Properties

Label 513.2.a.d.1.3
Level $513$
Weight $2$
Character 513.1
Self dual yes
Analytic conductor $4.096$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [513,2,Mod(1,513)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(513, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("513.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.09632562369\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.87939\) of defining polynomial
Character \(\chi\) \(=\) 513.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.879385 q^{2} -1.22668 q^{4} +0.879385 q^{5} -4.41147 q^{7} -2.83750 q^{8} +0.773318 q^{10} -1.04189 q^{11} +0.0418891 q^{13} -3.87939 q^{14} -0.0418891 q^{16} -4.75877 q^{17} +1.00000 q^{19} -1.07873 q^{20} -0.916222 q^{22} -6.87939 q^{23} -4.22668 q^{25} +0.0368366 q^{26} +5.41147 q^{28} -3.87939 q^{29} +7.78106 q^{31} +5.63816 q^{32} -4.18479 q^{34} -3.87939 q^{35} +1.22668 q^{37} +0.879385 q^{38} -2.49525 q^{40} +12.1557 q^{41} +2.55438 q^{43} +1.27807 q^{44} -6.04963 q^{46} -10.4338 q^{47} +12.4611 q^{49} -3.71688 q^{50} -0.0513845 q^{52} -2.83750 q^{53} -0.916222 q^{55} +12.5175 q^{56} -3.41147 q^{58} -6.16250 q^{59} -5.95811 q^{61} +6.84255 q^{62} +5.04189 q^{64} +0.0368366 q^{65} -2.59627 q^{67} +5.83750 q^{68} -3.41147 q^{70} -6.71688 q^{71} +8.19253 q^{73} +1.07873 q^{74} -1.22668 q^{76} +4.59627 q^{77} -2.40373 q^{79} -0.0368366 q^{80} +10.6895 q^{82} -12.1925 q^{83} -4.18479 q^{85} +2.24628 q^{86} +2.95636 q^{88} +8.80066 q^{89} -0.184793 q^{91} +8.43882 q^{92} -9.17530 q^{94} +0.879385 q^{95} -1.14290 q^{97} +10.9581 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + 3 q^{4} - 3 q^{5} - 3 q^{7} - 6 q^{8} + 9 q^{10} - 3 q^{13} - 6 q^{14} + 3 q^{16} - 3 q^{17} + 3 q^{19} - 12 q^{20} - 9 q^{22} - 15 q^{23} - 6 q^{25} + 12 q^{26} + 6 q^{28} - 6 q^{29} + 6 q^{31}+ \cdots + 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.879385 0.621819 0.310910 0.950439i \(-0.399366\pi\)
0.310910 + 0.950439i \(0.399366\pi\)
\(3\) 0 0
\(4\) −1.22668 −0.613341
\(5\) 0.879385 0.393273 0.196637 0.980476i \(-0.436998\pi\)
0.196637 + 0.980476i \(0.436998\pi\)
\(6\) 0 0
\(7\) −4.41147 −1.66738 −0.833690 0.552232i \(-0.813776\pi\)
−0.833690 + 0.552232i \(0.813776\pi\)
\(8\) −2.83750 −1.00321
\(9\) 0 0
\(10\) 0.773318 0.244545
\(11\) −1.04189 −0.314141 −0.157071 0.987587i \(-0.550205\pi\)
−0.157071 + 0.987587i \(0.550205\pi\)
\(12\) 0 0
\(13\) 0.0418891 0.0116179 0.00580897 0.999983i \(-0.498151\pi\)
0.00580897 + 0.999983i \(0.498151\pi\)
\(14\) −3.87939 −1.03681
\(15\) 0 0
\(16\) −0.0418891 −0.0104723
\(17\) −4.75877 −1.15417 −0.577086 0.816684i \(-0.695810\pi\)
−0.577086 + 0.816684i \(0.695810\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) −1.07873 −0.241210
\(21\) 0 0
\(22\) −0.916222 −0.195339
\(23\) −6.87939 −1.43445 −0.717225 0.696841i \(-0.754588\pi\)
−0.717225 + 0.696841i \(0.754588\pi\)
\(24\) 0 0
\(25\) −4.22668 −0.845336
\(26\) 0.0368366 0.00722426
\(27\) 0 0
\(28\) 5.41147 1.02267
\(29\) −3.87939 −0.720384 −0.360192 0.932878i \(-0.617289\pi\)
−0.360192 + 0.932878i \(0.617289\pi\)
\(30\) 0 0
\(31\) 7.78106 1.39752 0.698760 0.715356i \(-0.253736\pi\)
0.698760 + 0.715356i \(0.253736\pi\)
\(32\) 5.63816 0.996695
\(33\) 0 0
\(34\) −4.18479 −0.717686
\(35\) −3.87939 −0.655736
\(36\) 0 0
\(37\) 1.22668 0.201665 0.100833 0.994903i \(-0.467849\pi\)
0.100833 + 0.994903i \(0.467849\pi\)
\(38\) 0.879385 0.142655
\(39\) 0 0
\(40\) −2.49525 −0.394534
\(41\) 12.1557 1.89840 0.949200 0.314672i \(-0.101895\pi\)
0.949200 + 0.314672i \(0.101895\pi\)
\(42\) 0 0
\(43\) 2.55438 0.389539 0.194769 0.980849i \(-0.437604\pi\)
0.194769 + 0.980849i \(0.437604\pi\)
\(44\) 1.27807 0.192676
\(45\) 0 0
\(46\) −6.04963 −0.891969
\(47\) −10.4338 −1.52192 −0.760960 0.648798i \(-0.775272\pi\)
−0.760960 + 0.648798i \(0.775272\pi\)
\(48\) 0 0
\(49\) 12.4611 1.78016
\(50\) −3.71688 −0.525646
\(51\) 0 0
\(52\) −0.0513845 −0.00712575
\(53\) −2.83750 −0.389760 −0.194880 0.980827i \(-0.562432\pi\)
−0.194880 + 0.980827i \(0.562432\pi\)
\(54\) 0 0
\(55\) −0.916222 −0.123543
\(56\) 12.5175 1.67273
\(57\) 0 0
\(58\) −3.41147 −0.447948
\(59\) −6.16250 −0.802290 −0.401145 0.916015i \(-0.631388\pi\)
−0.401145 + 0.916015i \(0.631388\pi\)
\(60\) 0 0
\(61\) −5.95811 −0.762858 −0.381429 0.924398i \(-0.624568\pi\)
−0.381429 + 0.924398i \(0.624568\pi\)
\(62\) 6.84255 0.869005
\(63\) 0 0
\(64\) 5.04189 0.630236
\(65\) 0.0368366 0.00456902
\(66\) 0 0
\(67\) −2.59627 −0.317184 −0.158592 0.987344i \(-0.550696\pi\)
−0.158592 + 0.987344i \(0.550696\pi\)
