Properties

Label 5100.2.a.bd.1.5
Level $5100$
Weight $2$
Character 5100.1
Self dual yes
Analytic conductor $40.724$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5100,2,Mod(1,5100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5100.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5100.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,5,0,0,0,-2,0,5,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.7237050309\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.4383968.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 13x^{3} + 5x^{2} + 14x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1020)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.805414\) of defining polynomial
Character \(\chi\) \(=\) 5100.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +2.94396 q^{7} +1.00000 q^{9} +2.22048 q^{11} +2.92695 q^{13} -1.00000 q^{17} +7.45305 q^{19} +2.94396 q^{21} +8.15951 q^{23} +1.00000 q^{27} +6.55478 q^{29} -7.49874 q^{31} +2.22048 q^{33} +2.74048 q^{37} +2.92695 q^{39} -6.88909 q^{41} -9.78125 q^{43} -8.16561 q^{47} +1.66687 q^{49} -1.00000 q^{51} +8.94396 q^{53} +7.45305 q^{57} +2.18569 q^{59} -14.7082 q^{61} +2.94396 q^{63} -2.18569 q^{67} +8.15951 q^{69} +5.85390 q^{71} -7.81604 q^{73} +6.53700 q^{77} -12.9975 q^{79} +1.00000 q^{81} -11.5383 q^{83} +6.55478 q^{87} +8.82029 q^{89} +8.61681 q^{91} -7.49874 q^{93} +3.01818 q^{97} +2.22048 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 5 q^{3} - 2 q^{7} + 5 q^{9} + 6 q^{11} - 5 q^{17} + 12 q^{19} - 2 q^{21} + 6 q^{23} + 5 q^{27} + 6 q^{29} + 6 q^{31} + 6 q^{33} + 14 q^{41} - 4 q^{43} - 4 q^{47} + 15 q^{49} - 5 q^{51} + 28 q^{53}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.94396 1.11271 0.556355 0.830945i \(-0.312199\pi\)
0.556355 + 0.830945i \(0.312199\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 2.22048 0.669501 0.334750 0.942307i \(-0.391348\pi\)
0.334750 + 0.942307i \(0.391348\pi\)
\(12\) 0 0
\(13\) 2.92695 0.811790 0.405895 0.913920i \(-0.366960\pi\)
0.405895 + 0.913920i \(0.366960\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 7.45305 1.70985 0.854923 0.518755i \(-0.173604\pi\)
0.854923 + 0.518755i \(0.173604\pi\)
\(20\) 0 0
\(21\) 2.94396 0.642424
\(22\) 0 0
\(23\) 8.15951 1.70138 0.850688 0.525671i \(-0.176186\pi\)
0.850688 + 0.525671i \(0.176186\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 6.55478 1.21719 0.608596 0.793480i \(-0.291733\pi\)
0.608596 + 0.793480i \(0.291733\pi\)
\(30\) 0 0
\(31\) −7.49874 −1.34681 −0.673407 0.739272i \(-0.735170\pi\)
−0.673407 + 0.739272i \(0.735170\pi\)
\(32\) 0 0
\(33\) 2.22048 0.386536
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.74048 0.450532 0.225266 0.974297i \(-0.427675\pi\)
0.225266 + 0.974297i \(0.427675\pi\)
\(38\) 0 0
\(39\) 2.92695 0.468687
\(40\) 0 0
\(41\) −6.88909 −1.07589 −0.537947 0.842978i \(-0.680800\pi\)
−0.537947 + 0.842978i \(0.680800\pi\)
\(42\) 0 0
\(43\) −9.78125 −1.49163 −0.745813 0.666155i \(-0.767939\pi\)
−0.745813 + 0.666155i \(0.767939\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.16561 −1.19108 −0.595539 0.803327i \(-0.703061\pi\)
−0.595539 + 0.803327i \(0.703061\pi\)
\(48\) 0 0
\(49\) 1.66687 0.238125
\(50\) 0 0
\(51\) −1.00000 −0.140028
\(52\) 0 0
\(53\) 8.94396 1.22855 0.614273 0.789093i \(-0.289449\pi\)
0.614273 + 0.789093i \(0.289449\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 7.45305 0.987180
\(58\) 0 0
\(59\) 2.18569 0.284553 0.142277 0.989827i \(-0.454558\pi\)
0.142277 + 0.989827i \(0.454558\pi\)
\(60\) 0 0
\(61\) −14.7082 −1.88319 −0.941596 0.336745i \(-0.890674\pi\)
−0.941596 + 0.336745i \(0.890674\pi\)
\(62\) 0 0
\(63\) 2.94396 0.370904
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −2.18569 −0.267025 −0.133513 0.991047i \(-0.542626\pi\)
−0.133513 + 0.991047i \(0.542626\pi\)
\(68\) 0 0
\(69\) 8.15951 0.982290
\(70\) 0 0
\(71\) 5.85390 0.694730 0.347365 0.937730i \(-0.387076\pi\)
0.347365 + 0.937730i \(0.387076\pi\)
\(72\) 0 0
\(73\) −7.81604 −0.914798 −0.457399 0.889262i \(-0.651219\pi\)
