Newspace parameters
| Level: | \( N \) | \(=\) | \( 513 = 3^{3} \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 513.bp (of order \(18\), degree \(6\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(4.09632562369\) |
| Analytic rank: | \(0\) |
| Dimension: | \(36\) |
| Relative dimension: | \(6\) over \(\Q(\zeta_{18})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 53.1 | −2.19036 | − | 0.797227i | 0 | 2.63004 | + | 2.20686i | −1.71339 | − | 2.04193i | 0 | −0.360137 | + | 0.623776i | −1.67043 | − | 2.89327i | 0 | 2.12505 | + | 5.83853i | ||||||
| 53.2 | −2.08756 | − | 0.759809i | 0 | 2.24850 | + | 1.88672i | 2.42252 | + | 2.88705i | 0 | 2.43674 | − | 4.22057i | −1.03880 | − | 1.79926i | 0 | −2.86355 | − | 7.86754i | ||||||
| 53.3 | −0.929686 | − | 0.338378i | 0 | −0.782273 | − | 0.656405i | −0.958434 | − | 1.14222i | 0 | −0.718167 | + | 1.24390i | 1.49451 | + | 2.58856i | 0 | 0.504541 | + | 1.38622i | ||||||
| 53.4 | 0.929686 | + | 0.338378i | 0 | −0.782273 | − | 0.656405i | 0.958434 | + | 1.14222i | 0 | −0.718167 | + | 1.24390i | −1.49451 | − | 2.58856i | 0 | 0.504541 | + | 1.38622i | ||||||
| 53.5 | 2.08756 | + | 0.759809i | 0 | 2.24850 | + | 1.88672i | −2.42252 | − | 2.88705i | 0 | 2.43674 | − | 4.22057i | 1.03880 | + | 1.79926i | 0 | −2.86355 | − | 7.86754i | ||||||
| 53.6 | 2.19036 | + | 0.797227i | 0 | 2.63004 | + | 2.20686i | 1.71339 | + | 2.04193i | 0 | −0.360137 | + | 0.623776i | 1.67043 | + | 2.89327i | 0 | 2.12505 | + | 5.83853i | ||||||
| 242.1 | −2.19036 | + | 0.797227i | 0 | 2.63004 | − | 2.20686i | −1.71339 | + | 2.04193i | 0 | −0.360137 | − | 0.623776i | −1.67043 | + | 2.89327i | 0 | 2.12505 | − | 5.83853i | ||||||
| 242.2 | −2.08756 | + | 0.759809i | 0 | 2.24850 | − | 1.88672i | 2.42252 | − | 2.88705i | 0 | 2.43674 | + | 4.22057i | −1.03880 | + | 1.79926i | 0 | −2.86355 | + | 7.86754i | ||||||
| 242.3 | −0.929686 | + | 0.338378i | 0 | −0.782273 | + | 0.656405i | −0.958434 | + | 1.14222i | 0 | −0.718167 | − | 1.24390i | 1.49451 | − | 2.58856i | 0 | 0.504541 | − | 1.38622i | ||||||
| 242.4 | 0.929686 | − | 0.338378i | 0 | −0.782273 | + | 0.656405i | 0.958434 | − | 1.14222i | 0 | −0.718167 | − | 1.24390i | −1.49451 | + | 2.58856i | 0 | 0.504541 | − | 1.38622i | ||||||
| 242.5 | 2.08756 | − | 0.759809i | 0 | 2.24850 | − | 1.88672i | −2.42252 | + | 2.88705i | 0 | 2.43674 | + | 4.22057i | 1.03880 | − | 1.79926i | 0 | −2.86355 | + | 7.86754i | ||||||
| 242.6 | 2.19036 | − | 0.797227i | 0 | 2.63004 | − | 2.20686i | 1.71339 | − | 2.04193i | 0 | −0.360137 | − | 0.623776i | 1.67043 | − | 2.89327i | 0 | 2.12505 | − | 5.83853i | ||||||
| 269.1 | −1.88303 | − | 1.58005i | 0 | 0.701950 | + | 3.98095i | −0.429081 | − | 0.0756585i | 0 | 0.234271 | + | 0.405769i | 2.51019 | − | 4.34778i | 0 | 0.688428 | + | 0.820436i | ||||||
| 269.2 | −1.19186 | − | 1.00009i | 0 | 0.0730565 | + | 0.414324i | 3.22642 | + | 0.568905i | 0 | −0.546546 | − | 0.946645i | −1.22858 | + | 2.12796i | 0 | −3.27649 | − | 3.90477i | ||||||
| 269.3 | −0.621173 | − | 0.521226i | 0 | −0.233117 | − | 1.32207i | −3.32859 | − | 0.586921i | 0 | 1.59926 | + | 2.77001i | −1.35518 | + | 2.34723i | 0 | 1.76171 | + | 2.09953i | ||||||
| 269.4 | 0.621173 | + | 0.521226i | 0 | −0.233117 | − | 1.32207i | 3.32859 | + | 0.586921i | 0 | 1.59926 | + | 2.77001i | 1.35518 | − | 2.34723i | 0 | 1.76171 | + | 2.09953i | ||||||
| 269.5 | 1.19186 | + | 1.00009i | 0 | 0.0730565 | + | 0.414324i | −3.22642 | − | 0.568905i | 0 | −0.546546 | − | 0.946645i | 1.22858 | − | 2.12796i | 0 | −3.27649 | − | 3.90477i | ||||||
| 269.6 | 1.88303 | + | 1.58005i | 0 | 0.701950 | + | 3.98095i | 0.429081 | + | 0.0756585i | 0 | 0.234271 | + | 0.405769i | −2.51019 | + | 4.34778i | 0 | 0.688428 | + | 0.820436i | ||||||
| 431.1 | −1.88303 | + | 1.58005i | 0 | 0.701950 | − | 3.98095i | −0.429081 | + | 0.0756585i | 0 | 0.234271 | − | 0.405769i | 2.51019 | + | 4.34778i | 0 | 0.688428 | − | 0.820436i | ||||||
| 431.2 | −1.19186 | + | 1.00009i | 0 | 0.0730565 | − | 0.414324i | 3.22642 | − | 0.568905i | 0 | −0.546546 | + | 0.946645i | −1.22858 | − | 2.12796i | 0 | −3.27649 | + | 3.90477i | ||||||
| See all 36 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 3.b | odd | 2 | 1 | inner |
| 19.f | odd | 18 | 1 | inner |
| 57.j | even | 18 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 513.2.bp.b | ✓ | 36 |
| 3.b | odd | 2 | 1 | inner | 513.2.bp.b | ✓ | 36 |
| 19.f | odd | 18 | 1 | inner | 513.2.bp.b | ✓ | 36 |
| 57.j | even | 18 | 1 | inner | 513.2.bp.b | ✓ | 36 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 513.2.bp.b | ✓ | 36 | 1.a | even | 1 | 1 | trivial |
| 513.2.bp.b | ✓ | 36 | 3.b | odd | 2 | 1 | inner |
| 513.2.bp.b | ✓ | 36 | 19.f | odd | 18 | 1 | inner |
| 513.2.bp.b | ✓ | 36 | 57.j | even | 18 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{36} + 3 T_{2}^{34} - 21 T_{2}^{32} + 271 T_{2}^{30} + 1074 T_{2}^{28} - 8514 T_{2}^{26} + \cdots + 97594641 \)
acting on \(S_{2}^{\mathrm{new}}(513, [\chi])\).