\(68\) 5.83750 0.707900
\(69\) 0 0
\(70\) −3.41147 −0.407749
\(71\) −6.71688 −0.797147 −0.398574 0.917136i \(-0.630495\pi\)
−0.398574 + 0.917136i \(0.630495\pi\)
\(72\) 0 0
\(73\) 8.19253 0.958863 0.479432 0.877579i \(-0.340843\pi\)
0.479432 + 0.877579i \(0.340843\pi\)
\(74\) 1.07873 0.125399
\(75\) 0 0
\(76\) −1.22668 −0.140710
\(77\) 4.59627 0.523793
\(78\) 0 0
\(79\) −2.40373 −0.270441 −0.135221 0.990816i \(-0.543174\pi\)
−0.135221 + 0.990816i \(0.543174\pi\)
\(80\) −0.0368366 −0.00411846
\(81\) 0 0
\(82\) 10.6895 1.18046
\(83\) −12.1925 −1.33830 −0.669152 0.743125i \(-0.733343\pi\)
−0.669152 + 0.743125i \(0.733343\pi\)
\(84\) 0 0
\(85\) −4.18479 −0.453904
\(86\) 2.24628 0.242223
\(87\) 0 0
\(88\) 2.95636 0.315149
\(89\) 8.80066 0.932868 0.466434 0.884556i \(-0.345539\pi\)
0.466434 + 0.884556i \(0.345539\pi\)
\(90\) 0 0
\(91\) −0.184793 −0.0193715
\(92\) 8.43882 0.879807
\(93\) 0 0
\(94\) −9.17530 −0.946360
\(95\) 0.879385 0.0902230
\(96\) 0 0
\(97\) −1.14290 −0.116044 −0.0580221 0.998315i \(-0.518479\pi\)
−0.0580221 + 0.998315i \(0.518479\pi\)
\(98\) 10.9581 1.10694
\(99\) 0 0
\(100\) 5.18479 0.518479
\(101\) 15.7169 1.56389 0.781944 0.623349i \(-0.214228\pi\)
0.781944 + 0.623349i \(0.214228\pi\)
\(102\) 0 0
\(103\) 9.18479 0.905004 0.452502 0.891763i \(-0.350531\pi\)
0.452502 + 0.891763i \(0.350531\pi\)
\(104\) −0.118860 −0.0116552
\(105\) 0 0
\(106\) −2.49525 −0.242360
\(107\) 1.47060 0.142168 0.0710841 0.997470i \(-0.477354\pi\)
0.0710841 + 0.997470i \(0.477354\pi\)
\(108\) 0 0
\(109\) 18.2841 1.75129 0.875647 0.482951i \(-0.160435\pi\)
0.875647 + 0.482951i \(0.160435\pi\)
\(110\) −0.805712 −0.0768216
\(111\) 0 0
\(112\) 0.184793 0.0174613
\(113\) 6.68004 0.628406 0.314203 0.949356i \(-0.398263\pi\)
0.314203 + 0.949356i \(0.398263\pi\)
\(114\) 0 0
\(115\) −6.04963 −0.564131
\(116\) 4.75877 0.441841
\(117\) 0 0
\(118\) −5.41921 −0.498879
\(119\) 20.9932 1.92444
\(120\) 0 0
\(121\) −9.91447 −0.901315
\(122\) −5.23947 −0.474360
\(123\) 0 0
\(124\) −9.54488 −0.857156
\(125\) −8.11381 −0.725721
\(126\) 0 0
\(127\) −19.0993 −1.69479 −0.847393 0.530967i \(-0.821829\pi\)
−0.847393 + 0.530967i \(0.821829\pi\)
\(128\) −6.84255 −0.604802
\(129\) 0 0
\(130\) 0.0323936 0.00284111
\(131\) −4.27126 −0.373182 −0.186591 0.982438i \(-0.559744\pi\)
−0.186591 + 0.982438i \(0.559744\pi\)
\(132\) 0 0
\(133\) −4.41147 −0.382523
\(134\) −2.28312 −0.197231
\(135\) 0 0
\(136\) 13.5030 1.15787
\(137\) −5.47565 −0.467817 −0.233908 0.972259i \(-0.575152\pi\)
−0.233908 + 0.972259i \(0.575152\pi\)
\(138\) 0 0
\(139\) −15.4688 −1.31205 −0.656025 0.754739i \(-0.727763\pi\)
−0.656025 + 0.754739i \(0.727763\pi\)
\(140\) 4.75877 0.402190
\(141\) 0 0
\(142\) −5.90673 −0.495681
\(143\) −0.0436438 −0.00364967
\(144\) 0 0
\(145\) −3.41147 −0.283308
\(146\) 7.20439 0.596240
\(147\) 0 0
\(148\) −1.50475 −0.123690
\(149\) −14.9932 −1.22829 −0.614145 0.789193i \(-0.710499\pi\)
−0.614145 + 0.789193i \(0.710499\pi\)
\(150\) 0 0
\(151\) 13.7638 1.12008 0.560042 0.828464i \(-0.310785\pi\)
0.560042 + 0.828464i \(0.310785\pi\)
\(152\) −2.83750 −0.230151
\(153\) 0 0
\(154\) 4.04189 0.325705
\(155\) 6.84255 0.549607
\(156\) 0 0
\(157\) 5.00000 0.399043 0.199522 0.979893i \(-0.436061\pi\)
0.199522 + 0.979893i \(0.436061\pi\)
\(158\) −2.11381 −0.168166
\(159\) 0 0
\(160\) 4.95811 0.391973
\(161\) 30.3482 2.39178
\(162\) 0 0
\(163\) −12.7314 −0.997203 −0.498601 0.866831i \(-0.666153\pi\)
−0.498601 + 0.866831i \(0.666153\pi\)
\(164\) −14.9112 −1.16437
\(165\) 0 0
\(166\) −10.7219 −0.832183
\(167\) −2.64496 −0.204673 −0.102337 0.994750i \(-0.532632\pi\)
−0.102337 + 0.994750i \(0.532632\pi\)
\(168\) 0 0
\(169\) −12.9982 −0.999865
\(170\) −3.68004 −0.282247
\(171\) 0 0
\(172\) −3.13341 −0.238920
\(173\) −21.3550 −1.62359 −0.811797 0.583940i \(-0.801510\pi\)
−0.811797 + 0.583940i \(0.801510\pi\)
\(174\) 0 0
\(175\) 18.6459 1.40950
\(176\) 0.0436438 0.00328977
\(177\) 0 0
\(178\) 7.73917 0.580075
\(179\) −1.04189 −0.0778744 −0.0389372 0.999242i \(-0.512397\pi\)
−0.0389372 + 0.999242i \(0.512397\pi\)
\(180\) 0 0
\(181\) −14.1411 −1.05110 −0.525552 0.850762i \(-0.676141\pi\)
−0.525552 + 0.850762i \(0.676141\pi\)
\(182\) −0.162504 −0.0120456
\(183\) 0 0
\(184\) 19.5202 1.43905
\(185\) 1.07873 0.0793095
\(186\) 0 0
\(187\) 4.95811 0.362573
\(188\) 12.7989 0.933456
\(189\) 0 0
\(190\) 0.773318 0.0561024
\(191\) −16.2344 −1.17468 −0.587341 0.809340i \(-0.699825\pi\)
−0.587341 + 0.809340i \(0.699825\pi\)
\(192\) 0 0
\(193\) 12.4270 0.894512 0.447256 0.894406i \(-0.352401\pi\)
