)
0.458154 + 0.888873i \(0.348511\pi\)
\(420\) 0 0
\(421\) 20.6163 1.00478 0.502388 0.864642i \(-0.332455\pi\)
0.502388 + 0.864642i \(0.332455\pi\)
\(422\) 12.9572 0.630744
\(423\) 0 0
\(424\) −92.4261 −4.48861
\(425\) 0 0
\(426\) 0 0
\(427\) 0.723874 0.0350307
\(428\) 69.1289 3.34147
\(429\) 0 0
\(430\) 0 0
\(431\) −27.0155 −1.30129 −0.650646 0.759381i \(-0.725502\pi\)
−0.650646 + 0.759381i \(0.725502\pi\)
\(432\) 0 0
\(433\) 25.2900 1.21536 0.607679 0.794183i \(-0.292101\pi\)
0.607679 + 0.794183i \(0.292101\pi\)
\(434\) −37.7337 −1.81128
\(435\) 0 0
\(436\) −89.9580 −4.30821
\(437\) −3.38705 −0.162025
\(438\) 0 0
\(439\) 34.4110 1.64235 0.821174 0.570679i \(-0.193320\pi\)
0.821174 + 0.570679i \(0.193320\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −17.5482 −0.834683
\(443\) −29.8281 −1.41717 −0.708587 0.705623i \(-0.750667\pi\)
−0.708587 + 0.705623i \(0.750667\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −37.1208 −1.75772
\(447\) 0 0
\(448\) 59.3474 2.80390
\(449\) 2.67456 0.126220 0.0631102 0.998007i \(-0.479898\pi\)
0.0631102 + 0.998007i \(0.479898\pi\)
\(450\) 0 0
\(451\) 4.08506 0.192358
\(452\) 23.0203 1.08278
\(453\) 0 0
\(454\) 78.3848 3.67878
\(455\) 0 0
\(456\) 0 0
\(457\) 30.9037 1.44561 0.722806 0.691051i \(-0.242852\pi\)
0.722806 + 0.691051i \(0.242852\pi\)
\(458\) −25.2843 −1.18146
\(459\) 0 0
\(460\) 0 0
\(461\) 26.6022 1.23899 0.619493 0.785002i \(-0.287338\pi\)
0.619493 + 0.785002i \(0.287338\pi\)
\(462\) 0 0
\(463\) −26.7013 −1.24092 −0.620458 0.784239i \(-0.713053\pi\)
−0.620458 + 0.784239i \(0.713053\pi\)
\(464\) −120.652 −5.60113
\(465\) 0 0
\(466\) −34.1336 −1.58121
\(467\) 35.2503 1.63119 0.815596 0.578622i \(-0.196410\pi\)
0.815596 + 0.578622i \(0.196410\pi\)
\(468\) 0 0
\(469\) 21.0342 0.971267
\(470\) 0 0
\(471\) 0 0
\(472\) −72.6187 −3.34255
\(473\) −10.2462 −0.471121
\(474\) 0 0
\(475\) 0 0
\(476\) −38.1134 −1.74692
\(477\) 0 0
\(478\) −51.6843 −2.36398
\(479\) 39.0705 1.78518 0.892589 0.450871i \(-0.148886\pi\)
0.892589 + 0.450871i \(0.148886\pi\)
\(480\) 0 0
\(481\) −13.5587 −0.618222
\(482\) 45.1815 2.05796
\(483\) 0 0
\(484\) 2.48098 0.112772
\(485\) 0 0
\(486\) 0 0
\(487\) −24.0839 −1.09135 −0.545673 0.837998i \(-0.683726\pi\)
−0.545673 + 0.837998i \(0.683726\pi\)
\(488\) 2.31417 0.104758
\(489\) 0 0
\(490\) 0 0
\(491\) −5.60051 −0.252748 −0.126374 0.991983i \(-0.540334\pi\)
−0.126374 + 0.991983i \(0.540334\pi\)
\(492\) 0 0
\(493\) 24.3458 1.09648
\(494\) 22.4753 1.01121
\(495\) 0 0
\(496\) −66.9450 −3.00592
\(497\) 0.0411819 0.00184726
\(498\) 0 0
\(499\) 9.53319 0.426764 0.213382 0.976969i \(-0.431552\pi\)
0.213382 + 0.976969i \(0.431552\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 61.4431 2.74234
