Properties

Label 4080.2.m.r.2449.6
Level $4080$
Weight $2$
Character 4080.2449
Analytic conductor $32.579$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4080,2,Mod(2449,4080)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4080.2449"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4080, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4080 = 2^{4} \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4080.m (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,0,0,0,0,0,-10,0,-12,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.5789640247\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} + 2x^{8} + 14x^{7} + 42x^{6} + 2x^{5} + 10x^{4} + 54x^{3} + 121x^{2} + 44x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 1020)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2449.6
Root \(2.37468 - 2.37468i\) of defining polynomial
Character \(\chi\) \(=\) 4080.2449
Dual form 4080.2.m.r.2449.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +(-2.16715 + 0.550869i) q^{5} -2.94396i q^{7} -1.00000 q^{9} -2.22048 q^{11} -2.92695i q^{13} +(-0.550869 - 2.16715i) q^{15} -1.00000i q^{17} +7.45305 q^{19} +2.94396 q^{21} +8.15951i q^{23} +(4.39309 - 2.38763i) q^{25} -1.00000i q^{27} -6.55478 q^{29} +7.49874 q^{31} -2.22048i q^{33} +(1.62173 + 6.38000i) q^{35} +2.74048i q^{37} +2.92695 q^{39} -6.88909 q^{41} -9.78125i q^{43} +(2.16715 - 0.550869i) q^{45} +8.16561i q^{47} -1.66687 q^{49} +1.00000 q^{51} -8.94396i q^{53} +(4.81212 - 1.22320i) q^{55} +7.45305i q^{57} +2.18569 q^{59} -14.7082 q^{61} +2.94396i q^{63} +(1.61237 + 6.34314i) q^{65} +2.18569i q^{67} -8.15951 q^{69} -5.85390 q^{71} +7.81604i q^{73} +(2.38763 + 4.39309i) q^{75} +6.53700i q^{77} -12.9975 q^{79} +1.00000 q^{81} -11.5383i q^{83} +(0.550869 + 2.16715i) q^{85} -6.55478i q^{87} -8.82029 q^{89} -8.61681 q^{91} +7.49874i q^{93} +(-16.1519 + 4.10565i) q^{95} +3.01818i q^{97} +2.22048 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 10 q^{9} - 12 q^{11} - 4 q^{15} + 24 q^{19} - 4 q^{21} + 12 q^{25} - 12 q^{29} - 12 q^{31} - 4 q^{35} + 28 q^{41} - 30 q^{49} + 10 q^{51} - 26 q^{55} + 48 q^{59} - 28 q^{61} + 48 q^{65} - 12 q^{69}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4080\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(511\) \(817\) \(1361\) \(3061\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) −2.16715 + 0.550869i −0.969179 + 0.246356i
\(6\) 0 0