0.447256 + 0.894406i \(0.352401\pi\)
\(194\) −1.00505 −0.0721586
\(195\) 0 0
\(196\) −15.2858 −1.09184
\(197\) −1.52940 −0.108965 −0.0544826 0.998515i \(-0.517351\pi\)
−0.0544826 + 0.998515i \(0.517351\pi\)
\(198\) 0 0
\(199\) 10.8307 0.767767 0.383884 0.923381i \(-0.374586\pi\)
0.383884 + 0.923381i \(0.374586\pi\)
\(200\) 11.9932 0.848047
\(201\) 0 0
\(202\) 13.8212 0.972456
\(203\) 17.1138 1.20115
\(204\) 0 0
\(205\) 10.6895 0.746590
\(206\) 8.07697 0.562749
\(207\) 0 0
\(208\) −0.00175469 −0.000121666 0
\(209\) −1.04189 −0.0720690
\(210\) 0 0
\(211\) −7.87258 −0.541971 −0.270985 0.962583i \(-0.587349\pi\)
−0.270985 + 0.962583i \(0.587349\pi\)
\(212\) 3.48070 0.239056
\(213\) 0 0
\(214\) 1.29322 0.0884029
\(215\) 2.24628 0.153195
\(216\) 0 0
\(217\) −34.3259 −2.33020
\(218\) 16.0787 1.08899
\(219\) 0 0
\(220\) 1.12391 0.0757742
\(221\) −0.199340 −0.0134091
\(222\) 0 0
\(223\) 18.0651 1.20973 0.604865 0.796328i \(-0.293227\pi\)
0.604865 + 0.796328i \(0.293227\pi\)
\(224\) −24.8726 −1.66187
\(225\) 0 0
\(226\) 5.87433 0.390755
\(227\) −18.6800 −1.23984 −0.619919 0.784666i \(-0.712835\pi\)
−0.619919 + 0.784666i \(0.712835\pi\)
\(228\) 0 0
\(229\) −6.92396 −0.457548 −0.228774 0.973480i \(-0.573472\pi\)
−0.228774 + 0.973480i \(0.573472\pi\)
\(230\) −5.31996 −0.350787
\(231\) 0 0
\(232\) 11.0077 0.722694
\(233\) 11.2831 0.739182 0.369591 0.929195i \(-0.379498\pi\)
0.369591 + 0.929195i \(0.379498\pi\)
\(234\) 0 0
\(235\) −9.17530 −0.598530
\(236\) 7.55943 0.492077
\(237\) 0 0
\(238\) 18.4611 1.19666
\(239\) −26.9564 −1.74366 −0.871831 0.489807i \(-0.837067\pi\)
−0.871831 + 0.489807i \(0.837067\pi\)
\(240\) 0 0
\(241\) 19.6382 1.26500 0.632502 0.774558i \(-0.282028\pi\)
0.632502 + 0.774558i \(0.282028\pi\)
\(242\) −8.71864 −0.560455
\(243\) 0 0
\(244\) 7.30871 0.467892
\(245\) 10.9581 0.700088
\(246\) 0 0
\(247\) 0.0418891 0.00266534
\(248\) −22.0787 −1.40200
\(249\) 0 0
\(250\) −7.13516 −0.451267
\(251\) 18.1857 1.14787 0.573936 0.818900i \(-0.305416\pi\)
0.573936 + 0.818900i \(0.305416\pi\)
\(252\) 0 0
\(253\) 7.16756 0.450620
\(254\) −16.7956 −1.05385
\(255\) 0 0
\(256\) −16.1010 −1.00631
\(257\) −19.1976 −1.19751 −0.598756 0.800931i \(-0.704338\pi\)
−0.598756 + 0.800931i \(0.704338\pi\)
\(258\) 0 0
\(259\) −5.41147 −0.336253
\(260\) −0.0451868 −0.00280237
\(261\) 0 0
\(262\) −3.75608 −0.232052
\(263\) −3.28817 −0.202757 −0.101379 0.994848i \(-0.532325\pi\)
−0.101379 + 0.994848i \(0.532325\pi\)
\(264\) 0 0
\(265\) −2.49525 −0.153282
\(266\) −3.87939 −0.237860
\(267\) 0 0
\(268\) 3.18479 0.194542
\(269\) −30.3783 −1.85220 −0.926098 0.377284i \(-0.876858\pi\)
−0.926098 + 0.377284i \(0.876858\pi\)
\(270\) 0 0
\(271\) −29.9317 −1.81822 −0.909111 0.416554i \(-0.863238\pi\)
−0.909111 + 0.416554i \(0.863238\pi\)
\(272\) 0.199340 0.0120868
\(273\) 0 0
\(274\) −4.81521 −0.290897
\(275\) 4.40373 0.265555
\(276\) 0 0
\(277\) 7.51249 0.451382 0.225691 0.974199i \(-0.427536\pi\)
0.225691 + 0.974199i \(0.427536\pi\)
\(278\) −13.6031 −0.815858
\(279\) 0 0
\(280\) 11.0077 0.657838
\(281\) 4.75877 0.283884 0.141942 0.989875i \(-0.454665\pi\)
0.141942 + 0.989875i \(0.454665\pi\)
\(282\) 0 0
\(283\) 12.4534 0.740276 0.370138 0.928977i \(-0.379310\pi\)
0.370138 + 0.928977i \(0.379310\pi\)
\(284\) 8.23947 0.488923
\(285\) 0 0
\(286\) −0.0383797 −0.00226944
\(287\) −53.6245 −3.16536
\(288\) 0 0
\(289\) 5.64590 0.332112
\(290\) −3.00000 −0.176166
\(291\) 0 0
\(292\) −10.0496 −0.588110
\(293\) 5.76382 0.336726 0.168363 0.985725i \(-0.446152\pi\)
0.168363 + 0.985725i \(0.446152\pi\)
\(294\) 0 0
\(295\) −5.41921 −0.315519
\(296\) −3.48070 −0.202312
\(297\) 0 0
\(298\) −13.1848 −0.763775
\(299\) −0.288171 −0.0166654
\(300\) 0 0
\(301\) −11.2686 −0.649510
\(302\) 12.1037 0.696490
\(303\) 0 0
\(304\) −0.0418891 −0.00240250
\(305\) −5.23947 −0.300011
\(306\) 0 0
\(307\) 31.7547 1.81233 0.906167 0.422920i \(-0.138995\pi\)
0.906167 + 0.422920i \(0.138995\pi\)
\(308\) −5.63816 −0.321264
\(309\) 0 0
\(310\) 6.01724 0.341756
\(311\) −17.6382 −1.00017 −0.500084 0.865977i \(-0.666698\pi\)
−0.500084 + 0.865977i \(0.666698\pi\)
\(312\) 0 0
\(313\) 13.6209 0.769900 0.384950 0.922937i \(-0.374219\pi\)
0.384950 + 0.922937i \(0.374219\pi\)
\(314\) 4.39693 0.248133
\(315\) 0 0
\(316\) 2.94862 0.165873
\(317\) −13.6263 −0.765329 −0.382665 0.923887i \(-0.624993\pi\)
−0.382665 + 0.923887i \(0.624993\pi\)
\(318\) 0 0
\(319\) 4.04189 0.226302
\(320\) 4.43376 0.247855
\(321\) 0 0
\(322\) 26.6878 1.48725
\(323\) −4.75877 −0.264785
\(324\) 0 0