\(503\) 14.0568 0.626762 0.313381 0.949627i \(-0.398538\pi\)
0.313381 + 0.949627i \(0.398538\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −9.12311 −0.405572
\(507\) 0 0
\(508\) 97.0022 4.30378
\(509\) −21.7105 −0.962302 −0.481151 0.876638i \(-0.659781\pi\)
−0.481151 + 0.876638i \(0.659781\pi\)
\(510\) 0 0
\(511\) 15.1838 0.671692
\(512\) 3.01385 0.133194
\(513\) 0 0
\(514\) −63.9783 −2.82196
\(515\) 0 0
\(516\) 0 0
\(517\) 27.8163 1.22336
\(518\) −40.6560 −1.78632
\(519\) 0 0
\(520\) 0 0
\(521\) 8.87689 0.388904 0.194452 0.980912i \(-0.437707\pi\)
0.194452 + 0.980912i \(0.437707\pi\)
\(522\) 0 0
\(523\) 0.0550279 0.00240620 0.00120310 0.999999i \(-0.499617\pi\)
0.00120310 + 0.999999i \(0.499617\pi\)
\(524\) 20.3285 0.888053
\(525\) 0 0
\(526\) 44.6842 1.94833
\(527\) 13.5085 0.588439
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 0 0
\(532\) 48.8147 2.11639
\(533\) 2.97126 0.128699
\(534\) 0 0
\(535\) 0 0
\(536\) 67.2446 2.90453
\(537\) 0 0
\(538\) 22.8275 0.984163
\(539\) 1.76609 0.0760708
\(540\) 0 0
\(541\) 5.99070 0.257560 0.128780 0.991673i \(-0.458894\pi\)
0.128780 + 0.991673i \(0.458894\pi\)
\(542\) −57.3799 −2.46468
\(543\) 0 0
\(544\) −46.9807 −2.01428
\(545\) 0 0
\(546\) 0 0
\(547\) 0.408533 0.0174676 0.00873380 0.999962i \(-0.497220\pi\)
0.00873380 + 0.999962i \(0.497220\pi\)
\(548\) 108.629 4.64042
\(549\) 0 0
\(550\) 0 0
\(551\) −31.1815 −1.32837
\(552\) 0 0
\(553\) −23.7944 −1.01184
\(554\) −59.1539 −2.51321
\(555\) 0 0
\(556\) 66.1099 2.80369
\(557\) −5.46406 −0.231519 −0.115760 0.993277i \(-0.536930\pi\)
−0.115760 + 0.993277i \(0.536930\pi\)
\(558\) 0 0
\(559\) −7.45255 −0.315209
\(560\) 0 0
\(561\) 0 0
\(562\) −53.6066 −2.26126
\(563\) −41.8212 −1.76255 −0.881277 0.472601i \(-0.843315\pi\)
−0.881277 + 0.472601i \(0.843315\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 23.9126 1.00512
\(567\) 0 0
\(568\) 0.131656 0.00552415
\(569\) −39.5127 −1.65646 −0.828230 0.560388i \(-0.810652\pi\)
−0.828230 + 0.560388i \(0.810652\pi\)
\(570\) 0 0
\(571\) −24.4924 −1.02498 −0.512488 0.858694i \(-0.671276\pi\)
−0.512488 + 0.858694i \(0.671276\pi\)
\(572\) 43.8494 1.83344
\(573\) 0 0
\(574\) 8.90939 0.371871
\(575\) 0 0
\(576\) 0 0
\(577\) 36.3382 1.51278 0.756390 0.654121i \(-0.226961\pi\)
0.756390 + 0.654121i \(0.226961\pi\)
\(578\) −26.9527 −1.12108
\(579\) 0 0
\(580\) 0 0
\(581\) −9.65758 −0.400664
\(582\) 0 0
\(583\) −35.7054 −1.47877
\(584\) 48.5415 2.00866
\(585\) 0 0
\(586\) 64.5662 2.66720
\(587\) 5.89358 0.243254 0.121627 0.992576i \(-0.461189\pi\)
0.121627 + 0.992576i \(0.461189\pi\)
\(588\) 0 0
\(589\) −17.3014 −0.712890
\(590\) 0 0
\(591\) 0 0
\(592\) −72.1296 −2.96451