−0.457399 + 0.889262i \(0.651219\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 6.53700 0.744960
\(78\) 0 0
\(79\) −12.9975 −1.46233 −0.731165 0.682200i \(-0.761023\pi\)
−0.731165 + 0.682200i \(0.761023\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −11.5383 −1.26650 −0.633248 0.773949i \(-0.718279\pi\)
−0.633248 + 0.773949i \(0.718279\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 6.55478 0.702747
\(88\) 0 0
\(89\) 8.82029 0.934948 0.467474 0.884007i \(-0.345164\pi\)
0.467474 + 0.884007i \(0.345164\pi\)
\(90\) 0 0
\(91\) 8.61681 0.903287
\(92\) 0 0
\(93\) −7.49874 −0.777583
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 3.01818 0.306450 0.153225 0.988191i \(-0.451034\pi\)
0.153225 + 0.988191i \(0.451034\pi\)
\(98\) 0 0
\(99\) 2.22048 0.223167
\(100\) 0 0
\(101\) 6.09139 0.606116 0.303058 0.952972i \(-0.401992\pi\)
0.303058 + 0.952972i \(0.401992\pi\)
\(102\) 0 0
\(103\) 9.78125 0.963775 0.481887 0.876233i \(-0.339951\pi\)
0.481887 + 0.876233i \(0.339951\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.78617 −0.269349 −0.134675 0.990890i \(-0.542999\pi\)
−0.134675 + 0.990890i \(0.542999\pi\)
\(108\) 0 0
\(109\) 12.9061 1.23618 0.618090 0.786108i \(-0.287907\pi\)
0.618090 + 0.786108i \(0.287907\pi\)
\(110\) 0 0
\(111\) 2.74048 0.260115
\(112\) 0 0
\(113\) 19.2691 1.81268 0.906341 0.422546i \(-0.138864\pi\)
0.906341 + 0.422546i \(0.138864\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.92695 0.270597
\(118\) 0 0
\(119\) −2.94396 −0.269872
\(120\) 0 0
\(121\) −6.06946 −0.551769
\(122\) 0 0
\(123\) −6.88909 −0.621168
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −16.0705 −1.42603 −0.713014 0.701149i \(-0.752671\pi\)
−0.713014 + 0.701149i \(0.752671\pi\)
\(128\) 0 0
\(129\) −9.78125 −0.861191
\(130\) 0 0
\(131\) 15.5900 1.36210 0.681051 0.732236i \(-0.261523\pi\)
0.681051 + 0.732236i \(0.261523\pi\)
\(132\) 0 0
\(133\) 21.9414 1.90256
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −11.4091 −0.974744 −0.487372 0.873195i \(-0.662044\pi\)
−0.487372 + 0.873195i \(0.662044\pi\)
\(138\) 0 0
\(139\) 12.2949 1.04284 0.521418 0.853301i \(-0.325403\pi\)
0.521418 + 0.853301i \(0.325403\pi\)
\(140\) 0 0
\(141\) −8.16561 −0.687669
\(142\) 0 0
\(143\) 6.49924 0.543494
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1.66687 0.137481
\(148\) 0 0
\(149\) 11.0918 0.908675 0.454337 0.890830i \(-0.349876\pi\)
0.454337 + 0.890830i \(0.349876\pi\)
\(150\) 0 0
\(151\) 14.7824 1.20298 0.601488 0.798882i \(-0.294575\pi\)
0.601488 + 0.798882i \(0.294575\pi\)
\(152\) 0 0
\(153\) −1.00000 −0.0808452
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −5.55361 −0.443226 −0.221613 0.975135i \(-0.571132\pi\)
−0.221613 + 0.975135i \(0.571132\pi\)
\(158\) 0 0
\(159\) 8.94396 0.709302
\(160\) 0 0
\(161\) 24.0212 1.89314
\(162\) 0 0
\(163\) −16.4945 −1.29195 −0.645974 0.763359i \(-0.723549\pi\)
−0.645974 + 0.763359i \(0.723549\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.12590 −0.396654 −0.198327 0.980136i \(-0.563551\pi\)
−0.198327 + 0.980136i \(0.563551\pi\)
\(168\) 0 0
\(169\) −4.43297 −0.340997
\(170\) 0 0
\(171\) 7.45305 0.569949
\(172\) 0 0
\(173\) −9.75256 −0.741473 −0.370737 0.928738i \(-0.620895\pi\)
−0.370737 + 0.928738i \(0.620895\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2.18569 0.164287
\(178\) 0 0
\(179\) −4.31903 −0.322819 −0.161410 0.986888i \(-0.551604\pi\)
−0.161410 + 0.986888i \(0.551604\pi\)
\(180\) 0 0
\(181\) −0.219705 −0.0163306 −0.00816529 0.999967i \(-0.502599\pi\)
−0.00816529 + 0.999967i \(0.502599\pi\)
\(182\) 0 0
\(183\) −14.7082 −1.08726
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −2.22048 −0.162378
\(188\) 0 0
\(189\) 2.94396 0.214141
\(190\) 0 0
\(191\) −22.2927 −1.61305 −0.806523 0.591203i \(-0.798653\pi\)
−0.806523 + 0.591203i \(0.798653\pi\)
\(192\) 0 0
\(193\) −24.5225 −1.76517 −0.882584 0.470154i \(-0.844198\pi\)
−0.882584 + 0.470154i \(0.844198\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −11.6923 −0.833039 −0.416520 0.909127i \(-0.636750\pi\)
−0.416520 + 0.909127i \(0.636750\pi\)
\(198\) 0 0
\(199\) −2.79400 −0.198062 −0.0990308 0.995084i \(-0.531574\pi\)
