Properties

Label 513.2.a.i.1.3
Level $513$
Weight $2$
Character 513.1
Self dual yes
Analytic conductor $4.096$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [513,2,Mod(1,513)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(513, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("513.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.09632562369\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.29952.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 8x^{2} + 13 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.50597\) of defining polynomial
Character \(\chi\) \(=\) 513.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.50597 q^{2} +0.267949 q^{4} +4.11439 q^{5} +1.26795 q^{7} -2.60842 q^{8} +6.19615 q^{10} +2.60842 q^{11} -3.46410 q^{13} +1.90949 q^{14} -4.46410 q^{16} -1.00000 q^{19} +1.10245 q^{20} +3.92820 q^{22} -1.10245 q^{23} +11.9282 q^{25} -5.21684 q^{26} +0.339746 q^{28} -8.63230 q^{29} +10.6603 q^{31} -1.50597 q^{32} +5.21684 q^{35} +4.19615 q^{37} -1.50597 q^{38} -10.7321 q^{40} -3.71087 q^{41} -2.73205 q^{43} +0.698924 q^{44} -1.66025 q^{46} -4.51791 q^{47} -5.39230 q^{49} +17.9635 q^{50} -0.928203 q^{52} -4.51791 q^{53} +10.7321 q^{55} -3.30734 q^{56} -13.0000 q^{58} -7.12633 q^{59} -7.19615 q^{61} +16.0540 q^{62} +6.66025 q^{64} -14.2527 q^{65} -5.73205 q^{67} +7.85641 q^{70} +14.2527 q^{71} +16.1244 q^{73} +6.31928 q^{74} -0.267949 q^{76} +3.30734 q^{77} -9.00000 q^{79} -18.3671 q^{80} -5.58846 q^{82} -7.52986 q^{83} -4.11439 q^{86} -6.80385 q^{88} -16.0540 q^{89} -4.39230 q^{91} -0.295400 q^{92} -6.80385 q^{94} -4.11439 q^{95} -7.66025 q^{97} -8.12066 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{4} + 12 q^{7} + 4 q^{10} - 4 q^{16} - 4 q^{19} - 12 q^{22} + 20 q^{25} + 36 q^{28} + 8 q^{31} - 4 q^{37} - 36 q^{40} - 4 q^{43} + 28 q^{46} + 20 q^{49} + 24 q^{52} + 36 q^{55} - 52 q^{58} - 8 q^{61}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.50597 1.06488 0.532441 0.846467i \(-0.321275\pi\)
0.532441 + 0.846467i \(0.321275\pi\)
\(3\) 0 0
\(4\) 0.267949 0.133975
\(5\) 4.11439 1.84001 0.920006 0.391905i \(-0.128184\pi\)
0.920006 + 0.391905i \(0.128184\pi\)
\(6\) 0 0
\(7\) 1.26795 0.479240 0.239620 0.970867i \(-0.422977\pi\)
0.239620 + 0.970867i \(0.422977\pi\)
\(8\) −2.60842 −0.922215
\(9\) 0 0
\(10\) 6.19615 1.95940
\(11\) 2.60842 0.786468 0.393234 0.919438i \(-0.371356\pi\)
0.393234 + 0.919438i \(0.371356\pi\)
\(12\) 0 0
\(13\) −3.46410 −0.960769 −0.480384 0.877058i \(-0.659503\pi\)
−0.480384 + 0.877058i \(0.659503\pi\)
\(14\) 1.90949 0.510334
\(15\) 0 0
\(16\) −4.46410 −1.11603
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 1.10245 0.246515
\(21\) 0 0
\(22\) 3.92820 0.837496
\(23\) −1.10245 −0.229876 −0.114938 0.993373i \(-0.536667\pi\)
−0.114938 + 0.993373i \(0.536667\pi\)
\(24\) 0 0
\(25\) 11.9282 2.38564
\(26\) −5.21684 −1.02311
\(27\) 0 0
\(28\) 0.339746 0.0642060
\(29\) −8.63230 −1.60298 −0.801489 0.598009i \(-0.795959\pi\)
−0.801489 + 0.598009i \(0.795959\pi\)
\(30\) 0 0
\(31\) 10.6603 1.91464 0.957319 0.289033i \(-0.0933338\pi\)
0.957319 + 0.289033i \(0.0933338\pi\)
\(32\) −1.50597 −0.266221
\(33\) 0 0
\(34\) 0 0
\(35\) 5.21684 0.881806
\(36\) 0 0
\(37\) 4.19615 0.689843 0.344922 0.938631i \(-0.387905\pi\)
0.344922 + 0.938631i \(0.387905\pi\)
\(38\) −1.50597 −0.244301
\(39\) 0 0
\(40\) −10.7321 −1.69689
\(41\) −3.71087 −0.579540 −0.289770 0.957096i \(-0.593579\pi\)
−0.289770 + 0.957096i \(0.593579\pi\)
\(42\) 0 0
\(43\) −2.73205 −0.416634 −0.208317 0.978061i \(-0.566799\pi\)
−0.208317 + 0.978061i \(0.566799\pi\)
\(44\) 0.698924 0.105367
\(45\) 0 0
\(46\) −1.66025 −0.244791
\(47\) −4.51791 −0.659005 −0.329503 0.944155i \(-0.606881\pi\)
−0.329503 + 0.944155i \(0.606881\pi\)
\(48\) 0 0
\(49\) −5.39230 −0.770329
\(50\) 17.9635 2.54043
\(51\) 0 0
\(52\) −0.928203 −0.128719
\(53\) −4.51791 −0.620583 −0.310292 0.950641i \(-0.600427\pi\)
−0.310292 + 0.950641i \(0.600427\pi\)
\(54\) 0 0
\(55\) 10.7321 1.44711
\(56\) −3.30734 −0.441962
\(57\) 0 0
\(58\) −13.0000 −1.70698
\(59\) −7.12633 −0.927769 −0.463885 0.885896i \(-0.653545\pi\)
−0.463885 + 0.885896i \(0.653545\pi\)
\(60\) 0 0
\(61\) −7.19615 −0.921373 −0.460686 0.887563i \(-0.652397\pi\)
−0.460686 + 0.887563i \(0.652397\pi\)
\(62\) 16.0540 2.03886
\(63\) 0 0
\(64\) 6.66025 0.832532
\(65\) −14.2527 −1.76783
\(66\) 0 0
\(67\) −5.73205 −0.700281 −0.350141 0.936697i \(-0.613866\pi\)