\(325\) −0.177052 −0.00982106
\(326\) −11.1958 −0.620080
\(327\) 0 0
\(328\) −34.4917 −1.90449
\(329\) 46.0283 2.53762
\(330\) 0 0
\(331\) 24.6287 1.35371 0.676857 0.736115i \(-0.263342\pi\)
0.676857 + 0.736115i \(0.263342\pi\)
\(332\) 14.9564 0.820837
\(333\) 0 0
\(334\) −2.32594 −0.127270
\(335\) −2.28312 −0.124740
\(336\) 0 0
\(337\) −23.5526 −1.28299 −0.641497 0.767126i \(-0.721686\pi\)
−0.641497 + 0.767126i \(0.721686\pi\)
\(338\) −11.4305 −0.621735
\(339\) 0 0
\(340\) 5.13341 0.278398
\(341\) −8.10700 −0.439019
\(342\) 0 0
\(343\) −24.0915 −1.30082
\(344\) −7.24804 −0.390788
\(345\) 0 0
\(346\) −18.7793 −1.00958
\(347\) 32.2395 1.73071 0.865353 0.501163i \(-0.167094\pi\)
0.865353 + 0.501163i \(0.167094\pi\)
\(348\) 0 0
\(349\) −14.1584 −0.757881 −0.378940 0.925421i \(-0.623711\pi\)
−0.378940 + 0.925421i \(0.623711\pi\)
\(350\) 16.3969 0.876453
\(351\) 0 0
\(352\) −5.87433 −0.313103
\(353\) 15.9982 0.851501 0.425750 0.904841i \(-0.360010\pi\)
0.425750 + 0.904841i \(0.360010\pi\)
\(354\) 0 0
\(355\) −5.90673 −0.313496
\(356\) −10.7956 −0.572166
\(357\) 0 0
\(358\) −0.916222 −0.0484238
\(359\) 22.2645 1.17507 0.587536 0.809198i \(-0.300098\pi\)
0.587536 + 0.809198i \(0.300098\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −12.4355 −0.653596
\(363\) 0 0
\(364\) 0.226682 0.0118813
\(365\) 7.20439 0.377095
\(366\) 0 0
\(367\) −10.3182 −0.538606 −0.269303 0.963056i \(-0.586793\pi\)
−0.269303 + 0.963056i \(0.586793\pi\)
\(368\) 0.288171 0.0150220
\(369\) 0 0
\(370\) 0.948615 0.0493162
\(371\) 12.5175 0.649878
\(372\) 0 0
\(373\) 10.7638 0.557330 0.278665 0.960388i \(-0.410108\pi\)
0.278665 + 0.960388i \(0.410108\pi\)
\(374\) 4.36009 0.225455
\(375\) 0 0
\(376\) 29.6058 1.52680
\(377\) −0.162504 −0.00836937
\(378\) 0 0
\(379\) −24.2591 −1.24610 −0.623052 0.782180i \(-0.714108\pi\)
−0.623052 + 0.782180i \(0.714108\pi\)
\(380\) −1.07873 −0.0553375
\(381\) 0 0
\(382\) −14.2763 −0.730440
\(383\) 19.8188 1.01269 0.506347 0.862330i \(-0.330995\pi\)
0.506347 + 0.862330i \(0.330995\pi\)
\(384\) 0 0
\(385\) 4.04189 0.205994
\(386\) 10.9281 0.556225
\(387\) 0 0
\(388\) 1.40198 0.0711747
\(389\) 34.7151 1.76013 0.880063 0.474856i \(-0.157500\pi\)
0.880063 + 0.474856i \(0.157500\pi\)
\(390\) 0 0
\(391\) 32.7374 1.65560
\(392\) −35.3583 −1.78587
\(393\) 0 0
\(394\) −1.34493 −0.0677567
\(395\) −2.11381 −0.106357
\(396\) 0 0
\(397\) −8.55262 −0.429244 −0.214622 0.976697i \(-0.568852\pi\)
−0.214622 + 0.976697i \(0.568852\pi\)
\(398\) 9.52435 0.477412
\(399\) 0 0
\(400\) 0.177052 0.00885259
\(401\) −12.9682 −0.647602 −0.323801 0.946125i \(-0.604961\pi\)
−0.323801 + 0.946125i \(0.604961\pi\)
\(402\) 0 0
\(403\) 0.325941 0.0162363
\(404\) −19.2796 −0.959196
\(405\) 0 0
\(406\) 15.0496 0.746901
\(407\) −1.27807 −0.0633514
\(408\) 0 0
\(409\) −22.4611 −1.11063 −0.555315 0.831640i \(-0.687402\pi\)
−0.555315 + 0.831640i \(0.687402\pi\)
\(410\) 9.40022 0.464244
\(411\) 0 0
\(412\) −11.2668 −0.555076
\(413\) 27.1857 1.33772
\(414\) 0 0
\(415\) −10.7219 −0.526319
\(416\) 0.236177 0.0115795
\(417\) 0 0
\(418\) −0.916222 −0.0448139
\(419\) 3.68004 0.179782 0.0898910 0.995952i \(-0.471348\pi\)
0.0898910 + 0.995952i \(0.471348\pi\)
\(420\) 0 0
\(421\) 2.41147 0.117528 0.0587640 0.998272i \(-0.481284\pi\)
0.0587640 + 0.998272i \(0.481284\pi\)
\(422\) −6.92303 −0.337008
\(423\) 0 0
\(424\) 8.05138 0.391010
\(425\) 20.1138 0.975663
\(426\) 0 0
\(427\) 26.2841 1.27197
\(428\) −1.80396 −0.0871976
\(429\) 0 0
\(430\) 1.97535 0.0952597
\(431\) 13.6919 0.659516 0.329758 0.944066i \(-0.393033\pi\)
0.329758 + 0.944066i \(0.393033\pi\)
\(432\) 0 0
\(433\) −27.6382 −1.32821 −0.664103 0.747642i \(-0.731186\pi\)
−0.664103 + 0.747642i \(0.731186\pi\)
\(434\) −30.1857 −1.44896
\(435\) 0 0
\(436\) −22.4287 −1.07414
\(437\) −6.87939 −0.329086
\(438\) 0 0
\(439\) −3.80747 −0.181720 −0.0908602 0.995864i \(-0.528962\pi\)
−0.0908602 + 0.995864i \(0.528962\pi\)
\(440\) 2.59978 0.123939
\(441\) 0 0
\(442\) −0.175297 −0.00833803
\(443\) 9.16250 0.435324 0.217662 0.976024i \(-0.430157\pi\)
0.217662 + 0.976024i \(0.430157\pi\)
\(444\) 0 0
\(445\) 7.73917 0.366872
\(446\) 15.8862 0.752233
\(447\) 0 0
\(448\) −22.2422 −1.05084
\(449\) 5.93313 0.280002 0.140001 0.990151i \(-0.455289\pi\)
0.140001 + 0.990151i \(0.455289\pi\)
\(450\) 0 0
\(451\) −12.6649 −0.596366
\(452\) −8.19429 −0.385427
\(453\) 0 0
\(454\) −16.4270 −0.770955
\(455\) −0.162504 −0.00761830
\(456\) 0 0
\(457\) 28.6705 1.34115 0.670576 0.741841i \(-0.266047\pi\)
0.670576 + 0.741841i \(0.266047\pi\)