\(7\) 2.94396i 1.11271i −0.830945 0.556355i \(-0.812199\pi\)
0.830945 0.556355i \(-0.187801\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −2.22048 −0.669501 −0.334750 0.942307i \(-0.608652\pi\)
−0.334750 + 0.942307i \(0.608652\pi\)
\(12\) 0 0
\(13\) 2.92695i 0.811790i −0.913920 0.405895i \(-0.866960\pi\)
0.913920 0.405895i \(-0.133040\pi\)
\(14\) 0 0
\(15\) −0.550869 2.16715i −0.142234 0.559556i
\(16\) 0 0
\(17\) 1.00000i 0.242536i
\(18\) 0 0
\(19\) 7.45305 1.70985 0.854923 0.518755i \(-0.173604\pi\)
0.854923 + 0.518755i \(0.173604\pi\)
\(20\) 0 0
\(21\) 2.94396 0.642424
\(22\) 0 0
\(23\) 8.15951i 1.70138i 0.525671 + 0.850688i \(0.323814\pi\)
−0.525671 + 0.850688i \(0.676186\pi\)
\(24\) 0 0
\(25\) 4.39309 2.38763i 0.878617 0.477527i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −6.55478 −1.21719 −0.608596 0.793480i \(-0.708267\pi\)
−0.608596 + 0.793480i \(0.708267\pi\)
\(30\) 0 0
\(31\) 7.49874 1.34681 0.673407 0.739272i \(-0.264830\pi\)
0.673407 + 0.739272i \(0.264830\pi\)
\(32\) 0 0
\(33\) 2.22048i 0.386536i
\(34\) 0 0
\(35\) 1.62173 + 6.38000i 0.274123 + 1.07842i
\(36\) 0 0
\(37\) 2.74048i 0.450532i 0.974297 + 0.225266i \(0.0723251\pi\)
−0.974297 + 0.225266i \(0.927675\pi\)
\(38\) 0 0
\(39\) 2.92695 0.468687
\(40\) 0 0
\(41\) −6.88909 −1.07589 −0.537947 0.842978i \(-0.680800\pi\)
−0.537947 + 0.842978i \(0.680800\pi\)
\(42\) 0 0
\(43\) 9.78125i 1.49163i −0.666155 0.745813i \(-0.732061\pi\)
0.666155 0.745813i \(-0.267939\pi\)
\(44\) 0 0
\(45\) 2.16715 0.550869i 0.323060 0.0821187i
\(46\) 0 0
\(47\) 8.16561i 1.19108i 0.803327 + 0.595539i \(0.203061\pi\)
−0.803327 + 0.595539i \(0.796939\pi\)
\(48\) 0 0
\(49\) −1.66687 −0.238125
\(50\) 0 0
\(51\) 1.00000 0.140028
\(52\) 0 0
\(53\) 8.94396i 1.22855i −0.789093 0.614273i \(-0.789449\pi\)
0.789093 0.614273i \(-0.210551\pi\)
\(54\) 0 0
\(55\) 4.81212 1.22320i 0.648866 0.164936i
\(56\) 0 0
\(57\) 7.45305i 0.987180i
\(58\) 0 0
\(59\) 2.18569 0.284553 0.142277 0.989827i \(-0.454558\pi\)
0.142277 + 0.989827i \(0.454558\pi\)
\(60\) 0 0
\(61\) −14.7082 −1.88319 −0.941596 0.336745i \(-0.890674\pi\)
−0.941596 + 0.336745i \(0.890674\pi\)
\(62\) 0 0
\(63\) 2.94396i 0.370904i
\(64\) 0 0
\(65\) 1.61237 + 6.34314i 0.199989 + 0.786770i
\(66\) 0 0
\(67\) 2.18569i 0.267025i 0.991047 + 0.133513i \(0.0426256\pi\)
−0.991047 + 0.133513i \(0.957374\pi\)
\(68\) 0 0
\(69\) −8.15951 −0.982290
\(70\) 0 0
\(71\) −5.85390 −0.694730 −0.347365 0.937730i \(-0.612924\pi\)