−0.350141 + 0.936697i \(0.613866\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 7.85641 0.939020
\(71\) 14.2527 1.69148 0.845740 0.533595i \(-0.179159\pi\)
0.845740 + 0.533595i \(0.179159\pi\)
\(72\) 0 0
\(73\) 16.1244 1.88721 0.943607 0.331069i \(-0.107409\pi\)
0.943607 + 0.331069i \(0.107409\pi\)
\(74\) 6.31928 0.734602
\(75\) 0 0
\(76\) −0.267949 −0.0307359
\(77\) 3.30734 0.376907
\(78\) 0 0
\(79\) −9.00000 −1.01258 −0.506290 0.862364i \(-0.668983\pi\)
−0.506290 + 0.862364i \(0.668983\pi\)
\(80\) −18.3671 −2.05350
\(81\) 0 0
\(82\) −5.58846 −0.617142
\(83\) −7.52986 −0.826509 −0.413255 0.910616i \(-0.635608\pi\)
−0.413255 + 0.910616i \(0.635608\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.11439 −0.443666
\(87\) 0 0
\(88\) −6.80385 −0.725293
\(89\) −16.0540 −1.70172 −0.850862 0.525389i \(-0.823920\pi\)
−0.850862 + 0.525389i \(0.823920\pi\)
\(90\) 0 0
\(91\) −4.39230 −0.460439
\(92\) −0.295400 −0.0307976
\(93\) 0 0
\(94\) −6.80385 −0.701763
\(95\) −4.11439 −0.422127
\(96\) 0 0
\(97\) −7.66025 −0.777781 −0.388890 0.921284i \(-0.627142\pi\)
−0.388890 + 0.921284i \(0.627142\pi\)
\(98\) −8.12066 −0.820310
\(99\) 0 0
\(100\) 3.19615 0.319615
\(101\) −9.33123 −0.928492 −0.464246 0.885706i \(-0.653675\pi\)
−0.464246 + 0.885706i \(0.653675\pi\)
\(102\) 0 0
\(103\) 4.53590 0.446935 0.223468 0.974711i \(-0.428262\pi\)
0.223468 + 0.974711i \(0.428262\pi\)
\(104\) 9.03583 0.886036
\(105\) 0 0
\(106\) −6.80385 −0.660848
\(107\) 13.1502 1.27128 0.635640 0.771986i \(-0.280736\pi\)
0.635640 + 0.771986i \(0.280736\pi\)
\(108\) 0 0
\(109\) −8.73205 −0.836379 −0.418189 0.908360i \(-0.637335\pi\)
−0.418189 + 0.908360i \(0.637335\pi\)
\(110\) 16.1622 1.54100
\(111\) 0 0
\(112\) −5.66025 −0.534844
\(113\) −6.42741 −0.604640 −0.302320 0.953207i \(-0.597761\pi\)
−0.302320 + 0.953207i \(0.597761\pi\)
\(114\) 0 0
\(115\) −4.53590 −0.422975
\(116\) −2.31302 −0.214758
\(117\) 0 0
\(118\) −10.7321 −0.987965
\(119\) 0 0
\(120\) 0 0
\(121\) −4.19615 −0.381468
\(122\) −10.8372 −0.981154
\(123\) 0 0
\(124\) 2.85641 0.256513
\(125\) 28.5053 2.54959
\(126\) 0 0
\(127\) 10.9282 0.969721 0.484861 0.874591i \(-0.338870\pi\)
0.484861 + 0.874591i \(0.338870\pi\)
\(128\) 13.0421 1.15277
\(129\) 0 0
\(130\) −21.4641 −1.88253
\(131\) 4.92144 0.429988 0.214994 0.976615i \(-0.431027\pi\)
0.214994 + 0.976615i \(0.431027\pi\)
\(132\) 0 0
\(133\) −1.26795 −0.109945
\(134\) −8.63230 −0.745717
\(135\) 0 0
\(136\) 0 0
\(137\) 14.2527 1.21769 0.608844 0.793290i \(-0.291634\pi\)
0.608844 + 0.793290i \(0.291634\pi\)
\(138\) 0 0
\(139\) 10.0000 0.848189 0.424094 0.905618i \(-0.360592\pi\)
0.424094 + 0.905618i \(0.360592\pi\)
\(140\) 1.39785 0.118140
\(141\) 0 0
\(142\) 21.4641 1.80123
\(143\) −9.03583 −0.755614
\(144\) 0 0
\(145\) −35.5167 −2.94950
\(146\) 24.2828 2.00966
\(147\) 0 0
\(148\) 1.12436 0.0924215
\(149\) 9.03583 0.740244 0.370122 0.928983i \(-0.379316\pi\)
0.370122 + 0.928983i \(0.379316\pi\)
\(150\) 0 0
\(151\) 7.00000 0.569652 0.284826 0.958579i \(-0.408064\pi\)
0.284826 + 0.958579i \(0.408064\pi\)
\(152\) 2.60842 0.211571
\(153\) 0 0
\(154\) 4.98076 0.401361
\(155\) 43.8604 3.52296
\(156\) 0 0
\(157\) 19.5885 1.56333 0.781665 0.623699i \(-0.214371\pi\)
0.781665 + 0.623699i \(0.214371\pi\)
\(158\) −13.5537 −1.07828
\(159\) 0 0
\(160\) −6.19615 −0.489849
\(161\) −1.39785 −0.110166
\(162\) 0 0
\(163\) 24.7321 1.93716 0.968582 0.248695i \(-0.0800017\pi\)
0.968582 + 0.248695i \(0.0800017\pi\)
\(164\) −0.994324 −0.0776436
\(165\) 0 0
\(166\) −11.3397 −0.880135
\(167\) −19.4695 −1.50660 −0.753298 0.657680i \(-0.771538\pi\)
−0.753298 + 0.657680i \(0.771538\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) −0.732051 −0.0558184
\(173\) −6.72281 −0.511126 −0.255563 0.966792i \(-0.582261\pi\)
−0.255563 + 0.966792i \(0.582261\pi\)
\(174\) 0 0
\(175\) 15.1244 1.14329
\(176\) −11.6442 −0.877718
\(177\) 0 0
\(178\) −24.1769 −1.81214
\(179\) 6.31928 0.472326 0.236163 0.971714i \(-0.424110\pi\)
0.236163 + 0.971714i \(0.424110\pi\)
\(180\) 0 0
\(181\) −21.6603 −1.60999 −0.804997 0.593279i \(-0.797833\pi\)
−0.804997 + 0.593279i \(0.797833\pi\)
\(182\) −6.61468 −0.490313
\(183\) 0 0
\(184\) 2.87564 0.211995
\(185\) 17.2646 1.26932
\(186\) 0 0
\(187\) 0 0
\(188\) −1.21057 −0.0882900
\(189\) 0 0
\(190\) −6.19615 −0.449516
\(191\) 7.82526 0.566216 0.283108 0.959088i \(-0.408635\pi\)
0.283108 + 0.959088i \(0.408635\pi\)
\(192\) 0 0
\(193\) 10.0000 0.719816 0.359908 0.932988i \(-0.382808\pi\)
0.359908 + 0.932988i \(0.382808\pi\)