\(593\) −11.0931 −0.455538 −0.227769 0.973715i \(-0.573143\pi\)
−0.227769 + 0.973715i \(0.573143\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −60.3548 −2.47223
\(597\) 0 0
\(598\) −6.63566 −0.271352
\(599\) −40.1864 −1.64197 −0.820986 0.570949i \(-0.806575\pi\)
−0.820986 + 0.570949i \(0.806575\pi\)
\(600\) 0 0
\(601\) 41.1965 1.68044 0.840220 0.542246i \(-0.182426\pi\)
0.840220 + 0.542246i \(0.182426\pi\)
\(602\) −22.3467 −0.910782
\(603\) 0 0
\(604\) −29.3584 −1.19457
\(605\) 0 0
\(606\) 0 0
\(607\) 16.6283 0.674924 0.337462 0.941339i \(-0.390432\pi\)
0.337462 + 0.941339i \(0.390432\pi\)
\(608\) 60.1717 2.44029
\(609\) 0 0
\(610\) 0 0
\(611\) 20.2321 0.818504
\(612\) 0 0
\(613\) −25.5052 −1.03015 −0.515073 0.857146i \(-0.672235\pi\)
−0.515073 + 0.857146i \(0.672235\pi\)
\(614\) −32.4924 −1.31129
\(615\) 0 0
\(616\) 81.4431 3.28143
\(617\) −3.14742 −0.126710 −0.0633552 0.997991i \(-0.520180\pi\)
−0.0633552 + 0.997991i \(0.520180\pi\)
\(618\) 0 0
\(619\) −39.2665 −1.57825 −0.789127 0.614230i \(-0.789467\pi\)
−0.789127 + 0.614230i \(0.789467\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 18.3498 0.735761
\(623\) 12.7889 0.512375
\(624\) 0 0
\(625\) 0 0
\(626\) 17.1992 0.687418
\(627\) 0 0
\(628\) −30.8243 −1.23002
\(629\) 14.5547 0.580333
\(630\) 0 0
\(631\) 18.2916 0.728179 0.364089 0.931364i \(-0.381380\pi\)
0.364089 + 0.931364i \(0.381380\pi\)
\(632\) −76.0689 −3.02586
\(633\) 0 0
\(634\) 45.2819 1.79837
\(635\) 0 0
\(636\) 0 0
\(637\) 1.28456 0.0508960
\(638\) −83.9881 −3.32512
\(639\) 0 0
\(640\) 0 0
\(641\) −28.5304 −1.12688 −0.563441 0.826157i \(-0.690523\pi\)
−0.563441 + 0.826157i \(0.690523\pi\)
\(642\) 0 0
\(643\) 12.2430 0.482815 0.241408 0.970424i \(-0.422391\pi\)
0.241408 + 0.970424i \(0.422391\pi\)
\(644\) −14.4122 −0.567919
\(645\) 0 0
\(646\) −24.1263 −0.949237
\(647\) 3.11947 0.122639 0.0613196 0.998118i \(-0.480469\pi\)
0.0613196 + 0.998118i \(0.480469\pi\)
\(648\) 0 0
\(649\) −28.0536 −1.10120
\(650\) 0 0
\(651\) 0 0
\(652\) −0.244863 −0.00958958
\(653\) −21.7301 −0.850364 −0.425182 0.905108i \(-0.639790\pi\)
−0.425182 + 0.905108i \(0.639790\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 15.8065 0.617141
\(657\) 0 0
\(658\) 60.6665 2.36503
\(659\) 12.2333 0.476541 0.238270 0.971199i \(-0.423420\pi\)
0.238270 + 0.971199i \(0.423420\pi\)
\(660\) 0 0
\(661\) 22.0000 0.855701 0.427850 0.903850i \(-0.359271\pi\)
0.427850 + 0.903850i \(0.359271\pi\)
\(662\) 8.86477 0.344539
\(663\) 0 0
\(664\) −30.8746 −1.19817
\(665\) 0 0
\(666\) 0 0
\(667\) 9.20608 0.356461
\(668\) −11.8040 −0.456711
\(669\) 0 0
\(670\) 0 0
\(671\) 0.893994 0.0345123
\(672\) 0 0
\(673\) −10.7900 −0.415925 −0.207963 0.978137i \(-0.566683\pi\)