\(458\) −6.08883 −0.284512
\(459\) 0 0
\(460\) 7.42097 0.346004
\(461\) 25.3669 1.18145 0.590727 0.806871i \(-0.298841\pi\)
0.590727 + 0.806871i \(0.298841\pi\)
\(462\) 0 0
\(463\) 15.0591 0.699857 0.349928 0.936776i \(-0.386206\pi\)
0.349928 + 0.936776i \(0.386206\pi\)
\(464\) 0.162504 0.00754405
\(465\) 0 0
\(466\) 9.92221 0.459637
\(467\) −20.7050 −0.958114 −0.479057 0.877784i \(-0.659021\pi\)
−0.479057 + 0.877784i \(0.659021\pi\)
\(468\) 0 0
\(469\) 11.4534 0.528867
\(470\) −8.06862 −0.372178
\(471\) 0 0
\(472\) 17.4861 0.804862
\(473\) −2.66138 −0.122370
\(474\) 0 0
\(475\) −4.22668 −0.193933
\(476\) −25.7520 −1.18034
\(477\) 0 0
\(478\) −23.7050 −1.08424
\(479\) −23.6013 −1.07837 −0.539186 0.842187i \(-0.681268\pi\)
−0.539186 + 0.842187i \(0.681268\pi\)
\(480\) 0 0
\(481\) 0.0513845 0.00234293
\(482\) 17.2695 0.786604
\(483\) 0 0
\(484\) 12.1619 0.552813
\(485\) −1.00505 −0.0456371
\(486\) 0 0
\(487\) −15.4020 −0.697930 −0.348965 0.937136i \(-0.613467\pi\)
−0.348965 + 0.937136i \(0.613467\pi\)
\(488\) 16.9061 0.765304
\(489\) 0 0
\(490\) 9.63640 0.435328
\(491\) 3.13247 0.141367 0.0706833 0.997499i \(-0.477482\pi\)
0.0706833 + 0.997499i \(0.477482\pi\)
\(492\) 0 0
\(493\) 18.4611 0.831446
\(494\) 0.0368366 0.00165736
\(495\) 0 0
\(496\) −0.325941 −0.0146352
\(497\) 29.6313 1.32915
\(498\) 0 0
\(499\) 21.9145 0.981026 0.490513 0.871434i \(-0.336809\pi\)
0.490513 + 0.871434i \(0.336809\pi\)
\(500\) 9.95306 0.445114
\(501\) 0 0
\(502\) 15.9923 0.713769
\(503\) 25.7820 1.14956 0.574781 0.818307i \(-0.305087\pi\)
0.574781 + 0.818307i \(0.305087\pi\)
\(504\) 0 0
\(505\) 13.8212 0.615035
\(506\) 6.30304 0.280204
\(507\) 0 0
\(508\) 23.4287 1.03948
\(509\) 29.0182 1.28621 0.643104 0.765779i \(-0.277646\pi\)
0.643104 + 0.765779i \(0.277646\pi\)
\(510\) 0 0
\(511\) −36.1411 −1.59879
\(512\) −0.473897 −0.0209435
\(513\) 0 0
\(514\) −16.8821 −0.744636
\(515\) 8.07697 0.355914
\(516\) 0 0
\(517\) 10.8708 0.478098
\(518\) −4.75877 −0.209088
\(519\) 0 0
\(520\) −0.104524 −0.00458367
\(521\) 10.5526 0.462319 0.231159 0.972916i \(-0.425748\pi\)
0.231159 + 0.972916i \(0.425748\pi\)
\(522\) 0 0
\(523\) 29.3182 1.28200 0.640998 0.767543i \(-0.278521\pi\)
0.640998 + 0.767543i \(0.278521\pi\)
\(524\) 5.23947 0.228888
\(525\) 0 0
\(526\) −2.89157 −0.126078
\(527\) −37.0283 −1.61298
\(528\) 0 0
\(529\) 24.3259 1.05765
\(530\) −2.19429 −0.0953138
\(531\) 0 0
\(532\) 5.41147 0.234617
\(533\) 0.509191 0.0220555
\(534\) 0 0
\(535\) 1.29322 0.0559109
\(536\) 7.36690 0.318201
\(537\) 0 0
\(538\) −26.7142 −1.15173
\(539\) −12.9831 −0.559221
\(540\) 0 0
\(541\) −40.0820 −1.72326 −0.861630 0.507536i \(-0.830556\pi\)
−0.861630 + 0.507536i \(0.830556\pi\)
\(542\) −26.3215 −1.13061
\(543\) 0 0
\(544\) −26.8307 −1.15036
\(545\) 16.0787 0.688737
\(546\) 0 0
\(547\) −26.2576 −1.12270 −0.561348 0.827580i \(-0.689717\pi\)
−0.561348 + 0.827580i \(0.689717\pi\)
\(548\) 6.71688 0.286931
\(549\) 0 0
\(550\) 3.87258 0.165127
\(551\) −3.87939 −0.165267
\(552\) 0 0
\(553\) 10.6040 0.450928
\(554\) 6.60637 0.280678
\(555\) 0 0
\(556\) 18.9753 0.804734
\(557\) 43.5895 1.84694 0.923472 0.383665i \(-0.125338\pi\)
0.923472 + 0.383665i \(0.125338\pi\)
\(558\) 0 0
\(559\) 0.107000 0.00452564
\(560\) 0.162504 0.00686704
\(561\) 0 0
\(562\) 4.18479 0.176525
\(563\) 7.47060 0.314848 0.157424 0.987531i \(-0.449681\pi\)
0.157424 + 0.987531i \(0.449681\pi\)
\(564\) 0 0
\(565\) 5.87433 0.247135
\(566\) 10.9513 0.460318
\(567\) 0 0
\(568\) 19.0591 0.799703
\(569\) 20.5945 0.863367 0.431683 0.902025i \(-0.357920\pi\)
0.431683 + 0.902025i \(0.357920\pi\)
\(570\) 0 0
\(571\) −4.02641 −0.168500 −0.0842500 0.996445i \(-0.526849\pi\)
−0.0842500 + 0.996445i \(0.526849\pi\)
\(572\) 0.0535370 0.00223849
\(573\) 0 0
\(574\) −47.1566 −1.96828
\(575\) 29.0770 1.21259
\(576\) 0 0
\(577\) 19.8895 0.828010 0.414005 0.910275i \(-0.364130\pi\)
0.414005 + 0.910275i \(0.364130\pi\)
\(578\) 4.96492 0.206513
\(579\) 0 0
\(580\) 4.18479 0.173764
\(581\) 53.7870 2.23146
\(582\) 0 0
\(583\) 2.95636 0.122440
\(584\) −23.2463 −0.961938
\(585\) 0 0
\(586\) 5.06862 0.209383
\(587\) −16.4638 −0.679533 −0.339767 0.940510i \(-0.610348\pi\)
−0.339767 + 0.940510i \(0.610348\pi\)
\(588\) 0 0
\(589\) 7.78106 0.320613
\(590\) −4.76558 −0.196196
\(591\) 0 0
\(592\) −0.0513845 −0.00211189
\(593\) −23.4088 −0.961284 −0.480642 0.876917i \(-0.659596\pi\)
−0.480642 + 0.876917i \(0.659596\pi\)
\(594\) 0 0
\(595\) 18.4611 0.756831
\(596\) 18.3919 0.753361
\(597\) 0 0
\(598\) −0.253413 −0.0103628