\(194\) −11.5361 −0.828245
\(195\) 0 0
\(196\) −1.44486 −0.103205
\(197\) −22.4814 −1.60174 −0.800868 0.598841i \(-0.795628\pi\)
−0.800868 + 0.598841i \(0.795628\pi\)
\(198\) 0 0
\(199\) 19.4641 1.37977 0.689887 0.723917i \(-0.257660\pi\)
0.689887 + 0.723917i \(0.257660\pi\)
\(200\) −31.1137 −2.20007
\(201\) 0 0
\(202\) −14.0526 −0.988735
\(203\) −10.9453 −0.768211
\(204\) 0 0
\(205\) −15.2679 −1.06636
\(206\) 6.83093 0.475934
\(207\) 0 0
\(208\) 15.4641 1.07224
\(209\) −2.60842 −0.180428
\(210\) 0 0
\(211\) −10.1244 −0.696989 −0.348495 0.937311i \(-0.613307\pi\)
−0.348495 + 0.937311i \(0.613307\pi\)
\(212\) −1.21057 −0.0831424
\(213\) 0 0
\(214\) 19.8038 1.35376
\(215\) −11.2407 −0.766611
\(216\) 0 0
\(217\) 13.5167 0.917571
\(218\) −13.1502 −0.890645
\(219\) 0 0
\(220\) 2.87564 0.193876
\(221\) 0 0
\(222\) 0 0
\(223\) 15.5359 1.04036 0.520180 0.854056i \(-0.325865\pi\)
0.520180 + 0.854056i \(0.325865\pi\)
\(224\) −1.90949 −0.127583
\(225\) 0 0
\(226\) −9.67949 −0.643870
\(227\) 5.21684 0.346254 0.173127 0.984900i \(-0.444613\pi\)
0.173127 + 0.984900i \(0.444613\pi\)
\(228\) 0 0
\(229\) 20.3205 1.34282 0.671408 0.741087i \(-0.265690\pi\)
0.671408 + 0.741087i \(0.265690\pi\)
\(230\) −6.83093 −0.450418
\(231\) 0 0
\(232\) 22.5167 1.47829
\(233\) 9.33123 0.611309 0.305655 0.952142i \(-0.401125\pi\)
0.305655 + 0.952142i \(0.401125\pi\)
\(234\) 0 0
\(235\) −18.5885 −1.21258
\(236\) −1.90949 −0.124298
\(237\) 0 0
\(238\) 0 0
\(239\) −0.698924 −0.0452096 −0.0226048 0.999744i \(-0.507196\pi\)
−0.0226048 + 0.999744i \(0.507196\pi\)
\(240\) 0 0
\(241\) −2.19615 −0.141467 −0.0707333 0.997495i \(-0.522534\pi\)
−0.0707333 + 0.997495i \(0.522534\pi\)
\(242\) −6.31928 −0.406219
\(243\) 0 0
\(244\) −1.92820 −0.123441
\(245\) −22.1860 −1.41741
\(246\) 0 0
\(247\) 3.46410 0.220416
\(248\) −27.8064 −1.76571
\(249\) 0 0
\(250\) 42.9282 2.71502
\(251\) 7.12633 0.449810 0.224905 0.974381i \(-0.427793\pi\)
0.224905 + 0.974381i \(0.427793\pi\)
\(252\) 0 0
\(253\) −2.87564 −0.180790
\(254\) 16.4576 1.03264
\(255\) 0 0
\(256\) 6.32051 0.395032
\(257\) 15.3551 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(258\) 0 0
\(259\) 5.32051 0.330600
\(260\) −3.81899 −0.236844
\(261\) 0 0
\(262\) 7.41154 0.457887
\(263\) −27.2948 −1.68307 −0.841533 0.540205i \(-0.818347\pi\)
−0.841533 + 0.540205i \(0.818347\pi\)
\(264\) 0 0
\(265\) −18.5885 −1.14188
\(266\) −1.90949 −0.117079
\(267\) 0 0
\(268\) −1.53590 −0.0938199
\(269\) 17.5600 1.07065 0.535326 0.844645i \(-0.320189\pi\)
0.535326 + 0.844645i \(0.320189\pi\)
\(270\) 0 0
\(271\) 17.6603 1.07278 0.536392 0.843969i \(-0.319787\pi\)
0.536392 + 0.843969i \(0.319787\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 21.4641 1.29669
\(275\) 31.1137 1.87623
\(276\) 0 0
\(277\) −0.607695 −0.0365129 −0.0182564 0.999833i \(-0.505812\pi\)
−0.0182564 + 0.999833i \(0.505812\pi\)
\(278\) 15.0597 0.903221
\(279\) 0 0
\(280\) −13.6077 −0.813215
\(281\) 31.0056 1.84964 0.924820 0.380405i \(-0.124215\pi\)
0.924820 + 0.380405i \(0.124215\pi\)
\(282\) 0 0
\(283\) 15.0718 0.895925 0.447963 0.894052i \(-0.352150\pi\)
0.447963 + 0.894052i \(0.352150\pi\)
\(284\) 3.81899 0.226615
\(285\) 0 0
\(286\) −13.6077 −0.804640
\(287\) −4.70519 −0.277739
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) −53.4871 −3.14087
\(291\) 0 0
\(292\) 4.32051 0.252839
\(293\) 3.41547 0.199534 0.0997668 0.995011i \(-0.468190\pi\)
0.0997668 + 0.995011i \(0.468190\pi\)
\(294\) 0 0
\(295\) −29.3205 −1.70711
\(296\) −10.9453 −0.636184
\(297\) 0 0
\(298\) 13.6077 0.788273
\(299\) 3.81899 0.220858
\(300\) 0 0
\(301\) −3.46410 −0.199667
\(302\) 10.5418 0.606612
\(303\) 0 0
\(304\) 4.46410 0.256034
\(305\) −29.6078 −1.69534
\(306\) 0 0
\(307\) −3.00000 −0.171219 −0.0856095 0.996329i \(-0.527284\pi\)
−0.0856095 + 0.996329i \(0.527284\pi\)
\(308\) 0.886200 0.0504959
\(309\) 0 0
\(310\) 66.0526 3.75153
\(311\) −0.403524 −0.0228817 −0.0114409 0.999935i \(-0.503642\pi\)
−0.0114409 + 0.999935i \(0.503642\pi\)
\(312\) 0 0
\(313\) −10.8038 −0.610670 −0.305335 0.952245i \(-0.598768\pi\)
−0.305335 + 0.952245i \(0.598768\pi\)
\(314\) 29.4997 1.66476
\(315\) 0 0
\(316\) −2.41154 −0.135660
\(317\) 1.90949 0.107248 0.0536240 0.998561i \(-0.482923\pi\)
0.0536240 + 0.998561i \(0.482923\pi\)
\(318\) 0 0
\(319\) −22.5167 −1.26069
\(320\) 27.4029 1.53187
\(321\) 0 0
\(322\) −2.10512 −0.117314
\(323\) 0 0
\(324\) 0 0
\(325\) −41.3205 −2.29205
\(326\) 37.2458 2.06285