−0.0990308 + 0.995084i \(0.531574\pi\)
\(200\) 0 0
\(201\) −2.18569 −0.154167
\(202\) 0 0
\(203\) 19.2970 1.35438
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 8.15951 0.567125
\(208\) 0 0
\(209\) 16.5494 1.14474
\(210\) 0 0
\(211\) 2.75653 0.189767 0.0948837 0.995488i \(-0.469752\pi\)
0.0948837 + 0.995488i \(0.469752\pi\)
\(212\) 0 0
\(213\) 5.85390 0.401103
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −22.0760 −1.49861
\(218\) 0 0
\(219\) −7.81604 −0.528159
\(220\) 0 0
\(221\) −2.92695 −0.196888
\(222\) 0 0
\(223\) 3.76929 0.252410 0.126205 0.992004i \(-0.459720\pi\)
0.126205 + 0.992004i \(0.459720\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 19.4726 1.29244 0.646220 0.763152i \(-0.276349\pi\)
0.646220 + 0.763152i \(0.276349\pi\)
\(228\) 0 0
\(229\) 7.62799 0.504072 0.252036 0.967718i \(-0.418900\pi\)
0.252036 + 0.967718i \(0.418900\pi\)
\(230\) 0 0
\(231\) 6.53700 0.430103
\(232\) 0 0
\(233\) −9.78812 −0.641241 −0.320621 0.947208i \(-0.603891\pi\)
−0.320621 + 0.947208i \(0.603891\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −12.9975 −0.844277
\(238\) 0 0
\(239\) −1.78029 −0.115158 −0.0575788 0.998341i \(-0.518338\pi\)
−0.0575788 + 0.998341i \(0.518338\pi\)
\(240\) 0 0
\(241\) 12.5961 0.811387 0.405693 0.914009i \(-0.367030\pi\)
0.405693 + 0.914009i \(0.367030\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 21.8147 1.38804
\(248\) 0 0
\(249\) −11.5383 −0.731212
\(250\) 0 0
\(251\) 21.4987 1.35699 0.678494 0.734606i \(-0.262633\pi\)
0.678494 + 0.734606i \(0.262633\pi\)
\(252\) 0 0
\(253\) 18.1181 1.13907
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 27.5505 1.71856 0.859278 0.511510i \(-0.170914\pi\)
0.859278 + 0.511510i \(0.170914\pi\)
\(258\) 0 0
\(259\) 8.06785 0.501312
\(260\) 0 0
\(261\) 6.55478 0.405731
\(262\) 0 0
\(263\) −10.1415 −0.625349 −0.312674 0.949860i \(-0.601225\pi\)
−0.312674 + 0.949860i \(0.601225\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 8.82029 0.539793
\(268\) 0 0
\(269\) −10.0303 −0.611559 −0.305780 0.952102i \(-0.598917\pi\)
−0.305780 + 0.952102i \(0.598917\pi\)
\(270\) 0 0
\(271\) 22.4148 1.36160 0.680801 0.732469i \(-0.261632\pi\)
0.680801 + 0.732469i \(0.261632\pi\)
\(272\) 0 0
\(273\) 8.61681 0.521513
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 12.9975 0.780943 0.390471 0.920615i \(-0.372312\pi\)
0.390471 + 0.920615i \(0.372312\pi\)
\(278\) 0 0
\(279\) −7.49874 −0.448938
\(280\) 0 0
\(281\) −22.8514 −1.36320 −0.681599 0.731725i \(-0.738715\pi\)
−0.681599 + 0.731725i \(0.738715\pi\)
\(282\) 0 0
\(283\) −13.7820 −0.819256 −0.409628 0.912253i \(-0.634342\pi\)
−0.409628 + 0.912253i \(0.634342\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −20.2812 −1.19716
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 3.01818 0.176929
\(292\) 0 0
\(293\) 1.03188 0.0602832 0.0301416 0.999546i \(-0.490404\pi\)
0.0301416 + 0.999546i \(0.490404\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 2.22048 0.128845
\(298\) 0 0
\(299\) 23.8825 1.38116
\(300\) 0 0
\(301\) −28.7956 −1.65975
\(302\) 0 0
\(303\) 6.09139 0.349941
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −21.0756 −1.20285 −0.601423 0.798931i \(-0.705399\pi\)
−0.601423 + 0.798931i \(0.705399\pi\)
\(308\) 0 0
\(309\) 9.78125 0.556436
\(310\) 0 0
\(311\) 25.1113 1.42393 0.711966 0.702214i \(-0.247805\pi\)
0.711966 + 0.702214i \(0.247805\pi\)
\(312\) 0 0
\(313\) −15.2728 −0.863271 −0.431636 0.902048i \(-0.642063\pi\)
−0.431636 + 0.902048i \(0.642063\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7.29291 0.409611 0.204805 0.978803i \(-0.434344\pi\)
0.204805 + 0.978803i \(0.434344\pi\)
\(318\) 0 0
\(319\) 14.5548 0.814911
\(320\) 0 0
\(321\) −2.78617 −0.155509
\(322\) 0 0
\(323\) −7.45305 −0.414699
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 12.9061 0.713709
\(328\) 0 0
\(329\) −24.0392 −1.32532
\(330\) 0 0
\(331\) 24.5504 1.34941 0.674706 0.738086i \(-0.264270\pi\)
0.674706 + 0.738086i \(0.264270\pi\)
\(332\) 0 0
\(333\) 2.74048 0.150177