−0.207963 + 0.978137i \(0.566683\pi\)
\(674\) 21.2843 0.819839
\(675\) 0 0
\(676\) −36.4223 −1.40086
\(677\) 23.6721 0.909793 0.454896 0.890544i \(-0.349676\pi\)
0.454896 + 0.890544i \(0.349676\pi\)
\(678\) 0 0
\(679\) 11.2388 0.431307
\(680\) 0 0
\(681\) 0 0
\(682\) −46.6016 −1.78447
\(683\) −10.3583 −0.396350 −0.198175 0.980167i \(-0.563501\pi\)
−0.198175 + 0.980167i \(0.563501\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −47.8576 −1.82721
\(687\) 0 0
\(688\) −39.6462 −1.51150
\(689\) −25.9702 −0.989386
\(690\) 0 0
\(691\) 13.5578 0.515763 0.257882 0.966177i \(-0.416976\pi\)
0.257882 + 0.966177i \(0.416976\pi\)
\(692\) 42.1086 1.60073
\(693\) 0 0
\(694\) −52.2610 −1.98380
\(695\) 0 0
\(696\) 0 0
\(697\) −3.18952 −0.120812
\(698\) −89.3347 −3.38137
\(699\) 0 0
\(700\) 0 0
\(701\) 21.3774 0.807415 0.403708 0.914888i \(-0.367721\pi\)
0.403708 + 0.914888i \(0.367721\pi\)
\(702\) 0 0
\(703\) −18.6413 −0.703069
\(704\) 73.2948 2.76240
\(705\) 0 0
\(706\) −80.5257 −3.03063
\(707\) −33.7207 −1.26820
\(708\) 0 0
\(709\) 30.3719 1.14064 0.570320 0.821422i \(-0.306819\pi\)
0.570320 + 0.821422i \(0.306819\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 40.8850 1.53223
\(713\) 5.10809 0.191299
\(714\) 0 0
\(715\) 0 0
\(716\) 62.8588 2.34914
\(717\) 0 0
\(718\) 67.2642 2.51028
\(719\) −8.41851 −0.313958 −0.156979 0.987602i \(-0.550175\pi\)
−0.156979 + 0.987602i \(0.550175\pi\)
\(720\) 0 0
\(721\) −16.5929 −0.617951
\(722\) −20.2766 −0.754615
\(723\) 0 0
\(724\) −91.8600 −3.41395
\(725\) 0 0
\(726\) 0 0
\(727\) −19.7505 −0.732507 −0.366253 0.930515i \(-0.619360\pi\)
−0.366253 + 0.930515i \(0.619360\pi\)
\(728\) 59.2374 2.19548
\(729\) 0 0
\(730\) 0 0
\(731\) 8.00000 0.295891
\(732\) 0 0
\(733\) −19.7280 −0.728670 −0.364335 0.931268i \(-0.618704\pi\)
−0.364335 + 0.931268i \(0.618704\pi\)
\(734\) −42.6058 −1.57261
\(735\) 0 0
\(736\) −17.7652 −0.654835
\(737\) 25.9775 0.956892
\(738\) 0 0
\(739\) −0.180969 −0.00665704 −0.00332852 0.999994i \(-0.501060\pi\)
−0.00332852 + 0.999994i \(0.501060\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −77.8723 −2.85878
\(743\) 6.05023 0.221961 0.110981 0.993823i \(-0.464601\pi\)
0.110981 + 0.993823i \(0.464601\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −60.9500 −2.23154
\(747\) 0 0
\(748\) −47.0705 −1.72107
\(749\) 36.0770 1.31823
\(750\) 0 0
\(751\) −21.5659 −0.786952 −0.393476 0.919335i \(-0.628728\pi\)
−0.393476 + 0.919335i \(0.628728\pi\)
\(752\) 107.631 3.92490
\(753\) 0 0
\(754\) −61.0885 −2.22471
\(755\) 0 0
\(756\) 0 0
\(757\) 24.7798 0.900638 0.450319 0.892868i \(-0.351310\pi\)
0.450319 + 0.892868i \(0.351310\pi\)
\(758\) 27.6681 1.00495
\(759\) 0 0
\(760\) 0 0