\(327\) 0 0
\(328\) 9.67949 0.534461
\(329\) −5.72848 −0.315822
\(330\) 0 0
\(331\) −1.60770 −0.0883669 −0.0441835 0.999023i \(-0.514069\pi\)
−0.0441835 + 0.999023i \(0.514069\pi\)
\(332\) −2.01762 −0.110731
\(333\) 0 0
\(334\) −29.3205 −1.60435
\(335\) −23.5839 −1.28853
\(336\) 0 0
\(337\) −1.80385 −0.0982618 −0.0491309 0.998792i \(-0.515645\pi\)
−0.0491309 + 0.998792i \(0.515645\pi\)
\(338\) −1.50597 −0.0819140
\(339\) 0 0
\(340\) 0 0
\(341\) 27.8064 1.50580
\(342\) 0 0
\(343\) −15.7128 −0.848412
\(344\) 7.12633 0.384226
\(345\) 0 0
\(346\) −10.1244 −0.544289
\(347\) −13.7410 −0.737656 −0.368828 0.929498i \(-0.620241\pi\)
−0.368828 + 0.929498i \(0.620241\pi\)
\(348\) 0 0
\(349\) 26.1769 1.40122 0.700609 0.713545i \(-0.252912\pi\)
0.700609 + 0.713545i \(0.252912\pi\)
\(350\) 22.7768 1.21747
\(351\) 0 0
\(352\) −3.92820 −0.209374
\(353\) −2.20489 −0.117355 −0.0586774 0.998277i \(-0.518688\pi\)
−0.0586774 + 0.998277i \(0.518688\pi\)
\(354\) 0 0
\(355\) 58.6410 3.11234
\(356\) −4.30167 −0.227988
\(357\) 0 0
\(358\) 9.51666 0.502971
\(359\) −34.8246 −1.83797 −0.918986 0.394289i \(-0.870991\pi\)
−0.918986 + 0.394289i \(0.870991\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −32.6197 −1.71445
\(363\) 0 0
\(364\) −1.17691 −0.0616871
\(365\) 66.3419 3.47249
\(366\) 0 0
\(367\) 17.4641 0.911619 0.455809 0.890077i \(-0.349350\pi\)
0.455809 + 0.890077i \(0.349350\pi\)
\(368\) 4.92144 0.256548
\(369\) 0 0
\(370\) 26.0000 1.35168
\(371\) −5.72848 −0.297408
\(372\) 0 0
\(373\) 1.66025 0.0859647 0.0429823 0.999076i \(-0.486314\pi\)
0.0429823 + 0.999076i \(0.486314\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 11.7846 0.607745
\(377\) 29.9032 1.54009
\(378\) 0 0
\(379\) 10.8564 0.557656 0.278828 0.960341i \(-0.410054\pi\)
0.278828 + 0.960341i \(0.410054\pi\)
\(380\) −1.10245 −0.0565544
\(381\) 0 0
\(382\) 11.7846 0.602953
\(383\) −13.1502 −0.671945 −0.335972 0.941872i \(-0.609065\pi\)
−0.335972 + 0.941872i \(0.609065\pi\)
\(384\) 0 0
\(385\) 13.6077 0.693512
\(386\) 15.0597 0.766519
\(387\) 0 0
\(388\) −2.05256 −0.104203
\(389\) −21.3790 −1.08396 −0.541979 0.840392i \(-0.682325\pi\)
−0.541979 + 0.840392i \(0.682325\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 14.0654 0.710409
\(393\) 0 0
\(394\) −33.8564 −1.70566
\(395\) −37.0295 −1.86316
\(396\) 0 0
\(397\) −2.85641 −0.143359 −0.0716795 0.997428i \(-0.522836\pi\)
−0.0716795 + 0.997428i \(0.522836\pi\)
\(398\) 29.3124 1.46930
\(399\) 0 0
\(400\) −53.2487 −2.66244
\(401\) −4.11439 −0.205463 −0.102731 0.994709i \(-0.532758\pi\)
−0.102731 + 0.994709i \(0.532758\pi\)
\(402\) 0 0
\(403\) −36.9282 −1.83952
\(404\) −2.50029 −0.124394
\(405\) 0 0
\(406\) −16.4833 −0.818054
\(407\) 10.9453 0.542539
\(408\) 0 0
\(409\) 31.1244 1.53900 0.769500 0.638647i \(-0.220505\pi\)
0.769500 + 0.638647i \(0.220505\pi\)
\(410\) −22.9931 −1.13555
\(411\) 0 0
\(412\) 1.21539 0.0598780
\(413\) −9.03583 −0.444624
\(414\) 0 0
\(415\) −30.9808 −1.52079
\(416\) 5.21684 0.255776
\(417\) 0 0
\(418\) −3.92820 −0.192135
\(419\) −1.50597 −0.0735715 −0.0367858 0.999323i \(-0.511712\pi\)
−0.0367858 + 0.999323i \(0.511712\pi\)
\(420\) 0 0
\(421\) −1.46410 −0.0713559 −0.0356780 0.999363i \(-0.511359\pi\)
−0.0356780 + 0.999363i \(0.511359\pi\)
\(422\) −15.2470 −0.742212
\(423\) 0 0
\(424\) 11.7846 0.572311
\(425\) 0 0
\(426\) 0 0
\(427\) −9.12436 −0.441559
\(428\) 3.52359 0.170319
\(429\) 0 0
\(430\) −16.9282 −0.816350
\(431\) −17.5600 −0.845836 −0.422918 0.906168i \(-0.638994\pi\)
−0.422918 + 0.906168i \(0.638994\pi\)
\(432\) 0 0
\(433\) 11.5167 0.553455 0.276728 0.960948i \(-0.410750\pi\)
0.276728 + 0.960948i \(0.410750\pi\)
\(434\) 20.3557 0.977105
\(435\) 0 0
\(436\) −2.33975 −0.112054
\(437\) 1.10245 0.0527372
\(438\) 0 0
\(439\) −13.7846 −0.657904 −0.328952 0.944347i \(-0.606695\pi\)
−0.328952 + 0.944347i \(0.606695\pi\)
\(440\) −27.9937 −1.33455
\(441\) 0 0
\(442\) 0 0
\(443\) −8.33690 −0.396098 −0.198049 0.980192i \(-0.563461\pi\)
−0.198049 + 0.980192i \(0.563461\pi\)
\(444\) 0 0
\(445\) −66.0526 −3.13119
\(446\) 23.3966 1.10786
\(447\) 0 0
\(448\) 8.44486 0.398982
\(449\) −11.3488 −0.535585 −0.267793 0.963477i \(-0.586294\pi\)
−0.267793 + 0.963477i \(0.586294\pi\)
\(450\) 0 0
\(451\) −9.67949 −0.455789
\(452\) −1.72222 −0.0810064
\(453\) 0 0
\(454\) 7.85641 0.368719
\(455\) −18.0717 −0.847212
\(456\) 0 0
\(457\) −15.5885 −0.729197 −0.364599 0.931165i \(-0.618794\pi\)
−0.364599 + 0.931165i \(0.618794\pi\)