\(599\) −40.3465 −1.64851 −0.824256 0.566217i \(-0.808406\pi\)
−0.824256 + 0.566217i \(0.808406\pi\)
\(600\) 0 0
\(601\) 0.228436 0.00931811 0.00465906 0.999989i \(-0.498517\pi\)
0.00465906 + 0.999989i \(0.498517\pi\)
\(602\) −9.90941 −0.403878
\(603\) 0 0
\(604\) −16.8838 −0.686993
\(605\) −8.71864 −0.354463
\(606\) 0 0
\(607\) −2.28405 −0.0927068 −0.0463534 0.998925i \(-0.514760\pi\)
−0.0463534 + 0.998925i \(0.514760\pi\)
\(608\) 5.63816 0.228657
\(609\) 0 0
\(610\) −4.60752 −0.186553
\(611\) −0.437061 −0.0176816
\(612\) 0 0
\(613\) 43.2235 1.74578 0.872890 0.487917i \(-0.162243\pi\)
0.872890 + 0.487917i \(0.162243\pi\)
\(614\) 27.9246 1.12694
\(615\) 0 0
\(616\) −13.0419 −0.525473
\(617\) −42.0096 −1.69124 −0.845622 0.533783i \(-0.820770\pi\)
−0.845622 + 0.533783i \(0.820770\pi\)
\(618\) 0 0
\(619\) −33.1334 −1.33174 −0.665872 0.746066i \(-0.731940\pi\)
−0.665872 + 0.746066i \(0.731940\pi\)
\(620\) −8.39363 −0.337096
\(621\) 0 0
\(622\) −15.5107 −0.621924
\(623\) −38.8239 −1.55545
\(624\) 0 0
\(625\) 13.9982 0.559930
\(626\) 11.9780 0.478739
\(627\) 0 0
\(628\) −6.13341 −0.244750
\(629\) −5.83750 −0.232756
\(630\) 0 0
\(631\) 33.3601 1.32804 0.664022 0.747713i \(-0.268848\pi\)
0.664022 + 0.747713i \(0.268848\pi\)
\(632\) 6.82058 0.271308
\(633\) 0 0
\(634\) −11.9828 −0.475896
\(635\) −16.7956 −0.666513
\(636\) 0 0
\(637\) 0.521984 0.0206818
\(638\) 3.55438 0.140719
\(639\) 0 0
\(640\) −6.01724 −0.237852
\(641\) −2.18748 −0.0864003 −0.0432002 0.999066i \(-0.513755\pi\)
−0.0432002 + 0.999066i \(0.513755\pi\)
\(642\) 0 0
\(643\) 14.4875 0.571332 0.285666 0.958329i \(-0.407785\pi\)
0.285666 + 0.958329i \(0.407785\pi\)
\(644\) −37.2276 −1.46697
\(645\) 0 0
\(646\) −4.18479 −0.164648
\(647\) −10.6399 −0.418298 −0.209149 0.977884i \(-0.567069\pi\)
−0.209149 + 0.977884i \(0.567069\pi\)
\(648\) 0 0
\(649\) 6.42065 0.252032
\(650\) −0.155697 −0.00610693
\(651\) 0 0
\(652\) 15.6174 0.611625
\(653\) −14.7638 −0.577753 −0.288877 0.957366i \(-0.593282\pi\)
−0.288877 + 0.957366i \(0.593282\pi\)
\(654\) 0 0
\(655\) −3.75608 −0.146762
\(656\) −0.509191 −0.0198806
\(657\) 0 0
\(658\) 40.4766 1.57794
\(659\) 49.2945 1.92024 0.960120 0.279588i \(-0.0901977\pi\)
0.960120 + 0.279588i \(0.0901977\pi\)
\(660\) 0 0
\(661\) −26.9905 −1.04981 −0.524904 0.851161i \(-0.675899\pi\)
−0.524904 + 0.851161i \(0.675899\pi\)
\(662\) 21.6581 0.841765
\(663\) 0 0
\(664\) 34.5963 1.34260
\(665\) −3.87939 −0.150436
\(666\) 0 0
\(667\) 26.6878 1.03336
\(668\) 3.24453 0.125535
\(669\) 0 0
\(670\) −2.00774 −0.0775658
\(671\) 6.20769 0.239645
\(672\) 0 0
\(673\) 17.1429 0.660810 0.330405 0.943839i \(-0.392815\pi\)
0.330405 + 0.943839i \(0.392815\pi\)
\(674\) −20.7118 −0.797790
\(675\) 0 0
\(676\) 15.9447 0.613258
\(677\) −31.6783 −1.21750 −0.608748 0.793364i \(-0.708328\pi\)
−0.608748 + 0.793364i \(0.708328\pi\)
\(678\) 0 0
\(679\) 5.04189 0.193490
\(680\) 11.8743 0.455360
\(681\) 0 0
\(682\) −7.12918 −0.272990
\(683\) 7.36009 0.281626 0.140813 0.990036i \(-0.455028\pi\)
0.140813 + 0.990036i \(0.455028\pi\)
\(684\) 0 0
\(685\) −4.81521 −0.183980
\(686\) −21.1857 −0.808875
\(687\) 0 0
\(688\) −0.107000 −0.00407936
\(689\) −0.118860 −0.00452821
\(690\) 0 0
\(691\) −24.2763 −0.923514 −0.461757 0.887006i \(-0.652781\pi\)
−0.461757 + 0.887006i \(0.652781\pi\)
\(692\) 26.1958 0.995816
\(693\) 0 0
\(694\) 28.3509 1.07619
\(695\) −13.6031 −0.515994
\(696\) 0 0
\(697\) −57.8462 −2.19108
\(698\) −12.4507 −0.471265
\(699\) 0 0
\(700\) −22.8726 −0.864502
\(701\) 43.5390 1.64445 0.822223 0.569166i \(-0.192734\pi\)
0.822223 + 0.569166i \(0.192734\pi\)
\(702\) 0 0
\(703\) 1.22668 0.0462652
\(704\) −5.25309 −0.197983
\(705\) 0 0
\(706\) 14.0686 0.529480
\(707\) −69.3346 −2.60760
\(708\) 0 0
\(709\) −13.6132 −0.511254 −0.255627 0.966776i \(-0.582282\pi\)
−0.255627 + 0.966776i \(0.582282\pi\)
\(710\) −5.19429 −0.194938
\(711\) 0 0
\(712\) −24.9718 −0.935859
\(713\) −53.5289 −2.00467
\(714\) 0 0
\(715\) −0.0383797 −0.00143532
\(716\) 1.27807 0.0477636
\(717\) 0 0
\(718\) 19.5790 0.730683
\(719\) −33.4807 −1.24862 −0.624310 0.781177i \(-0.714620\pi\)
−0.624310 + 0.781177i \(0.714620\pi\)
\(720\) 0 0
\(721\) −40.5185 −1.50899
\(722\) 0.879385 0.0327273
\(723\) 0 0
\(724\) 17.3467 0.644685
\(725\) 16.3969 0.608967
\(726\) 0 0
\(727\) −6.87433 −0.254955 −0.127477 0.991841i \(-0.540688\pi\)
−0.127477 + 0.991841i \(0.540688\pi\)
\(728\) 0.524348 0.0194336
\(729\) 0 0
\(730\) 6.33544 0.234485
\(731\) −12.1557 −0.449595
\(732\) 0 0
\(733\) −48.9796 −1.80910 −0.904551 0.426365i \(-0.859794\pi\)