−0.347365 + 0.937730i \(0.612924\pi\)
\(72\) 0 0
\(73\) 7.81604i 0.914798i 0.889262 + 0.457399i \(0.151219\pi\)
−0.889262 + 0.457399i \(0.848781\pi\)
\(74\) 0 0
\(75\) 2.38763 + 4.39309i 0.275700 + 0.507270i
\(76\) 0 0
\(77\) 6.53700i 0.744960i
\(78\) 0 0
\(79\) −12.9975 −1.46233 −0.731165 0.682200i \(-0.761023\pi\)
−0.731165 + 0.682200i \(0.761023\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 11.5383i 1.26650i −0.773949 0.633248i \(-0.781721\pi\)
0.773949 0.633248i \(-0.218279\pi\)
\(84\) 0 0
\(85\) 0.550869 + 2.16715i 0.0597502 + 0.235061i
\(86\) 0 0
\(87\) 6.55478i 0.702747i
\(88\) 0 0
\(89\) −8.82029 −0.934948 −0.467474 0.884007i \(-0.654836\pi\)
−0.467474 + 0.884007i \(0.654836\pi\)
\(90\) 0 0
\(91\) −8.61681 −0.903287
\(92\) 0 0
\(93\) 7.49874i 0.777583i
\(94\) 0 0
\(95\) −16.1519 + 4.10565i −1.65715 + 0.421231i
\(96\) 0 0
\(97\) 3.01818i 0.306450i 0.988191 + 0.153225i \(0.0489659\pi\)
−0.988191 + 0.153225i \(0.951034\pi\)
\(98\) 0 0
\(99\) 2.22048 0.223167
\(100\) 0 0
\(101\) 6.09139 0.606116 0.303058 0.952972i \(-0.401992\pi\)
0.303058 + 0.952972i \(0.401992\pi\)
\(102\) 0 0
\(103\) 9.78125i 0.963775i 0.876233 + 0.481887i \(0.160049\pi\)
−0.876233 + 0.481887i \(0.839951\pi\)
\(104\) 0 0
\(105\) −6.38000 + 1.62173i −0.622624 + 0.158265i
\(106\) 0 0
\(107\) 2.78617i 0.269349i 0.990890 + 0.134675i \(0.0429990\pi\)
−0.990890 + 0.134675i \(0.957001\pi\)
\(108\) 0 0
\(109\) −12.9061 −1.23618 −0.618090 0.786108i \(-0.712093\pi\)
−0.618090 + 0.786108i \(0.712093\pi\)
\(110\) 0 0
\(111\) −2.74048 −0.260115
\(112\) 0 0
\(113\) 19.2691i 1.81268i −0.422546 0.906341i \(-0.638864\pi\)
0.422546 0.906341i \(-0.361136\pi\)
\(114\) 0 0
\(115\) −4.49482 17.6829i −0.419145 1.64894i
\(116\) 0 0
\(117\) 2.92695i 0.270597i
\(118\) 0 0
\(119\) −2.94396 −0.269872
\(120\) 0 0
\(121\) −6.06946 −0.551769
\(122\) 0 0
\(123\) 6.88909i 0.621168i
\(124\) 0 0
\(125\) −8.20521 + 7.59438i −0.733896 + 0.679262i
\(126\) 0 0
\(127\) 16.0705i 1.42603i 0.701149 + 0.713014i \(0.252671\pi\)
−0.701149 + 0.713014i \(0.747329\pi\)
\(128\) 0 0
\(129\) 9.78125 0.861191
\(130\) 0 0
\(131\) −15.5900 −1.36210 −0.681051 0.732236i \(-0.738477\pi\)
−0.681051 + 0.732236i \(0.738477\pi\)
\(132\) 0 0
\(133\) 21.9414i 1.90256i
\(134\) 0 0
\(135\) 0.550869 + 2.16715i 0.0474113 + 0.186519i
\(136\) 0 0
\(137\) 11.4091i 0.974744i −0.873195 0.487372i \(-0.837956\pi\)
0.873195 0.487372i \(-0.162044\pi\)
\(138\) 0 0