\(458\) 30.6021 1.42994
\(459\) 0 0
\(460\) −1.21539 −0.0566679
\(461\) −10.4337 −0.485945 −0.242972 0.970033i \(-0.578122\pi\)
−0.242972 + 0.970033i \(0.578122\pi\)
\(462\) 0 0
\(463\) −2.39230 −0.111180 −0.0555899 0.998454i \(-0.517704\pi\)
−0.0555899 + 0.998454i \(0.517704\pi\)
\(464\) 38.5355 1.78896
\(465\) 0 0
\(466\) 14.0526 0.650972
\(467\) 35.2281 1.63016 0.815082 0.579346i \(-0.196692\pi\)
0.815082 + 0.579346i \(0.196692\pi\)
\(468\) 0 0
\(469\) −7.26795 −0.335603
\(470\) −27.9937 −1.29125
\(471\) 0 0
\(472\) 18.5885 0.855603
\(473\) −7.12633 −0.327669
\(474\) 0 0
\(475\) −11.9282 −0.547303
\(476\) 0 0
\(477\) 0 0
\(478\) −1.05256 −0.0481429
\(479\) 6.31928 0.288735 0.144368 0.989524i \(-0.453885\pi\)
0.144368 + 0.989524i \(0.453885\pi\)
\(480\) 0 0
\(481\) −14.5359 −0.662780
\(482\) −3.30734 −0.150645
\(483\) 0 0
\(484\) −1.12436 −0.0511071
\(485\) −31.5173 −1.43113
\(486\) 0 0
\(487\) 28.6603 1.29872 0.649360 0.760481i \(-0.275037\pi\)
0.649360 + 0.760481i \(0.275037\pi\)
\(488\) 18.7706 0.849704
\(489\) 0 0
\(490\) −33.4115 −1.50938
\(491\) −14.1445 −0.638334 −0.319167 0.947698i \(-0.603403\pi\)
−0.319167 + 0.947698i \(0.603403\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 5.21684 0.234717
\(495\) 0 0
\(496\) −47.5885 −2.13678
\(497\) 18.0717 0.810624
\(498\) 0 0
\(499\) −6.39230 −0.286159 −0.143079 0.989711i \(-0.545700\pi\)
−0.143079 + 0.989711i \(0.545700\pi\)
\(500\) 7.63798 0.341581
\(501\) 0 0
\(502\) 10.7321 0.478995
\(503\) 22.0779 0.984406 0.492203 0.870481i \(-0.336192\pi\)
0.492203 + 0.870481i \(0.336192\pi\)
\(504\) 0 0
\(505\) −38.3923 −1.70844
\(506\) −4.33064 −0.192520
\(507\) 0 0
\(508\) 2.92820 0.129918
\(509\) −1.50597 −0.0667510 −0.0333755 0.999443i \(-0.510626\pi\)
−0.0333755 + 0.999443i \(0.510626\pi\)
\(510\) 0 0
\(511\) 20.4449 0.904428
\(512\) −16.5657 −0.732107
\(513\) 0 0
\(514\) 23.1244 1.01997
\(515\) 18.6625 0.822366
\(516\) 0 0
\(517\) −11.7846 −0.518287
\(518\) 8.01253 0.352050
\(519\) 0 0
\(520\) 37.1769 1.63032
\(521\) −18.3671 −0.804675 −0.402338 0.915491i \(-0.631802\pi\)
−0.402338 + 0.915491i \(0.631802\pi\)
\(522\) 0 0
\(523\) 18.5167 0.809677 0.404839 0.914388i \(-0.367328\pi\)
0.404839 + 0.914388i \(0.367328\pi\)
\(524\) 1.31870 0.0576075
\(525\) 0 0
\(526\) −41.1051 −1.79227
\(527\) 0 0
\(528\) 0 0
\(529\) −21.7846 −0.947157
\(530\) −27.9937 −1.21597
\(531\) 0 0
\(532\) −0.339746 −0.0147299
\(533\) 12.8548 0.556804
\(534\) 0 0
\(535\) 54.1051 2.33917
\(536\) 14.9516 0.645810
\(537\) 0 0
\(538\) 26.4449 1.14012
\(539\) −14.0654 −0.605839
\(540\) 0 0
\(541\) −3.19615 −0.137413 −0.0687067 0.997637i \(-0.521887\pi\)
−0.0687067 + 0.997637i \(0.521887\pi\)
\(542\) 26.5958 1.14239
\(543\) 0 0
\(544\) 0 0
\(545\) −35.9271 −1.53895
\(546\) 0 0
\(547\) −6.14359 −0.262681 −0.131341 0.991337i \(-0.541928\pi\)
−0.131341 + 0.991337i \(0.541928\pi\)
\(548\) 3.81899 0.163139
\(549\) 0 0
\(550\) 46.8564 1.99796
\(551\) 8.63230 0.367748
\(552\) 0 0
\(553\) −11.4115 −0.485268
\(554\) −0.915171 −0.0388819
\(555\) 0 0
\(556\) 2.67949 0.113636
\(557\) 18.9579 0.803270 0.401635 0.915800i \(-0.368442\pi\)
0.401635 + 0.915800i \(0.368442\pi\)
\(558\) 0 0
\(559\) 9.46410 0.400289
\(560\) −23.2885 −0.984118
\(561\) 0 0
\(562\) 46.6936 1.96965
\(563\) −31.2219 −1.31584 −0.657922 0.753086i \(-0.728565\pi\)
−0.657922 + 0.753086i \(0.728565\pi\)
\(564\) 0 0
\(565\) −26.4449 −1.11254
\(566\) 22.6977 0.954055
\(567\) 0 0
\(568\) −37.1769 −1.55991
\(569\) 22.7768 0.954855 0.477427 0.878671i \(-0.341569\pi\)
0.477427 + 0.878671i \(0.341569\pi\)
\(570\) 0 0
\(571\) −32.0526 −1.34136 −0.670679 0.741748i \(-0.733997\pi\)
−0.670679 + 0.741748i \(0.733997\pi\)
\(572\) −2.42114 −0.101233
\(573\) 0 0
\(574\) −7.08588 −0.295759
\(575\) −13.1502 −0.548402
\(576\) 0 0
\(577\) −32.5359 −1.35449 −0.677244 0.735759i \(-0.736826\pi\)
−0.677244 + 0.735759i \(0.736826\pi\)
\(578\) −25.6015 −1.06488
\(579\) 0 0
\(580\) −9.51666 −0.395158
\(581\) −9.54747 −0.396096
\(582\) 0 0
\(583\) −11.7846 −0.488069
\(584\) −42.0591 −1.74042
\(585\) 0 0
\(586\) 5.14359 0.212480
\(587\) −32.6197 −1.34636 −0.673180 0.739479i \(-0.735072\pi\)
−0.673180 + 0.739479i \(0.735072\pi\)
\(588\) 0 0
\(589\) −10.6603 −0.439248
\(590\) −44.1558 −1.81787
\(591\) 0 0
\(592\) −18.7321 −0.769883
\(593\) 7.12633 0.292643 0.146322 0.989237i \(-0.453257\pi\)
0.146322 + 0.989237i \(0.453257\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 2.42114 0.0991739