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 6.35689 0.346282 0.173141 0.984897i \(-0.444608\pi\)
0.173141 + 0.984897i \(0.444608\pi\)
\(338\) 0 0
\(339\) 19.2691 1.04655
\(340\) 0 0
\(341\) −16.6508 −0.901693
\(342\) 0 0
\(343\) −15.7005 −0.847747
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −15.0371 −0.807232 −0.403616 0.914928i \(-0.632247\pi\)
−0.403616 + 0.914928i \(0.632247\pi\)
\(348\) 0 0
\(349\) 34.9730 1.87206 0.936032 0.351916i \(-0.114470\pi\)
0.936032 + 0.351916i \(0.114470\pi\)
\(350\) 0 0
\(351\) 2.92695 0.156229
\(352\) 0 0
\(353\) 13.7039 0.729387 0.364694 0.931128i \(-0.381174\pi\)
0.364694 + 0.931128i \(0.381174\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −2.94396 −0.155811
\(358\) 0 0
\(359\) −13.1274 −0.692835 −0.346418 0.938080i \(-0.612602\pi\)
−0.346418 + 0.938080i \(0.612602\pi\)
\(360\) 0 0
\(361\) 36.5479 1.92357
\(362\) 0 0
\(363\) −6.06946 −0.318564
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 20.7635 1.08384 0.541922 0.840429i \(-0.317697\pi\)
0.541922 + 0.840429i \(0.317697\pi\)
\(368\) 0 0
\(369\) −6.88909 −0.358632
\(370\) 0 0
\(371\) 26.3306 1.36702
\(372\) 0 0
\(373\) −17.8879 −0.926201 −0.463100 0.886306i \(-0.653263\pi\)
−0.463100 + 0.886306i \(0.653263\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 19.1855 0.988105
\(378\) 0 0
\(379\) 6.52015 0.334918 0.167459 0.985879i \(-0.446444\pi\)
0.167459 + 0.985879i \(0.446444\pi\)
\(380\) 0 0
\(381\) −16.0705 −0.823318
\(382\) 0 0
\(383\) −8.43497 −0.431007 −0.215503 0.976503i \(-0.569139\pi\)
−0.215503 + 0.976503i \(0.569139\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −9.78125 −0.497209
\(388\) 0 0
\(389\) −20.9635 −1.06289 −0.531445 0.847093i \(-0.678351\pi\)
−0.531445 + 0.847093i \(0.678351\pi\)
\(390\) 0 0
\(391\) −8.15951 −0.412644
\(392\) 0 0
\(393\) 15.5900 0.786410
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −24.6066 −1.23497 −0.617484 0.786583i \(-0.711848\pi\)
−0.617484 + 0.786583i \(0.711848\pi\)
\(398\) 0 0
\(399\) 21.9414 1.09845
\(400\) 0 0
\(401\) −16.5153 −0.824737 −0.412369 0.911017i \(-0.635298\pi\)
−0.412369 + 0.911017i \(0.635298\pi\)
\(402\) 0 0
\(403\) −21.9484 −1.09333
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6.08518 0.301631
\(408\) 0 0
\(409\) 10.9340 0.540652 0.270326 0.962769i \(-0.412869\pi\)
0.270326 + 0.962769i \(0.412869\pi\)
\(410\) 0 0
\(411\) −11.4091 −0.562769
\(412\) 0 0
\(413\) 6.43459 0.316625
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 12.2949 0.602082
\(418\) 0 0
\(419\) 21.5631 1.05343 0.526714 0.850043i \(-0.323424\pi\)
0.526714 + 0.850043i \(0.323424\pi\)
\(420\) 0 0
\(421\) −12.5868 −0.613442 −0.306721 0.951799i \(-0.599232\pi\)
−0.306721 + 0.951799i \(0.599232\pi\)
\(422\) 0 0
\(423\) −8.16561 −0.397026
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −43.3003 −2.09545
\(428\) 0 0
\(429\) 6.49924 0.313786
\(430\) 0 0
\(431\) −9.88964 −0.476367 −0.238184 0.971220i \(-0.576552\pi\)
−0.238184 + 0.971220i \(0.576552\pi\)
\(432\) 0 0
\(433\) 11.1185 0.534319 0.267159 0.963652i \(-0.413915\pi\)
0.267159 + 0.963652i \(0.413915\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 60.8132 2.90909
\(438\) 0 0
\(439\) −7.87168 −0.375695 −0.187847 0.982198i \(-0.560151\pi\)
−0.187847 + 0.982198i \(0.560151\pi\)
\(440\) 0 0
\(441\) 1.66687 0.0793749
\(442\) 0 0
\(443\) 24.7964 1.17811 0.589055 0.808093i \(-0.299500\pi\)
0.589055 + 0.808093i \(0.299500\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 11.0918 0.524623
\(448\) 0 0
\(449\) 0.451817 0.0213226 0.0106613 0.999943i \(-0.496606\pi\)
0.0106613 + 0.999943i \(0.496606\pi\)
\(450\) 0 0
\(451\) −15.2971 −0.720312
\(452\) 0 0
\(453\) 14.7824 0.694539
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −32.2642 −1.50925 −0.754627 0.656154i \(-0.772182\pi\)
−0.754627 + 0.656154i \(0.772182\pi\)
\(458\) 0 0
\(459\) −1.00000 −0.0466760
\(460\) 0 0
\(461\) −6.01778 −0.280276 −0.140138 0.990132i \(-0.544755\pi\)
−0.140138 + 0.990132i \(0.544755\pi\)
\(462\) 0 0
\(463\) −7.48331 −0.347779 −0.173889 0.984765i \(-0.555634\pi\)