\(761\) −2.29916 −0.0833443 −0.0416722 0.999131i \(-0.513269\pi\)
−0.0416722 + 0.999131i \(0.513269\pi\)
\(762\) 0 0
\(763\) −46.9473 −1.69961
\(764\) 68.9629 2.49499
\(765\) 0 0
\(766\) 16.7393 0.604814
\(767\) −20.4047 −0.736770
\(768\) 0 0
\(769\) −10.3692 −0.373923 −0.186961 0.982367i \(-0.559864\pi\)
−0.186961 + 0.982367i \(0.559864\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 65.9187 2.37247
\(773\) 12.7864 0.459895 0.229947 0.973203i \(-0.426145\pi\)
0.229947 + 0.973203i \(0.426145\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 35.9297 1.28980
\(777\) 0 0
\(778\) −74.4528 −2.66926
\(779\) 4.08506 0.146362
\(780\) 0 0
\(781\) 0.0508602 0.00181992
\(782\) 7.12311 0.254722
\(783\) 0 0
\(784\) 6.83361 0.244058
\(785\) 0 0
\(786\) 0 0
\(787\) 34.9239 1.24490 0.622451 0.782659i \(-0.286137\pi\)
0.622451 + 0.782659i \(0.286137\pi\)
\(788\) 20.4183 0.727372
\(789\) 0 0
\(790\) 0 0
\(791\) 12.0138 0.427163
\(792\) 0 0
\(793\) 0.650244 0.0230908
\(794\) −2.88667 −0.102444
\(795\) 0 0
\(796\) 116.459 4.12776
\(797\) 4.87844 0.172803 0.0864016 0.996260i \(-0.472463\pi\)
0.0864016 + 0.996260i \(0.472463\pi\)
\(798\) 0 0
\(799\) −21.7183 −0.768339
\(800\) 0 0
\(801\) 0 0
\(802\) −4.03483 −0.142475
\(803\) 18.7522 0.661751
\(804\) 0 0
\(805\) 0 0
\(806\) −33.8956 −1.19392
\(807\) 0 0
\(808\) −107.803 −3.79248
\(809\) −18.1498 −0.638112 −0.319056 0.947736i \(-0.603366\pi\)
−0.319056 + 0.947736i \(0.603366\pi\)
\(810\) 0 0
\(811\) 17.8019 0.625110 0.312555 0.949900i \(-0.398815\pi\)
0.312555 + 0.949900i \(0.398815\pi\)
\(812\) −132.680 −4.65614
\(813\) 0 0
\(814\) −50.2107 −1.75989
\(815\) 0 0
\(816\) 0 0
\(817\) −10.2462 −0.358470
\(818\) 56.3952 1.97181
\(819\) 0 0
\(820\) 0 0
\(821\) −32.9701 −1.15066 −0.575332 0.817920i \(-0.695127\pi\)
−0.575332 + 0.817920i \(0.695127\pi\)
\(822\) 0 0
\(823\) 39.5819 1.37974 0.689869 0.723935i \(-0.257668\pi\)
0.689869 + 0.723935i \(0.257668\pi\)
\(824\) −53.0462 −1.84795
\(825\) 0 0
\(826\) −61.1839 −2.12886
\(827\) −1.50849 −0.0524554 −0.0262277 0.999656i \(-0.508349\pi\)
−0.0262277 + 0.999656i \(0.508349\pi\)
\(828\) 0 0
\(829\) −7.66718 −0.266292 −0.133146 0.991096i \(-0.542508\pi\)
−0.133146 + 0.991096i \(0.542508\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 53.3108 1.84822
\(833\) −1.37892 −0.0477767
\(834\) 0 0
\(835\) 0 0
\(836\) 60.2868 2.08506
\(837\) 0 0
\(838\) 50.5207 1.74521
\(839\) 8.53602 0.294696 0.147348 0.989085i \(-0.452926\pi\)
0.147348 + 0.989085i \(0.452926\pi\)
\(840\) 0 0
\(841\) 55.7519 1.92248
\(842\) 55.5305 1.91371
\(843\) 0 0
\(844\) 25.2795 0.870155
\(845\) 0 0
\(846\) 0 0
\(847\) 1.29477 0.0444889
\(848\) −138.157 −4.74432
\(849\) 0 0
\(850\) 0 0
\(851\) 5.50369 0.188664