\(597\) 0 0
\(598\) 5.75129 0.235188
\(599\) 31.8127 1.29983 0.649915 0.760007i \(-0.274804\pi\)
0.649915 + 0.760007i \(0.274804\pi\)
\(600\) 0 0
\(601\) −30.9808 −1.26373 −0.631866 0.775078i \(-0.717711\pi\)
−0.631866 + 0.775078i \(0.717711\pi\)
\(602\) −5.21684 −0.212622
\(603\) 0 0
\(604\) 1.87564 0.0763189
\(605\) −17.2646 −0.701906
\(606\) 0 0
\(607\) 29.4449 1.19513 0.597565 0.801820i \(-0.296135\pi\)
0.597565 + 0.801820i \(0.296135\pi\)
\(608\) 1.50597 0.0610752
\(609\) 0 0
\(610\) −44.5885 −1.80533
\(611\) 15.6505 0.633152
\(612\) 0 0
\(613\) 17.0718 0.689523 0.344762 0.938690i \(-0.387960\pi\)
0.344762 + 0.938690i \(0.387960\pi\)
\(614\) −4.51791 −0.182328
\(615\) 0 0
\(616\) −8.62693 −0.347589
\(617\) 8.74043 0.351876 0.175938 0.984401i \(-0.443704\pi\)
0.175938 + 0.984401i \(0.443704\pi\)
\(618\) 0 0
\(619\) −0.535898 −0.0215396 −0.0107698 0.999942i \(-0.503428\pi\)
−0.0107698 + 0.999942i \(0.503428\pi\)
\(620\) 11.7524 0.471987
\(621\) 0 0
\(622\) −0.607695 −0.0243664
\(623\) −20.3557 −0.815534
\(624\) 0 0
\(625\) 57.6410 2.30564
\(626\) −16.2703 −0.650291
\(627\) 0 0
\(628\) 5.24871 0.209446
\(629\) 0 0
\(630\) 0 0
\(631\) −20.9282 −0.833139 −0.416569 0.909104i \(-0.636768\pi\)
−0.416569 + 0.909104i \(0.636768\pi\)
\(632\) 23.4758 0.933816
\(633\) 0 0
\(634\) 2.87564 0.114206
\(635\) 44.9629 1.78430
\(636\) 0 0
\(637\) 18.6795 0.740108
\(638\) −33.9094 −1.34249
\(639\) 0 0
\(640\) 53.6603 2.12111
\(641\) −28.1018 −1.10995 −0.554977 0.831866i \(-0.687273\pi\)
−0.554977 + 0.831866i \(0.687273\pi\)
\(642\) 0 0
\(643\) 21.5167 0.848534 0.424267 0.905537i \(-0.360532\pi\)
0.424267 + 0.905537i \(0.360532\pi\)
\(644\) −0.374552 −0.0147594
\(645\) 0 0
\(646\) 0 0
\(647\) 29.2043 1.14814 0.574069 0.818807i \(-0.305364\pi\)
0.574069 + 0.818807i \(0.305364\pi\)
\(648\) 0 0
\(649\) −18.5885 −0.729661
\(650\) −62.2275 −2.44076
\(651\) 0 0
\(652\) 6.62693 0.259531
\(653\) −46.3607 −1.81424 −0.907118 0.420877i \(-0.861723\pi\)
−0.907118 + 0.420877i \(0.861723\pi\)
\(654\) 0 0
\(655\) 20.2487 0.791183
\(656\) 16.5657 0.646781
\(657\) 0 0
\(658\) −8.62693 −0.336313
\(659\) 16.9692 0.661026 0.330513 0.943801i \(-0.392778\pi\)
0.330513 + 0.943801i \(0.392778\pi\)
\(660\) 0 0
\(661\) −30.2487 −1.17654 −0.588269 0.808665i \(-0.700190\pi\)
−0.588269 + 0.808665i \(0.700190\pi\)
\(662\) −2.42114 −0.0941004
\(663\) 0 0
\(664\) 19.6410 0.762219
\(665\) −5.21684 −0.202300
\(666\) 0 0
\(667\) 9.51666 0.368487
\(668\) −5.21684 −0.201845
\(669\) 0 0
\(670\) −35.5167 −1.37213
\(671\) −18.7706 −0.724630
\(672\) 0 0
\(673\) 9.85641 0.379937 0.189968 0.981790i \(-0.439161\pi\)
0.189968 + 0.981790i \(0.439161\pi\)
\(674\) −2.71654 −0.104637
\(675\) 0 0
\(676\) −0.267949 −0.0103057
\(677\) 10.1383 0.389646 0.194823 0.980838i \(-0.437587\pi\)
0.194823 + 0.980838i \(0.437587\pi\)
\(678\) 0 0
\(679\) −9.71281 −0.372744
\(680\) 0 0
\(681\) 0 0
\(682\) 41.8756 1.60350
\(683\) 17.5600 0.671915 0.335957 0.941877i \(-0.390940\pi\)
0.335957 + 0.941877i \(0.390940\pi\)
\(684\) 0 0
\(685\) 58.6410 2.24056
\(686\) −23.6630 −0.903459
\(687\) 0 0
\(688\) 12.1962 0.464974
\(689\) 15.6505 0.596237
\(690\) 0 0
\(691\) −32.0526 −1.21934 −0.609668 0.792657i \(-0.708697\pi\)
−0.609668 + 0.792657i \(0.708697\pi\)
\(692\) −1.80137 −0.0684779
\(693\) 0 0
\(694\) −20.6936 −0.785517
\(695\) 41.1439 1.56068
\(696\) 0 0
\(697\) 0 0
\(698\) 39.4217 1.49213
\(699\) 0 0
\(700\) 4.05256 0.153172
\(701\) 31.8127 1.20155 0.600774 0.799419i \(-0.294859\pi\)
0.600774 + 0.799419i \(0.294859\pi\)
\(702\) 0 0
\(703\) −4.19615 −0.158261
\(704\) 17.3727 0.654759
\(705\) 0 0
\(706\) −3.32051 −0.124969
\(707\) −11.8315 −0.444970
\(708\) 0 0
\(709\) 29.7128 1.11589 0.557944 0.829879i \(-0.311590\pi\)
0.557944 + 0.829879i \(0.311590\pi\)
\(710\) 88.3117 3.31428
\(711\) 0 0
\(712\) 41.8756 1.56936
\(713\) −11.7524 −0.440130
\(714\) 0 0
\(715\) −37.1769 −1.39034
\(716\) 1.69325 0.0632796
\(717\) 0 0
\(718\) −52.4449 −1.95722
\(719\) −3.71087 −0.138392 −0.0691960 0.997603i \(-0.522043\pi\)
−0.0691960 + 0.997603i \(0.522043\pi\)
\(720\) 0 0
\(721\) 5.75129 0.214189
\(722\) 1.50597 0.0560464
\(723\) 0 0
\(724\) −5.80385 −0.215698
\(725\) −102.968 −3.82413
\(726\) 0 0
\(727\) 38.2487 1.41857 0.709283 0.704924i \(-0.249019\pi\)
0.709283 + 0.704924i \(0.249019\pi\)
\(728\) 11.4570 0.424624
\(729\) 0 0
\(730\) 99.9090 3.69780
\(731\) 0 0
\(732\) 0 0
\(733\) −16.6603 −0.615361 −0.307680 0.951490i \(-0.599553\pi\)