−0.904551 + 0.426365i \(0.859794\pi\)
\(734\) −9.07367 −0.334915
\(735\) 0 0
\(736\) −38.7870 −1.42971
\(737\) 2.70502 0.0996408
\(738\) 0 0
\(739\) 40.5276 1.49083 0.745417 0.666599i \(-0.232251\pi\)
0.745417 + 0.666599i \(0.232251\pi\)
\(740\) −1.32325 −0.0486437
\(741\) 0 0
\(742\) 11.0077 0.404107
\(743\) 3.39187 0.124436 0.0622179 0.998063i \(-0.480183\pi\)
0.0622179 + 0.998063i \(0.480183\pi\)
\(744\) 0 0
\(745\) −13.1848 −0.483053
\(746\) 9.46555 0.346558
\(747\) 0 0
\(748\) −6.08202 −0.222381
\(749\) −6.48751 −0.237049
\(750\) 0 0
\(751\) 11.6800 0.426211 0.213105 0.977029i \(-0.431642\pi\)
0.213105 + 0.977029i \(0.431642\pi\)
\(752\) 0.437061 0.0159380
\(753\) 0 0
\(754\) −0.142903 −0.00520424
\(755\) 12.1037 0.440499
\(756\) 0 0
\(757\) −43.4083 −1.57770 −0.788851 0.614585i \(-0.789323\pi\)
−0.788851 + 0.614585i \(0.789323\pi\)
\(758\) −21.3331 −0.774852
\(759\) 0 0
\(760\) −2.49525 −0.0905123
\(761\) 15.6800 0.568401 0.284201 0.958765i \(-0.408272\pi\)
0.284201 + 0.958765i \(0.408272\pi\)
\(762\) 0 0
\(763\) −80.6596 −2.92007
\(764\) 19.9145 0.720480
\(765\) 0 0
\(766\) 17.4284 0.629713
\(767\) −0.258142 −0.00932095
\(768\) 0 0
\(769\) 18.1908 0.655976 0.327988 0.944682i \(-0.393629\pi\)
0.327988 + 0.944682i \(0.393629\pi\)
\(770\) 3.55438 0.128091
\(771\) 0 0
\(772\) −15.2439 −0.548641
\(773\) −19.1307 −0.688084 −0.344042 0.938954i \(-0.611796\pi\)
−0.344042 + 0.938954i \(0.611796\pi\)
\(774\) 0 0
\(775\) −32.8881 −1.18137
\(776\) 3.24298 0.116416
\(777\) 0 0
\(778\) 30.5280 1.09448
\(779\) 12.1557 0.435523
\(780\) 0 0
\(781\) 6.99825 0.250417
\(782\) 28.7888 1.02949
\(783\) 0 0
\(784\) −0.521984 −0.0186423
\(785\) 4.39693 0.156933
\(786\) 0 0
\(787\) −43.0729 −1.53538 −0.767691 0.640821i \(-0.778594\pi\)
−0.767691 + 0.640821i \(0.778594\pi\)
\(788\) 1.87609 0.0668328
\(789\) 0 0
\(790\) −1.85885 −0.0661350
\(791\) −29.4688 −1.04779
\(792\) 0 0
\(793\) −0.249580 −0.00886284
\(794\) −7.52105 −0.266912
\(795\) 0 0
\(796\) −13.2858 −0.470903
\(797\) −4.89124 −0.173257 −0.0866284 0.996241i \(-0.527609\pi\)
−0.0866284 + 0.996241i \(0.527609\pi\)
\(798\) 0 0
\(799\) 49.6519 1.75656
\(800\) −23.8307 −0.842542
\(801\) 0 0
\(802\) −11.4041 −0.402691
\(803\) −8.53571 −0.301219
\(804\) 0 0
\(805\) 26.6878 0.940621
\(806\) 0.286628 0.0100960
\(807\) 0 0
\(808\) −44.5966 −1.56890
\(809\) 39.0669 1.37352 0.686759 0.726885i \(-0.259033\pi\)
0.686759 + 0.726885i \(0.259033\pi\)
\(810\) 0 0
\(811\) 51.4178 1.80552 0.902761 0.430142i \(-0.141536\pi\)
0.902761 + 0.430142i \(0.141536\pi\)
\(812\) −20.9932 −0.736717
\(813\) 0 0
\(814\) −1.12391 −0.0393931
\(815\) −11.1958 −0.392173
\(816\) 0 0
\(817\) 2.55438 0.0893664
\(818\) −19.7520 −0.690611
\(819\) 0 0
\(820\) −13.1127 −0.457914
\(821\) −8.47565 −0.295802 −0.147901 0.989002i \(-0.547252\pi\)
−0.147901 + 0.989002i \(0.547252\pi\)
\(822\) 0 0
\(823\) 22.8571 0.796748 0.398374 0.917223i \(-0.369575\pi\)
0.398374 + 0.917223i \(0.369575\pi\)
\(824\) −26.0618 −0.907906
\(825\) 0 0
\(826\) 23.9067 0.831821
\(827\) 30.5708 1.06305 0.531525 0.847042i \(-0.321619\pi\)
0.531525 + 0.847042i \(0.321619\pi\)
\(828\) 0 0
\(829\) 22.9504 0.797099 0.398550 0.917147i \(-0.369514\pi\)
0.398550 + 0.917147i \(0.369514\pi\)
\(830\) −9.42871 −0.327275
\(831\) 0 0
\(832\) 0.211200 0.00732204
\(833\) −59.2995 −2.05461
\(834\) 0 0
\(835\) −2.32594 −0.0804925
\(836\) 1.27807 0.0442028
\(837\) 0 0
\(838\) 3.23618 0.111792
\(839\) 18.5408 0.640098 0.320049 0.947401i \(-0.396301\pi\)
0.320049 + 0.947401i \(0.396301\pi\)
\(840\) 0 0
\(841\) −13.9504 −0.481047
\(842\) 2.12061 0.0730812
\(843\) 0 0
\(844\) 9.65715 0.332413
\(845\) −11.4305 −0.393220
\(846\) 0 0
\(847\) 43.7374 1.50284
\(848\) 0.118860 0.00408167
\(849\) 0 0
\(850\) 17.6878 0.606686
\(851\) −8.43882 −0.289279
\(852\) 0 0
\(853\) −46.3182 −1.58590 −0.792952 0.609283i \(-0.791457\pi\)
−0.792952 + 0.609283i \(0.791457\pi\)
\(854\) 23.1138 0.790938
\(855\) 0 0
\(856\) −4.17282 −0.142624
\(857\) 2.41685 0.0825581 0.0412790 0.999148i \(-0.486857\pi\)
0.0412790 + 0.999148i \(0.486857\pi\)
\(858\) 0 0
\(859\) −31.1489 −1.06279 −0.531393 0.847125i \(-0.678331\pi\)
−0.531393 + 0.847125i \(0.678331\pi\)
\(860\) −2.75547 −0.0939608
\(861\) 0 0
\(862\) 12.0405 0.410100
\(863\) −57.6364 −1.96197 −0.980983 0.194094i \(-0.937823\pi\)
−0.980983 + 0.194094i \(0.937823\pi\)
\(864\) 0 0
\(865\) −18.7793 −0.638516
\(866\) −24.3046 −0.825903
\(867\) 0 0
\(868\) 42.1070 1.42920
\(869\) 2.50442 0.0849567
\(870\) 0 0
\(871\) −0.108755 −0.00368503
\(872\) −51.8809 −1.75691