\(852\) 0 0
\(853\) 48.0665 1.64577 0.822883 0.568211i \(-0.192364\pi\)
0.822883 + 0.568211i \(0.192364\pi\)
\(854\) 1.94977 0.0667199
\(855\) 0 0
\(856\) 115.335 3.94209
\(857\) 29.4313 1.00535 0.502677 0.864474i \(-0.332348\pi\)
0.502677 + 0.864474i \(0.332348\pi\)
\(858\) 0 0
\(859\) −33.5308 −1.14406 −0.572029 0.820234i \(-0.693843\pi\)
−0.572029 + 0.820234i \(0.693843\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −72.7670 −2.47845
\(863\) 6.79483 0.231299 0.115649 0.993290i \(-0.463105\pi\)
0.115649 + 0.993290i \(0.463105\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 68.1192 2.31478
\(867\) 0 0
\(868\) −73.6186 −2.49878
\(869\) −29.3864 −0.996866
\(870\) 0 0
\(871\) 18.8946 0.640220
\(872\) −150.087 −5.08259
\(873\) 0 0
\(874\) −9.12311 −0.308594
\(875\) 0 0
\(876\) 0 0
\(877\) 21.9904 0.742563 0.371281 0.928520i \(-0.378918\pi\)
0.371281 + 0.928520i \(0.378918\pi\)
\(878\) 92.6869 3.12803
\(879\) 0 0
\(880\) 0 0
\(881\) −3.66242 −0.123390 −0.0616951 0.998095i \(-0.519651\pi\)
−0.0616951 + 0.998095i \(0.519651\pi\)
\(882\) 0 0
\(883\) −10.6640 −0.358874 −0.179437 0.983769i \(-0.557428\pi\)
−0.179437 + 0.983769i \(0.557428\pi\)
\(884\) −34.2366 −1.15150
\(885\) 0 0
\(886\) −80.3427 −2.69916
\(887\) 0.481294 0.0161603 0.00808014 0.999967i \(-0.497428\pi\)
0.00808014 + 0.999967i \(0.497428\pi\)
\(888\) 0 0
\(889\) 50.6235 1.69786
\(890\) 0 0
\(891\) 0 0
\(892\) −72.4228 −2.42489
\(893\) 27.8163 0.930837
\(894\) 0 0
\(895\) 0 0
\(896\) 62.4107 2.08499
\(897\) 0 0
\(898\) 7.20400 0.240401
\(899\) 47.0255 1.56839
\(900\) 0 0
\(901\) 27.8779 0.928748
\(902\) 11.0032 0.366367
\(903\) 0 0
\(904\) 38.4074 1.27741
\(905\) 0 0
\(906\) 0 0
\(907\) 50.3078 1.67044 0.835222 0.549913i \(-0.185339\pi\)
0.835222 + 0.549913i \(0.185339\pi\)
\(908\) 152.929 5.07513
\(909\) 0 0
\(910\) 0 0
\(911\) 39.5103 1.30903 0.654517 0.756047i \(-0.272872\pi\)
0.654517 + 0.756047i \(0.272872\pi\)
\(912\) 0 0
\(913\) −11.9272 −0.394734
\(914\) 83.2398 2.75333
\(915\) 0 0
\(916\) −49.3297 −1.62990
\(917\) 10.6090 0.350341
\(918\) 0 0
\(919\) −10.0307 −0.330881 −0.165441 0.986220i \(-0.552905\pi\)
−0.165441 + 0.986220i \(0.552905\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 71.6536 2.35979
\(923\) 0.0369930 0.00121764
\(924\) 0 0
\(925\) 0 0
\(926\) −71.9207 −2.36346
\(927\) 0 0
\(928\) −163.548 −5.36873
\(929\) −5.83676 −0.191498 −0.0957490 0.995406i \(-0.530525\pi\)
−0.0957490 + 0.995406i \(0.530525\pi\)
\(930\) 0 0
\(931\) 1.76609 0.0578812
\(932\) −66.5949 −2.18139
\(933\) 0 0
\(934\) 94.9477 3.10678
\(935\) 0 0
\(936\) 0 0
\(937\) −37.5175 −1.22564 −0.612822 0.790221i \(-0.709966\pi\)
−0.612822 + 0.790221i \(0.709966\pi\)