−0.307680 + 0.951490i \(0.599553\pi\)
\(734\) 26.3004 0.970767
\(735\) 0 0
\(736\) 1.66025 0.0611978
\(737\) −14.9516 −0.550749
\(738\) 0 0
\(739\) −33.3731 −1.22765 −0.613824 0.789443i \(-0.710370\pi\)
−0.613824 + 0.789443i \(0.710370\pi\)
\(740\) 4.62604 0.170057
\(741\) 0 0
\(742\) −8.62693 −0.316705
\(743\) −23.2885 −0.854372 −0.427186 0.904164i \(-0.640495\pi\)
−0.427186 + 0.904164i \(0.640495\pi\)
\(744\) 0 0
\(745\) 37.1769 1.36206
\(746\) 2.50029 0.0915423
\(747\) 0 0
\(748\) 0 0
\(749\) 16.6738 0.609248
\(750\) 0 0
\(751\) −28.5359 −1.04129 −0.520645 0.853773i \(-0.674308\pi\)
−0.520645 + 0.853773i \(0.674308\pi\)
\(752\) 20.1684 0.735467
\(753\) 0 0
\(754\) 45.0333 1.64002
\(755\) 28.8007 1.04817
\(756\) 0 0
\(757\) −13.9282 −0.506229 −0.253115 0.967436i \(-0.581455\pi\)
−0.253115 + 0.967436i \(0.581455\pi\)
\(758\) 16.3494 0.593838
\(759\) 0 0
\(760\) 10.7321 0.389292
\(761\) 49.5889 1.79760 0.898799 0.438362i \(-0.144441\pi\)
0.898799 + 0.438362i \(0.144441\pi\)
\(762\) 0 0
\(763\) −11.0718 −0.400826
\(764\) 2.09677 0.0758585
\(765\) 0 0
\(766\) −19.8038 −0.715542
\(767\) 24.6863 0.891372
\(768\) 0 0
\(769\) 14.7846 0.533147 0.266573 0.963815i \(-0.414109\pi\)
0.266573 + 0.963815i \(0.414109\pi\)
\(770\) 20.4928 0.738509
\(771\) 0 0
\(772\) 2.67949 0.0964370
\(773\) 38.2401 1.37540 0.687700 0.725995i \(-0.258620\pi\)
0.687700 + 0.725995i \(0.258620\pi\)
\(774\) 0 0
\(775\) 127.158 4.56764
\(776\) 19.9811 0.717281
\(777\) 0 0
\(778\) −32.1962 −1.15429
\(779\) 3.71087 0.132956
\(780\) 0 0
\(781\) 37.1769 1.33029
\(782\) 0 0
\(783\) 0 0
\(784\) 24.0718 0.859707
\(785\) 80.5945 2.87654
\(786\) 0 0
\(787\) −35.9808 −1.28258 −0.641288 0.767300i \(-0.721600\pi\)
−0.641288 + 0.767300i \(0.721600\pi\)
\(788\) −6.02388 −0.214592
\(789\) 0 0
\(790\) −55.7654 −1.98404
\(791\) −8.14963 −0.289767
\(792\) 0 0
\(793\) 24.9282 0.885226
\(794\) −4.30167 −0.152660
\(795\) 0 0
\(796\) 5.21539 0.184855
\(797\) −42.0591 −1.48981 −0.744904 0.667171i \(-0.767505\pi\)
−0.744904 + 0.667171i \(0.767505\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −17.9635 −0.635107
\(801\) 0 0
\(802\) −6.19615 −0.218794
\(803\) 42.0591 1.48423
\(804\) 0 0
\(805\) −5.75129 −0.202706
\(806\) −55.6128 −1.95888
\(807\) 0 0
\(808\) 24.3397 0.856269
\(809\) −28.8007 −1.01258 −0.506290 0.862363i \(-0.668983\pi\)
−0.506290 + 0.862363i \(0.668983\pi\)
\(810\) 0 0
\(811\) −12.3205 −0.432632 −0.216316 0.976323i \(-0.569404\pi\)
−0.216316 + 0.976323i \(0.569404\pi\)
\(812\) −2.93279 −0.102921
\(813\) 0 0
\(814\) 16.4833 0.577741
\(815\) 101.757 3.56440
\(816\) 0 0
\(817\) 2.73205 0.0955824
\(818\) 46.8724 1.63885
\(819\) 0 0
\(820\) −4.09103 −0.142865
\(821\) −27.9937 −0.976986 −0.488493 0.872568i \(-0.662453\pi\)
−0.488493 + 0.872568i \(0.662453\pi\)
\(822\) 0 0
\(823\) 16.3397 0.569568 0.284784 0.958592i \(-0.408078\pi\)
0.284784 + 0.958592i \(0.408078\pi\)
\(824\) −11.8315 −0.412171
\(825\) 0 0
\(826\) −13.6077 −0.473472
\(827\) −15.9459 −0.554494 −0.277247 0.960799i \(-0.589422\pi\)
−0.277247 + 0.960799i \(0.589422\pi\)
\(828\) 0 0
\(829\) 39.8564 1.38427 0.692135 0.721768i \(-0.256670\pi\)
0.692135 + 0.721768i \(0.256670\pi\)
\(830\) −46.6561 −1.61946
\(831\) 0 0
\(832\) −23.0718 −0.799871
\(833\) 0 0
\(834\) 0 0
\(835\) −80.1051 −2.77215
\(836\) −0.698924 −0.0241728
\(837\) 0 0
\(838\) −2.26795 −0.0783450
\(839\) −19.4695 −0.672162 −0.336081 0.941833i \(-0.609102\pi\)
−0.336081 + 0.941833i \(0.609102\pi\)
\(840\) 0 0
\(841\) 45.5167 1.56954
\(842\) −2.20489 −0.0759857
\(843\) 0 0
\(844\) −2.71281 −0.0933789
\(845\) −4.11439 −0.141539
\(846\) 0 0
\(847\) −5.32051 −0.182815
\(848\) 20.1684 0.692587
\(849\) 0 0
\(850\) 0 0
\(851\) −4.62604 −0.158579
\(852\) 0 0
\(853\) −32.7128 −1.12007 −0.560033 0.828471i \(-0.689211\pi\)
−0.560033 + 0.828471i \(0.689211\pi\)
\(854\) −13.7410 −0.470208
\(855\) 0 0
\(856\) −34.3013 −1.17239
\(857\) 50.5832 1.72789 0.863945 0.503585i \(-0.167986\pi\)
0.863945 + 0.503585i \(0.167986\pi\)
\(858\) 0 0
\(859\) 12.3923 0.422820 0.211410 0.977397i \(-0.432194\pi\)
0.211410 + 0.977397i \(0.432194\pi\)
\(860\) −3.01194 −0.102706
\(861\) 0 0
\(862\) −26.4449 −0.900716
\(863\) −21.6744 −0.737805 −0.368903 0.929468i \(-0.620266\pi\)
−0.368903 + 0.929468i \(0.620266\pi\)
\(864\) 0 0
\(865\) −27.6603 −0.940477
\(866\) 17.3438 0.589365
\(867\) 0 0
\(868\) 3.62178 0.122931
\(869\) −23.4758 −0.796361
\(870\) 0 0
\(871\) 19.8564 0.672809