\(139\) 12.2949 1.04284 0.521418 0.853301i \(-0.325403\pi\)
0.521418 + 0.853301i \(0.325403\pi\)
\(140\) 0 0
\(141\) −8.16561 −0.687669
\(142\) 0 0
\(143\) 6.49924i 0.543494i
\(144\) 0 0
\(145\) 14.2052 3.61083i 1.17968 0.299863i
\(146\) 0 0
\(147\) 1.66687i 0.137481i
\(148\) 0 0
\(149\) −11.0918 −0.908675 −0.454337 0.890830i \(-0.650124\pi\)
−0.454337 + 0.890830i \(0.650124\pi\)
\(150\) 0 0
\(151\) −14.7824 −1.20298 −0.601488 0.798882i \(-0.705425\pi\)
−0.601488 + 0.798882i \(0.705425\pi\)
\(152\) 0 0
\(153\) 1.00000i 0.0808452i
\(154\) 0 0
\(155\) −16.2509 + 4.13082i −1.30530 + 0.331796i
\(156\) 0 0
\(157\) 5.55361i 0.443226i −0.975135 0.221613i \(-0.928868\pi\)
0.975135 0.221613i \(-0.0711322\pi\)
\(158\) 0 0
\(159\) 8.94396 0.709302
\(160\) 0 0
\(161\) 24.0212 1.89314
\(162\) 0 0
\(163\) 16.4945i 1.29195i −0.763359 0.645974i \(-0.776451\pi\)
0.763359 0.645974i \(-0.223549\pi\)
\(164\) 0 0
\(165\) 1.22320 + 4.81212i 0.0952256 + 0.374623i
\(166\) 0 0
\(167\) 5.12590i 0.396654i 0.980136 + 0.198327i \(0.0635508\pi\)
−0.980136 + 0.198327i \(0.936449\pi\)
\(168\) 0 0
\(169\) 4.43297 0.340997
\(170\) 0 0
\(171\) −7.45305 −0.569949
\(172\) 0 0
\(173\) 9.75256i 0.741473i 0.928738 + 0.370737i \(0.120895\pi\)
−0.928738 + 0.370737i \(0.879105\pi\)
\(174\) 0 0
\(175\) −7.02909 12.9330i −0.531349 0.977647i
\(176\) 0 0
\(177\) 2.18569i 0.164287i
\(178\) 0 0
\(179\) −4.31903 −0.322819 −0.161410 0.986888i \(-0.551604\pi\)
−0.161410 + 0.986888i \(0.551604\pi\)
\(180\) 0 0
\(181\) −0.219705 −0.0163306 −0.00816529 0.999967i \(-0.502599\pi\)
−0.00816529 + 0.999967i \(0.502599\pi\)
\(182\) 0 0
\(183\) 14.7082i 1.08726i
\(184\) 0 0
\(185\) −1.50965 5.93903i −0.110991 0.436646i
\(186\) 0 0
\(187\) 2.22048i 0.162378i
\(188\) 0 0
\(189\) −2.94396 −0.214141
\(190\) 0 0
\(191\) 22.2927 1.61305 0.806523 0.591203i \(-0.201347\pi\)
0.806523 + 0.591203i \(0.201347\pi\)
\(192\) 0 0
\(193\) 24.5225i 1.76517i 0.470154 + 0.882584i \(0.344198\pi\)
−0.470154 + 0.882584i \(0.655802\pi\)
\(194\) 0 0
\(195\) −6.34314 + 1.61237i −0.454242 + 0.115464i
\(196\) 0 0
\(197\) 11.6923i 0.833039i −0.909127 0.416520i \(-0.863250\pi\)
0.909127 0.416520i \(-0.136750\pi\)
\(198\) 0 0
\(199\) −2.79400 −0.198062 −0.0990308 0.995084i \(-0.531574\pi\)
−0.0990308 + 0.995084i \(0.531574\pi\)
\(200\) 0 0
\(201\) −2.18569 −0.154167
\(202\) 0 0
\(203\) 19.2970i 1.35438i
\(204\) 0 0
\(205\) 14.9297 3.79499i 1.04273 0.265053i
\(206\) 0 0