−0.173889 + 0.984765i \(0.555634\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8.18742 0.378869 0.189434 0.981893i \(-0.439335\pi\)
0.189434 + 0.981893i \(0.439335\pi\)
\(468\) 0 0
\(469\) −6.43459 −0.297122
\(470\) 0 0
\(471\) −5.55361 −0.255897
\(472\) 0 0
\(473\) −21.7191 −0.998645
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 8.94396 0.409516
\(478\) 0 0
\(479\) 37.1891 1.69922 0.849608 0.527415i \(-0.176839\pi\)
0.849608 + 0.527415i \(0.176839\pi\)
\(480\) 0 0
\(481\) 8.02124 0.365737
\(482\) 0 0
\(483\) 24.0212 1.09300
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −37.6780 −1.70736 −0.853678 0.520802i \(-0.825633\pi\)
−0.853678 + 0.520802i \(0.825633\pi\)
\(488\) 0 0
\(489\) −16.4945 −0.745907
\(490\) 0 0
\(491\) −37.9828 −1.71414 −0.857069 0.515202i \(-0.827717\pi\)
−0.857069 + 0.515202i \(0.827717\pi\)
\(492\) 0 0
\(493\) −6.55478 −0.295213
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 17.2336 0.773033
\(498\) 0 0
\(499\) −6.63997 −0.297246 −0.148623 0.988894i \(-0.547484\pi\)
−0.148623 + 0.988894i \(0.547484\pi\)
\(500\) 0 0
\(501\) −5.12590 −0.229008
\(502\) 0 0
\(503\) −14.9224 −0.665358 −0.332679 0.943040i \(-0.607953\pi\)
−0.332679 + 0.943040i \(0.607953\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −4.43297 −0.196875
\(508\) 0 0
\(509\) 5.68041 0.251780 0.125890 0.992044i \(-0.459821\pi\)
0.125890 + 0.992044i \(0.459821\pi\)
\(510\) 0 0
\(511\) −23.0101 −1.01791
\(512\) 0 0
\(513\) 7.45305 0.329060
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −18.1316 −0.797427
\(518\) 0 0
\(519\) −9.75256 −0.428090
\(520\) 0 0
\(521\) −10.0303 −0.439436 −0.219718 0.975563i \(-0.570514\pi\)
−0.219718 + 0.975563i \(0.570514\pi\)
\(522\) 0 0
\(523\) 35.1154 1.53549 0.767744 0.640756i \(-0.221379\pi\)
0.767744 + 0.640756i \(0.221379\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 7.49874 0.326650
\(528\) 0 0
\(529\) 43.5777 1.89468
\(530\) 0 0
\(531\) 2.18569 0.0948510
\(532\) 0 0
\(533\) −20.1640 −0.873400
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −4.31903 −0.186380
\(538\) 0 0
\(539\) 3.70126 0.159425
\(540\) 0 0
\(541\) −6.77276 −0.291184 −0.145592 0.989345i \(-0.546509\pi\)
−0.145592 + 0.989345i \(0.546509\pi\)
\(542\) 0 0
\(543\) −0.219705 −0.00942847
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −39.0154 −1.66818 −0.834090 0.551629i \(-0.814007\pi\)
−0.834090 + 0.551629i \(0.814007\pi\)
\(548\) 0 0
\(549\) −14.7082 −0.627731
\(550\) 0 0
\(551\) 48.8531 2.08121
\(552\) 0 0
\(553\) −38.2640 −1.62715
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −4.89389 −0.207361 −0.103680 0.994611i \(-0.533062\pi\)
−0.103680 + 0.994611i \(0.533062\pi\)
\(558\) 0 0
\(559\) −28.6292 −1.21089
\(560\) 0 0
\(561\) −2.22048 −0.0937488
\(562\) 0 0
\(563\) 29.2863 1.23427 0.617136 0.786856i \(-0.288293\pi\)
0.617136 + 0.786856i \(0.288293\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 2.94396 0.123635
\(568\) 0 0
\(569\) 27.7551 1.16356 0.581778 0.813348i \(-0.302357\pi\)
0.581778 + 0.813348i \(0.302357\pi\)
\(570\) 0 0
\(571\) 32.9491 1.37888 0.689439 0.724343i \(-0.257857\pi\)
0.689439 + 0.724343i \(0.257857\pi\)
\(572\) 0 0
\(573\) −22.2927 −0.931293
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −31.3658 −1.30578 −0.652888 0.757455i \(-0.726443\pi\)
−0.652888 + 0.757455i \(0.726443\pi\)
\(578\) 0 0
\(579\) −24.5225 −1.01912
\(580\) 0 0
\(581\) −33.9683 −1.40924
\(582\) 0 0
\(583\) 19.8599 0.822513
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −33.7149 −1.39156 −0.695782 0.718253i \(-0.744942\pi\)
−0.695782 + 0.718253i \(0.744942\pi\)
\(588\) 0 0
\(589\) −55.8885 −2.30284
\(590\) 0 0
\(591\) −11.6923 −0.480955
\(592\) 0 0
\(593\) −5.28289 −0.216942 −0.108471 0.994100i \(-0.534595\pi\)
−0.108471 + 0.994100i \(0.534595\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −2.79400 −0.114351
\(598\) 0 0
\(599\) −11.8098 −0.482537 −0.241268 0.970458i \(-0.577563\pi\)
−0.241268 + 0.970458i \(0.577563\pi\)
\(600\) 0 0
\(601\) −7.80211 −0.318255 −0.159127 0.987258i \(-0.550868\pi\)
−0.159127 + 0.987258i \(0.550868\pi\)
\(602\) 0 0
\(603\) −2.18569 −0.0890083