\(938\) 56.6560 1.84989
\(939\) 0 0
\(940\) 0 0
\(941\) −45.6189 −1.48713 −0.743566 0.668662i \(-0.766867\pi\)
−0.743566 + 0.668662i \(0.766867\pi\)
\(942\) 0 0
\(943\) −1.20608 −0.0392754
\(944\) −108.549 −3.53297
\(945\) 0 0
\(946\) −27.5984 −0.897302
\(947\) −17.3357 −0.563333 −0.281667 0.959512i \(-0.590887\pi\)
−0.281667 + 0.959512i \(0.590887\pi\)
\(948\) 0 0
\(949\) 13.6394 0.442752
\(950\) 0 0
\(951\) 0 0
\(952\) −63.5888 −2.06093
\(953\) 14.2706 0.462269 0.231135 0.972922i \(-0.425756\pi\)
0.231135 + 0.972922i \(0.425756\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −100.836 −3.26128
\(957\) 0 0
\(958\) 105.237 3.40007
\(959\) 56.6915 1.83066
\(960\) 0 0
\(961\) −4.90742 −0.158304
\(962\) −36.5206 −1.17747
\(963\) 0 0
\(964\) 88.1492 2.83909
\(965\) 0 0
\(966\) 0 0
\(967\) 4.07663 0.131096 0.0655478 0.997849i \(-0.479121\pi\)
0.0655478 + 0.997849i \(0.479121\pi\)
\(968\) 4.13929 0.133042
\(969\) 0 0
\(970\) 0 0
\(971\) 20.2988 0.651419 0.325709 0.945470i \(-0.394397\pi\)
0.325709 + 0.945470i \(0.394397\pi\)
\(972\) 0 0
\(973\) 34.5015 1.10607
\(974\) −64.8706 −2.07859
\(975\) 0 0
\(976\) 3.45918 0.110726
\(977\) −40.3782 −1.29181 −0.645907 0.763416i \(-0.723521\pi\)
−0.645907 + 0.763416i \(0.723521\pi\)
\(978\) 0 0
\(979\) 15.7944 0.504792
\(980\) 0 0
\(981\) 0 0
\(982\) −15.0851 −0.481386
\(983\) −53.1628 −1.69563 −0.847815 0.530292i \(-0.822082\pi\)
−0.847815 + 0.530292i \(0.822082\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 65.5759 2.08836
\(987\) 0 0
\(988\) 43.8494 1.39504
\(989\) 3.02511 0.0961930
\(990\) 0 0
\(991\) 36.6746 1.16501 0.582503 0.812829i \(-0.302073\pi\)
0.582503 + 0.812829i \(0.302073\pi\)
\(992\) −90.7464 −2.88120
\(993\) 0 0
\(994\) 0.110925 0.00351831
\(995\) 0 0
\(996\) 0 0
\(997\) 11.1189 0.352140 0.176070 0.984378i \(-0.443661\pi\)
0.176070 + 0.984378i \(0.443661\pi\)
\(998\) 25.6779 0.812819
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5175.2.a.bx.1.4 4
3.2 odd 2 575.2.a.h.1.1 4
5.4 even 2 1035.2.a.o.1.1 4
12.11 even 2 9200.2.a.cl.1.1 4
15.2 even 4 575.2.b.e.24.1 8
15.8 even 4 575.2.b.e.24.8 8
15.14 odd 2 115.2.a.c.1.4 4
60.59 even 2 1840.2.a.u.1.4 4
105.104 even 2 5635.2.a.v.1.4 4
120.29 odd 2 7360.2.a.cj.1.3 4
120.59 even 2 7360.2.a.cg.1.2 4
345.344 even 2 2645.2.a.m.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
115.2.a.c.1.4 4 15.14 odd 2
575.2.a.h.1.1 4 3.2 odd 2
575.2.b.e.24.1 8 15.2 even 4
575.2.b.e.24.8 8 15.8 even 4
1035.2.a.o.1.1 4 5.4 even 2
1840.2.a.u.1.4 4 60.59 even 2
2645.2.a.m.1.4 4 345.344 even 2
5175.2.a.bx.1.4 4 1.1 even 1 trivial
5635.2.a.v.1.4 4 105.104 even 2
7360.2.a.cg.1.2 4 120.59 even 2
7360.2.a.cj.1.3 4 120.29 odd 2
9200.2.a.cl.1.1 4 12.11 even 2