\(207\) 8.15951i 0.567125i
\(208\) 0 0
\(209\) −16.5494 −1.14474
\(210\) 0 0
\(211\) −2.75653 −0.189767 −0.0948837 0.995488i \(-0.530248\pi\)
−0.0948837 + 0.995488i \(0.530248\pi\)
\(212\) 0 0
\(213\) 5.85390i 0.401103i
\(214\) 0 0
\(215\) 5.38819 + 21.1974i 0.367471 + 1.44565i
\(216\) 0 0
\(217\) 22.0760i 1.49861i
\(218\) 0 0
\(219\) −7.81604 −0.528159
\(220\) 0 0
\(221\) −2.92695 −0.196888
\(222\) 0 0
\(223\) 3.76929i 0.252410i 0.992004 + 0.126205i \(0.0402797\pi\)
−0.992004 + 0.126205i \(0.959720\pi\)
\(224\) 0 0
\(225\) −4.39309 + 2.38763i −0.292872 + 0.159176i
\(226\) 0 0
\(227\) 19.4726i 1.29244i −0.763152 0.646220i \(-0.776349\pi\)
0.763152 0.646220i \(-0.223651\pi\)
\(228\) 0 0
\(229\) −7.62799 −0.504072 −0.252036 0.967718i \(-0.581100\pi\)
−0.252036 + 0.967718i \(0.581100\pi\)
\(230\) 0 0
\(231\) −6.53700 −0.430103
\(232\) 0 0
\(233\) 9.78812i 0.641241i 0.947208 + 0.320621i \(0.103891\pi\)
−0.947208 + 0.320621i \(0.896109\pi\)
\(234\) 0 0
\(235\) −4.49819 17.6961i −0.293429 1.15437i
\(236\) 0 0
\(237\) 12.9975i 0.844277i
\(238\) 0 0
\(239\) −1.78029 −0.115158 −0.0575788 0.998341i \(-0.518338\pi\)
−0.0575788 + 0.998341i \(0.518338\pi\)
\(240\) 0 0
\(241\) 12.5961 0.811387 0.405693 0.914009i \(-0.367030\pi\)
0.405693 + 0.914009i \(0.367030\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 3.61237 0.918229i 0.230786 0.0586635i
\(246\) 0 0
\(247\) 21.8147i 1.38804i
\(248\) 0 0
\(249\) 11.5383 0.731212
\(250\) 0 0
\(251\) −21.4987 −1.35699 −0.678494 0.734606i \(-0.737367\pi\)
−0.678494 + 0.734606i \(0.737367\pi\)
\(252\) 0 0
\(253\) 18.1181i 1.13907i
\(254\) 0 0
\(255\) −2.16715 + 0.550869i −0.135712 + 0.0344968i
\(256\) 0 0
\(257\) 27.5505i 1.71856i 0.511510 + 0.859278i \(0.329086\pi\)
−0.511510 + 0.859278i \(0.670914\pi\)
\(258\) 0 0
\(259\) 8.06785 0.501312
\(260\) 0 0
\(261\) 6.55478 0.405731
\(262\) 0 0
\(263\) 10.1415i 0.625349i −0.949860 0.312674i \(-0.898775\pi\)
0.949860 0.312674i \(-0.101225\pi\)
\(264\) 0 0
\(265\) 4.92695 + 19.3829i 0.302660 + 1.19068i
\(266\) 0 0
\(267\) 8.82029i 0.539793i
\(268\) 0 0
\(269\) 10.0303 0.611559 0.305780 0.952102i \(-0.401083\pi\)
0.305780 + 0.952102i \(0.401083\pi\)
\(270\) 0 0
\(271\) −22.4148 −1.36160 −0.680801 0.732469i \(-0.738368\pi\)
−0.680801 + 0.732469i \(0.738368\pi\)
\(272\) 0 0
\(273\) 8.61681i 0.521513i
\(274\) 0 0
\(275\) −9.75477 + 5.30170i −0.588235 + 0.319704i
\(276\) 0 0
\(277\) 12.9975i 0.780943i 0.920615 + 0.390471i \(0.127688\pi\)