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 5.19576 0.210889 0.105445 0.994425i \(-0.466373\pi\)
0.105445 + 0.994425i \(0.466373\pi\)
\(608\) 0 0
\(609\) 19.2970 0.781954
\(610\) 0 0
\(611\) −23.9003 −0.966904
\(612\) 0 0
\(613\) 9.52430 0.384683 0.192341 0.981328i \(-0.438392\pi\)
0.192341 + 0.981328i \(0.438392\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 34.5985 1.39288 0.696441 0.717614i \(-0.254766\pi\)
0.696441 + 0.717614i \(0.254766\pi\)
\(618\) 0 0
\(619\) −12.5225 −0.503322 −0.251661 0.967815i \(-0.580977\pi\)
−0.251661 + 0.967815i \(0.580977\pi\)
\(620\) 0 0
\(621\) 8.15951 0.327430
\(622\) 0 0
\(623\) 25.9665 1.04033
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 16.5494 0.660918
\(628\) 0 0
\(629\) −2.74048 −0.109270
\(630\) 0 0
\(631\) 14.2986 0.569219 0.284609 0.958644i \(-0.408136\pi\)
0.284609 + 0.958644i \(0.408136\pi\)
\(632\) 0 0
\(633\) 2.75653 0.109562
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 4.87886 0.193307
\(638\) 0 0
\(639\) 5.85390 0.231577
\(640\) 0 0
\(641\) 6.33683 0.250290 0.125145 0.992138i \(-0.460060\pi\)
0.125145 + 0.992138i \(0.460060\pi\)
\(642\) 0 0
\(643\) 13.5652 0.534961 0.267480 0.963563i \(-0.413809\pi\)
0.267480 + 0.963563i \(0.413809\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.03764 0.0407939 0.0203969 0.999792i \(-0.493507\pi\)
0.0203969 + 0.999792i \(0.493507\pi\)
\(648\) 0 0
\(649\) 4.85330 0.190509
\(650\) 0 0
\(651\) −22.0760 −0.865225
\(652\) 0 0
\(653\) 18.0163 0.705034 0.352517 0.935805i \(-0.385326\pi\)
0.352517 + 0.935805i \(0.385326\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −7.81604 −0.304933
\(658\) 0 0
\(659\) 12.8514 0.500619 0.250309 0.968166i \(-0.419468\pi\)
0.250309 + 0.968166i \(0.419468\pi\)
\(660\) 0 0
\(661\) −33.5247 −1.30396 −0.651981 0.758236i \(-0.726062\pi\)
−0.651981 + 0.758236i \(0.726062\pi\)
\(662\) 0 0
\(663\) −2.92695 −0.113673
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 53.4838 2.07090
\(668\) 0 0
\(669\) 3.76929 0.145729
\(670\) 0 0
\(671\) −32.6593 −1.26080
\(672\) 0 0
\(673\) 43.1130 1.66189 0.830943 0.556358i \(-0.187802\pi\)
0.830943 + 0.556358i \(0.187802\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −0.254132 −0.00976710 −0.00488355 0.999988i \(-0.501554\pi\)
−0.00488355 + 0.999988i \(0.501554\pi\)
\(678\) 0 0
\(679\) 8.88539 0.340990
\(680\) 0 0
\(681\) 19.4726 0.746190
\(682\) 0 0
\(683\) −31.2210 −1.19464 −0.597319 0.802004i \(-0.703767\pi\)
−0.597319 + 0.802004i \(0.703767\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 7.62799 0.291026
\(688\) 0 0
\(689\) 26.1785 0.997322
\(690\) 0 0
\(691\) −1.31305 −0.0499506 −0.0249753 0.999688i \(-0.507951\pi\)
−0.0249753 + 0.999688i \(0.507951\pi\)
\(692\) 0 0
\(693\) 6.53700 0.248320
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 6.88909 0.260943
\(698\) 0 0
\(699\) −9.78812 −0.370221
\(700\) 0 0
\(701\) −39.0578 −1.47519 −0.737596 0.675242i \(-0.764039\pi\)
−0.737596 + 0.675242i \(0.764039\pi\)
\(702\) 0 0
\(703\) 20.4249 0.770340
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 17.9328 0.674431
\(708\) 0 0
\(709\) 3.72235 0.139796 0.0698979 0.997554i \(-0.477733\pi\)
0.0698979 + 0.997554i \(0.477733\pi\)
\(710\) 0 0
\(711\) −12.9975 −0.487444
\(712\) 0 0
\(713\) −61.1861 −2.29144
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −1.78029 −0.0664863
\(718\) 0 0
\(719\) 43.2995 1.61480 0.807399 0.590005i \(-0.200874\pi\)
0.807399 + 0.590005i \(0.200874\pi\)
\(720\) 0 0
\(721\) 28.7956 1.07240
\(722\) 0 0
\(723\) 12.5961 0.468454
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 3.62706 0.134520 0.0672601 0.997735i \(-0.478574\pi\)
0.0672601 + 0.997735i \(0.478574\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 9.78125 0.361773
\(732\) 0 0
\(733\) −24.3743 −0.900285 −0.450142 0.892957i \(-0.648627\pi\)
−0.450142 + 0.892957i \(0.648627\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.85330 −0.178773
\(738\) 0 0
\(739\) 3.76879 0.138637 0.0693186 0.997595i \(-0.477918\pi\)
0.0693186 + 0.997595i \(0.477918\pi\)
\(740\) 0 0
\(741\) 21.8147 0.801383