\(872\) 22.7768 0.771321
\(873\) 0 0
\(874\) 1.66025 0.0561589
\(875\) 36.1433 1.22187
\(876\) 0 0
\(877\) 9.26795 0.312956 0.156478 0.987681i \(-0.449986\pi\)
0.156478 + 0.987681i \(0.449986\pi\)
\(878\) −20.7592 −0.700590
\(879\) 0 0
\(880\) −47.9090 −1.61501
\(881\) −29.0961 −0.980273 −0.490137 0.871646i \(-0.663053\pi\)
−0.490137 + 0.871646i \(0.663053\pi\)
\(882\) 0 0
\(883\) 43.5167 1.46445 0.732226 0.681062i \(-0.238481\pi\)
0.732226 + 0.681062i \(0.238481\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −12.5551 −0.421798
\(887\) 38.6436 1.29753 0.648763 0.760991i \(-0.275287\pi\)
0.648763 + 0.760991i \(0.275287\pi\)
\(888\) 0 0
\(889\) 13.8564 0.464729
\(890\) −99.4732 −3.33435
\(891\) 0 0
\(892\) 4.16283 0.139382
\(893\) 4.51791 0.151186
\(894\) 0 0
\(895\) 26.0000 0.869084
\(896\) 16.5367 0.552453
\(897\) 0 0
\(898\) −17.0910 −0.570335
\(899\) −92.0225 −3.06912
\(900\) 0 0
\(901\) 0 0
\(902\) −14.5770 −0.485362
\(903\) 0 0
\(904\) 16.7654 0.557608
\(905\) −89.1187 −2.96241
\(906\) 0 0
\(907\) 40.2487 1.33644 0.668218 0.743965i \(-0.267057\pi\)
0.668218 + 0.743965i \(0.267057\pi\)
\(908\) 1.39785 0.0463892
\(909\) 0 0
\(910\) −27.2154 −0.902181
\(911\) −39.2344 −1.29989 −0.649947 0.759980i \(-0.725209\pi\)
−0.649947 + 0.759980i \(0.725209\pi\)
\(912\) 0 0
\(913\) −19.6410 −0.650023
\(914\) −23.4758 −0.776509
\(915\) 0 0
\(916\) 5.44486 0.179903
\(917\) 6.24013 0.206067
\(918\) 0 0
\(919\) 28.8756 0.952520 0.476260 0.879305i \(-0.341992\pi\)
0.476260 + 0.879305i \(0.341992\pi\)
\(920\) 11.8315 0.390074
\(921\) 0 0
\(922\) −15.7128 −0.517474
\(923\) −49.3727 −1.62512
\(924\) 0 0
\(925\) 50.0526 1.64572
\(926\) −3.60274 −0.118393
\(927\) 0 0
\(928\) 13.0000 0.426746
\(929\) −33.4268 −1.09670 −0.548348 0.836250i \(-0.684743\pi\)
−0.548348 + 0.836250i \(0.684743\pi\)
\(930\) 0 0
\(931\) 5.39230 0.176726
\(932\) 2.50029 0.0818999
\(933\) 0 0
\(934\) 53.0526 1.73593
\(935\) 0 0
\(936\) 0 0
\(937\) −25.9282 −0.847037 −0.423519 0.905887i \(-0.639205\pi\)
−0.423519 + 0.905887i \(0.639205\pi\)
\(938\) −10.9453 −0.357377
\(939\) 0 0
\(940\) −4.98076 −0.162455
\(941\) 11.5361 0.376067 0.188033 0.982163i \(-0.439789\pi\)
0.188033 + 0.982163i \(0.439789\pi\)
\(942\) 0 0
\(943\) 4.09103 0.133222
\(944\) 31.8127 1.03541
\(945\) 0 0
\(946\) −10.7321 −0.348929
\(947\) −57.4142 −1.86571 −0.932855 0.360252i \(-0.882691\pi\)
−0.932855 + 0.360252i \(0.882691\pi\)
\(948\) 0 0
\(949\) −55.8564 −1.81318
\(950\) −17.9635 −0.582814
\(951\) 0 0
\(952\) 0 0
\(953\) 8.92770 0.289197 0.144598 0.989490i \(-0.453811\pi\)
0.144598 + 0.989490i \(0.453811\pi\)
\(954\) 0 0
\(955\) 32.1962 1.04184
\(956\) −0.187276 −0.00605694
\(957\) 0 0
\(958\) 9.51666 0.307469
\(959\) 18.0717 0.583564
\(960\) 0 0
\(961\) 82.6410 2.66584
\(962\) −21.8906 −0.705783
\(963\) 0 0
\(964\) −0.588457 −0.0189529
\(965\) 41.1439 1.32447
\(966\) 0 0
\(967\) 9.41154 0.302655 0.151327 0.988484i \(-0.451645\pi\)
0.151327 + 0.988484i \(0.451645\pi\)
\(968\) 10.9453 0.351796
\(969\) 0 0
\(970\) −47.4641 −1.52398
\(971\) 23.2885 0.747363 0.373682 0.927557i \(-0.378095\pi\)
0.373682 + 0.927557i \(0.378095\pi\)
\(972\) 0 0
\(973\) 12.6795 0.406486
\(974\) 43.1615 1.38298
\(975\) 0 0
\(976\) 32.1244 1.02828
\(977\) −20.1684 −0.645245 −0.322623 0.946528i \(-0.604564\pi\)
−0.322623 + 0.946528i \(0.604564\pi\)
\(978\) 0 0
\(979\) −41.8756 −1.33835
\(980\) −5.94473 −0.189898
\(981\) 0 0
\(982\) −21.3013 −0.679751
\(983\) 35.4154 1.12958 0.564788 0.825236i \(-0.308958\pi\)
0.564788 + 0.825236i \(0.308958\pi\)
\(984\) 0 0
\(985\) −92.4974 −2.94721
\(986\) 0 0
\(987\) 0 0
\(988\) 0.928203 0.0295301
\(989\) 3.01194 0.0957742
\(990\) 0 0
\(991\) −17.4641 −0.554765 −0.277383 0.960760i \(-0.589467\pi\)
−0.277383 + 0.960760i \(0.589467\pi\)
\(992\) −16.0540 −0.509716
\(993\) 0 0
\(994\) 27.2154 0.863220
\(995\) 80.0829 2.53880
\(996\) 0 0
\(997\) 32.9282 1.04285 0.521423 0.853298i \(-0.325401\pi\)
0.521423 + 0.853298i \(0.325401\pi\)
\(998\) −9.62663 −0.304726
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 513.2.a.i.1.3 yes 4
3.2 odd 2 inner 513.2.a.i.1.2 4
4.3 odd 2 8208.2.a.bt.1.4 4
12.11 even 2 8208.2.a.bt.1.1 4
19.18 odd 2 9747.2.a.bf.1.2 4
57.56 even 2 9747.2.a.bf.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
513.2.a.i.1.2 4 3.2 odd 2 inner
513.2.a.i.1.3 yes 4 1.1 even 1 trivial
8208.2.a.bt.1.1 4 12.11 even 2
8208.2.a.bt.1.4 4 4.3 odd 2
9747.2.a.bf.1.2 4 19.18 odd 2
9747.2.a.bf.1.3 4 57.56 even 2