\(873\) 0 0
\(874\) −6.04963 −0.204632
\(875\) 35.7939 1.21005
\(876\) 0 0
\(877\) −23.5526 −0.795316 −0.397658 0.917534i \(-0.630177\pi\)
−0.397658 + 0.917534i \(0.630177\pi\)
\(878\) −3.34823 −0.112997
\(879\) 0 0
\(880\) 0.0383797 0.00129378
\(881\) −7.83244 −0.263882 −0.131941 0.991258i \(-0.542121\pi\)
−0.131941 + 0.991258i \(0.542121\pi\)
\(882\) 0 0
\(883\) −20.4706 −0.688891 −0.344445 0.938806i \(-0.611933\pi\)
−0.344445 + 0.938806i \(0.611933\pi\)
\(884\) 0.244527 0.00822434
\(885\) 0 0
\(886\) 8.05737 0.270693
\(887\) 2.56448 0.0861069 0.0430534 0.999073i \(-0.486291\pi\)
0.0430534 + 0.999073i \(0.486291\pi\)
\(888\) 0 0
\(889\) 84.2559 2.82585
\(890\) 6.80571 0.228128
\(891\) 0 0
\(892\) −22.1601 −0.741976
\(893\) −10.4338 −0.349153
\(894\) 0 0
\(895\) −0.916222 −0.0306259
\(896\) 30.1857 1.00843
\(897\) 0 0
\(898\) 5.21751 0.174111
\(899\) −30.1857 −1.00675
\(900\) 0 0
\(901\) 13.5030 0.449850
\(902\) −11.1373 −0.370832
\(903\) 0 0
\(904\) −18.9546 −0.630421
\(905\) −12.4355 −0.413371
\(906\) 0 0
\(907\) 28.6441 0.951113 0.475557 0.879685i \(-0.342247\pi\)
0.475557 + 0.879685i \(0.342247\pi\)
\(908\) 22.9145 0.760443
\(909\) 0 0
\(910\) −0.142903 −0.00473720
\(911\) 9.14889 0.303116 0.151558 0.988448i \(-0.451571\pi\)
0.151558 + 0.988448i \(0.451571\pi\)
\(912\) 0 0
\(913\) 12.7033 0.420417
\(914\) 25.2125 0.833954
\(915\) 0 0
\(916\) 8.49350 0.280633
\(917\) 18.8425 0.622236
\(918\) 0 0
\(919\) 1.22668 0.0404645 0.0202322 0.999795i \(-0.493559\pi\)
0.0202322 + 0.999795i \(0.493559\pi\)
\(920\) 17.1658 0.565940
\(921\) 0 0
\(922\) 22.3073 0.734651
\(923\) −0.281364 −0.00926121
\(924\) 0 0
\(925\) −5.18479 −0.170475
\(926\) 13.2428 0.435185
\(927\) 0 0
\(928\) −21.8726 −0.718003
\(929\) −6.45748 −0.211863 −0.105932 0.994373i \(-0.533782\pi\)
−0.105932 + 0.994373i \(0.533782\pi\)
\(930\) 0 0
\(931\) 12.4611 0.408396
\(932\) −13.8408 −0.453370
\(933\) 0 0
\(934\) −18.2077 −0.595774
\(935\) 4.36009 0.142590
\(936\) 0 0
\(937\) 27.4270 0.896000 0.448000 0.894034i \(-0.352137\pi\)
0.448000 + 0.894034i \(0.352137\pi\)
\(938\) 10.0719 0.328860
\(939\) 0 0
\(940\) 11.2552 0.367103
\(941\) −12.5175 −0.408060 −0.204030 0.978965i \(-0.565404\pi\)
−0.204030 + 0.978965i \(0.565404\pi\)
\(942\) 0 0
\(943\) −83.6237 −2.72316
\(944\) 0.258142 0.00840179
\(945\) 0 0
\(946\) −2.34038 −0.0760922
\(947\) 54.1353 1.75916 0.879580 0.475751i \(-0.157824\pi\)
0.879580 + 0.475751i \(0.157824\pi\)
\(948\) 0 0
\(949\) 0.343178 0.0111400
\(950\) −3.71688 −0.120592
\(951\) 0 0
\(952\) −59.5681 −1.93061
\(953\) −45.8070 −1.48383 −0.741917 0.670492i \(-0.766083\pi\)
−0.741917 + 0.670492i \(0.766083\pi\)
\(954\) 0 0
\(955\) −14.2763 −0.461971
\(956\) 33.0669 1.06946
\(957\) 0 0
\(958\) −20.7547 −0.670552
\(959\) 24.1557 0.780028
\(960\) 0 0
\(961\) 29.5449 0.953061
\(962\) 0.0451868 0.00145688
\(963\) 0 0
\(964\) −24.0898 −0.775879
\(965\) 10.9281 0.351787
\(966\) 0 0
\(967\) 31.2844 1.00604 0.503019 0.864275i \(-0.332223\pi\)
0.503019 + 0.864275i \(0.332223\pi\)
\(968\) 28.1323 0.904205
\(969\) 0 0
\(970\) −0.883828 −0.0283780
\(971\) 31.6699 1.01634 0.508168 0.861258i \(-0.330323\pi\)
0.508168 + 0.861258i \(0.330323\pi\)
\(972\) 0 0
\(973\) 68.2404 2.18769
\(974\) −13.5443 −0.433986
\(975\) 0 0
\(976\) 0.249580 0.00798885
\(977\) 6.74691 0.215853 0.107926 0.994159i \(-0.465579\pi\)
0.107926 + 0.994159i \(0.465579\pi\)
\(978\) 0 0
\(979\) −9.16931 −0.293052
\(980\) −13.4421 −0.429393
\(981\) 0 0
\(982\) 2.75465 0.0879045
\(983\) −30.5476 −0.974316 −0.487158 0.873314i \(-0.661966\pi\)
−0.487158 + 0.873314i \(0.661966\pi\)
\(984\) 0 0
\(985\) −1.34493 −0.0428531
\(986\) 16.2344 0.517009
\(987\) 0 0
\(988\) −0.0513845 −0.00163476
\(989\) −17.5725 −0.558775
\(990\) 0 0
\(991\) 12.5730 0.399396 0.199698 0.979858i \(-0.436004\pi\)
0.199698 + 0.979858i \(0.436004\pi\)
\(992\) 43.8708 1.39290
\(993\) 0 0
\(994\) 26.0574 0.826490
\(995\) 9.52435 0.301942
\(996\) 0 0
\(997\) 34.8895 1.10496 0.552481 0.833526i \(-0.313681\pi\)
0.552481 + 0.833526i \(0.313681\pi\)
\(998\) 19.2713 0.610021
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 513.2.a.d.1.3 3
3.2 odd 2 513.2.a.g.1.1 yes 3
4.3 odd 2 8208.2.a.bh.1.3 3
12.11 even 2 8208.2.a.bn.1.1 3
19.18 odd 2 9747.2.a.bc.1.1 3
57.56 even 2 9747.2.a.w.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
513.2.a.d.1.3 3 1.1 even 1 trivial
513.2.a.g.1.1 yes 3 3.2 odd 2
8208.2.a.bh.1.3 3 4.3 odd 2
8208.2.a.bn.1.1 3 12.11 even 2
9747.2.a.w.1.3 3 57.56 even 2
9747.2.a.bc.1.1 3 19.18 odd 2