\(742\) 0 0
\(743\) −45.5234 −1.67009 −0.835047 0.550179i \(-0.814559\pi\)
−0.835047 + 0.550179i \(0.814559\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −11.5383 −0.422166
\(748\) 0 0
\(749\) −8.20237 −0.299708
\(750\) 0 0
\(751\) −5.23474 −0.191018 −0.0955092 0.995429i \(-0.530448\pi\)
−0.0955092 + 0.995429i \(0.530448\pi\)
\(752\) 0 0
\(753\) 21.4987 0.783458
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −39.7836 −1.44596 −0.722980 0.690869i \(-0.757228\pi\)
−0.722980 + 0.690869i \(0.757228\pi\)
\(758\) 0 0
\(759\) 18.1181 0.657644
\(760\) 0 0
\(761\) 27.4012 0.993293 0.496646 0.867953i \(-0.334565\pi\)
0.496646 + 0.867953i \(0.334565\pi\)
\(762\) 0 0
\(763\) 37.9950 1.37551
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 6.39742 0.230997
\(768\) 0 0
\(769\) −28.7265 −1.03590 −0.517952 0.855410i \(-0.673305\pi\)
−0.517952 + 0.855410i \(0.673305\pi\)
\(770\) 0 0
\(771\) 27.5505 0.992208
\(772\) 0 0
\(773\) 9.08155 0.326641 0.163320 0.986573i \(-0.447780\pi\)
0.163320 + 0.986573i \(0.447780\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 8.06785 0.289432
\(778\) 0 0
\(779\) −51.3447 −1.83961
\(780\) 0 0
\(781\) 12.9985 0.465122
\(782\) 0 0
\(783\) 6.55478 0.234249
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 26.6783 0.950978 0.475489 0.879722i \(-0.342271\pi\)
0.475489 + 0.879722i \(0.342271\pi\)
\(788\) 0 0
\(789\) −10.1415 −0.361045
\(790\) 0 0
\(791\) 56.7273 2.01699
\(792\) 0 0
\(793\) −43.0502 −1.52876
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −15.8270 −0.560621 −0.280310 0.959909i \(-0.590437\pi\)
−0.280310 + 0.959909i \(0.590437\pi\)
\(798\) 0 0
\(799\) 8.16561 0.288879
\(800\) 0 0
\(801\) 8.82029 0.311649
\(802\) 0 0
\(803\) −17.3554 −0.612458
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −10.0303 −0.353084
\(808\) 0 0
\(809\) −22.0429 −0.774987 −0.387494 0.921872i \(-0.626659\pi\)
−0.387494 + 0.921872i \(0.626659\pi\)
\(810\) 0 0
\(811\) −41.3144 −1.45074 −0.725372 0.688357i \(-0.758332\pi\)
−0.725372 + 0.688357i \(0.758332\pi\)
\(812\) 0 0
\(813\) 22.4148 0.786121
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −72.9001 −2.55045
\(818\) 0 0
\(819\) 8.61681 0.301096
\(820\) 0 0
\(821\) −0.00462923 −0.000161561 0 −8.07806e−5 1.00000i \(-0.500026\pi\)
−8.07806e−5 1.00000i \(0.500026\pi\)
\(822\) 0 0
\(823\) 35.0154 1.22056 0.610281 0.792185i \(-0.291057\pi\)
0.610281 + 0.792185i \(0.291057\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 21.1206 0.734436 0.367218 0.930135i \(-0.380310\pi\)
0.367218 + 0.930135i \(0.380310\pi\)
\(828\) 0 0
\(829\) −22.3747 −0.777104 −0.388552 0.921427i \(-0.627025\pi\)
−0.388552 + 0.921427i \(0.627025\pi\)
\(830\) 0 0
\(831\) 12.9975 0.450878
\(832\) 0 0
\(833\) −1.66687 −0.0577537
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −7.49874 −0.259194
\(838\) 0 0
\(839\) 11.2265 0.387581 0.193790 0.981043i \(-0.437922\pi\)
0.193790 + 0.981043i \(0.437922\pi\)
\(840\) 0 0
\(841\) 13.9652 0.481559
\(842\) 0 0
\(843\) −22.8514 −0.787043
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −17.8682 −0.613959
\(848\) 0 0
\(849\) −13.7820 −0.472998
\(850\) 0 0
\(851\) 22.3610 0.766524
\(852\) 0 0
\(853\) −27.9221 −0.956035 −0.478018 0.878350i \(-0.658645\pi\)
−0.478018 + 0.878350i \(0.658645\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −38.5855 −1.31806 −0.659028 0.752119i \(-0.729032\pi\)
−0.659028 + 0.752119i \(0.729032\pi\)
\(858\) 0 0
\(859\) −30.1869 −1.02996 −0.514981 0.857202i \(-0.672201\pi\)
−0.514981 + 0.857202i \(0.672201\pi\)
\(860\) 0 0
\(861\) −20.2812 −0.691180
\(862\) 0 0
\(863\) −2.10589 −0.0716852 −0.0358426 0.999357i \(-0.511411\pi\)
−0.0358426 + 0.999357i \(0.511411\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1.00000 0.0339618
\(868\) 0 0
\(869\) −28.8607 −0.979031
\(870\) 0 0
\(871\) −6.39742 −0.216768
\(872\) 0 0
\(873\) 3.01818 0.102150
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −0.0171621 −0.000579523 0 −0.000289762 1.00000i \(-0.500092\pi\)
−0.000289762 1.00000i \(0.500092\pi\)
\(878\) 0 0
\(879\) 1.03188 0.0348045
\(880\) 0 0
\(881\) −17.6280 −0.593902 −0.296951 0.954893i \(-0.595970\pi\)
−0.296951 + 0.954893i \(0.595970\pi\)
\(882\) 0 0
\(883\) 35.7475 1.20300 0.601499 0.798874i \(-0.294570\pi\)
0.601499 + 0.798874i \(0.294570\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −31.3002 −1.05096 −0.525479 0.850807i \(-0.676114\pi\)
−0.525479 + 0.850807i \(0.676114\pi\)
\(888\) 0 0
\(889\) −47.3109 −1.58676
\(890\) 0 0
\(891\) 2.22048 0.0743890
\(892\) 0 0
\(893\) −60.8587 −2.03656
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 23.8825 0.797413
\(898\) 0 0
\(899\) −49.1526 −1.63933
\(900\) 0 0
\(901\) −8.94396 −0.297966
\(902\) 0 0
\(903\) −28.7956 −0.958256
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 38.6563 1.28356 0.641780 0.766889i \(-0.278196\pi\)
0.641780 + 0.766889i \(0.278196\pi\)
\(908\) 0 0
\(909\) 6.09139 0.202039
\(910\) 0 0
\(911\) −7.51866 −0.249104 −0.124552 0.992213i \(-0.539749\pi\)
−0.124552 + 0.992213i \(0.539749\pi\)
\(912\) 0 0
\(913\) −25.6207 −0.847920
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 45.8962 1.51563
\(918\) 0 0
\(919\) 8.24705 0.272045 0.136023 0.990706i \(-0.456568\pi\)
0.136023 + 0.990706i \(0.456568\pi\)
\(920\) 0 0
\(921\) −21.0756 −0.694463
\(922\) 0 0
\(923\) 17.1341 0.563975
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 9.78125 0.321258
\(928\) 0 0
\(929\) −38.5663 −1.26532 −0.632660 0.774430i \(-0.718037\pi\)
−0.632660 + 0.774430i \(0.718037\pi\)
\(930\) 0 0
\(931\) 12.4233 0.407157
\(932\) 0 0
\(933\) 25.1113 0.822107
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 21.8518 0.713866 0.356933 0.934130i \(-0.383822\pi\)
0.356933 + 0.934130i \(0.383822\pi\)
\(938\) 0 0
\(939\) −15.2728 −0.498410
\(940\) 0 0
\(941\) −8.65899 −0.282275 −0.141138 0.989990i \(-0.545076\pi\)
−0.141138 + 0.989990i \(0.545076\pi\)
\(942\) 0 0
\(943\) −56.2116 −1.83050
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 6.28370 0.204193 0.102096 0.994775i \(-0.467445\pi\)
0.102096 + 0.994775i \(0.467445\pi\)
\(948\) 0 0
\(949\) −22.8771 −0.742624
\(950\) 0 0
\(951\) 7.29291 0.236489
\(952\) 0 0
\(953\) 44.7341 1.44908 0.724540 0.689233i \(-0.242052\pi\)
0.724540 + 0.689233i \(0.242052\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 14.5548 0.470489
\(958\) 0 0
\(959\) −33.5878 −1.08461
\(960\) 0 0
\(961\) 25.2311 0.813906
\(962\) 0 0
\(963\) −2.78617 −0.0897832
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 4.14972 0.133446 0.0667230 0.997772i \(-0.478746\pi\)
0.0667230 + 0.997772i \(0.478746\pi\)
\(968\) 0 0
\(969\) −7.45305 −0.239426
\(970\) 0 0
\(971\) 12.6864 0.407126 0.203563 0.979062i \(-0.434748\pi\)
0.203563 + 0.979062i \(0.434748\pi\)
\(972\) 0 0
\(973\) 36.1955 1.16038
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 20.2144 0.646717 0.323359 0.946277i \(-0.395188\pi\)
0.323359 + 0.946277i \(0.395188\pi\)
\(978\) 0 0
\(979\) 19.5853 0.625949
\(980\) 0 0
\(981\) 12.9061 0.412060
\(982\) 0 0
\(983\) 39.9959 1.27567 0.637835 0.770173i \(-0.279830\pi\)
0.637835 + 0.770173i \(0.279830\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −24.0392 −0.765176
\(988\) 0 0
\(989\) −79.8102 −2.53782
\(990\) 0 0
\(991\) 21.7724 0.691622 0.345811 0.938304i \(-0.387604\pi\)
0.345811 + 0.938304i \(0.387604\pi\)
\(992\) 0 0
\(993\) 24.5504 0.779084
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −39.4553 −1.24956 −0.624781 0.780800i \(-0.714812\pi\)
−0.624781 + 0.780800i \(0.714812\pi\)
\(998\) 0 0
\(999\) 2.74048 0.0867049
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5100.2.a.bd.1.5 5
5.2 odd 4 1020.2.g.d.409.1 10
5.3 odd 4 1020.2.g.d.409.6 yes 10
5.4 even 2 5100.2.a.bc.1.1 5
15.2 even 4 3060.2.g.g.2449.9 10
15.8 even 4 3060.2.g.g.2449.10 10
20.3 even 4 4080.2.m.r.2449.1 10
20.7 even 4 4080.2.m.r.2449.6 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1020.2.g.d.409.1 10 5.2 odd 4
1020.2.g.d.409.6 yes 10 5.3 odd 4
3060.2.g.g.2449.9 10 15.2 even 4
3060.2.g.g.2449.10 10 15.8 even 4
4080.2.m.r.2449.1 10 20.3 even 4
4080.2.m.r.2449.6 10 20.7 even 4
5100.2.a.bc.1.1 5 5.4 even 2
5100.2.a.bd.1.5 5 1.1 even 1 trivial