−0.920615 + 0.390471i \(0.872312\pi\)
\(278\) 0 0
\(279\) −7.49874 −0.448938
\(280\) 0 0
\(281\) −22.8514 −1.36320 −0.681599 0.731725i \(-0.738715\pi\)
−0.681599 + 0.731725i \(0.738715\pi\)
\(282\) 0 0
\(283\) 13.7820i 0.819256i −0.912253 0.409628i \(-0.865658\pi\)
0.912253 0.409628i \(-0.134342\pi\)
\(284\) 0 0
\(285\) −4.10565 16.1519i −0.243198 0.956755i
\(286\) 0 0
\(287\) 20.2812i 1.19716i
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) −3.01818 −0.176929
\(292\) 0 0
\(293\) 1.03188i 0.0602832i −0.999546 0.0301416i \(-0.990404\pi\)
0.999546 0.0301416i \(-0.00959583\pi\)
\(294\) 0 0
\(295\) −4.73673 + 1.20403i −0.275783 + 0.0701014i
\(296\) 0 0
\(297\) 2.22048i 0.128845i
\(298\) 0 0
\(299\) 23.8825 1.38116
\(300\) 0 0
\(301\) −28.7956 −1.65975
\(302\) 0 0
\(303\) 6.09139i 0.349941i
\(304\) 0 0
\(305\) 31.8749 8.10229i 1.82515 0.463936i
\(306\) 0 0
\(307\) 21.0756i 1.20285i 0.798931 + 0.601423i \(0.205399\pi\)
−0.798931 + 0.601423i \(0.794601\pi\)
\(308\) 0 0
\(309\) −9.78125 −0.556436
\(310\) 0 0
\(311\) −25.1113 −1.42393 −0.711966 0.702214i \(-0.752195\pi\)
−0.711966 + 0.702214i \(0.752195\pi\)
\(312\) 0 0
\(313\) 15.2728i 0.863271i 0.902048 + 0.431636i \(0.142063\pi\)
−0.902048 + 0.431636i \(0.857937\pi\)
\(314\) 0 0
\(315\) −1.62173 6.38000i −0.0913744 0.359472i
\(316\) 0 0
\(317\) 7.29291i 0.409611i 0.978803 + 0.204805i \(0.0656561\pi\)
−0.978803 + 0.204805i \(0.934344\pi\)
\(318\) 0 0
\(319\) 14.5548 0.814911
\(320\) 0 0
\(321\) −2.78617 −0.155509
\(322\) 0 0
\(323\) 7.45305i 0.414699i
\(324\) 0 0
\(325\) −6.98848 12.8583i −0.387651 0.713253i
\(326\) 0 0
\(327\) 12.9061i 0.713709i
\(328\) 0 0
\(329\) 24.0392 1.32532
\(330\) 0 0
\(331\) −24.5504 −1.34941 −0.674706 0.738086i \(-0.735730\pi\)
−0.674706 + 0.738086i \(0.735730\pi\)
\(332\) 0 0
\(333\) 2.74048i 0.150177i
\(334\) 0 0
\(335\) −1.20403 4.73673i −0.0657833 0.258795i
\(336\) 0 0
\(337\) 6.35689i 0.346282i 0.984897 + 0.173141i \(0.0553916\pi\)
−0.984897 + 0.173141i \(0.944608\pi\)
\(338\) 0 0
\(339\) 19.2691 1.04655
\(340\) 0 0
\(341\) −16.6508 −0.901693
\(342\) 0 0
\(343\) 15.7005i 0.847747i
\(344\) 0 0
\(345\) 17.6829 4.49482i 0.952015 0.241993i
\(346\) 0 0
\(347\) 15.0371i 0.807232i 0.914928 + 0.403616i \(0.132247\pi\)
−0.914928 + 0.403616i \(0.867753\pi\)
\(348\) 0 0
\(349\) −34.9730 −1.87206 −0.936032 0.351916i \(-0.885530\pi\)
−0.936032 + 0.351916i \(0.885530\pi\)
\(350\) 0 0
\(351\) −2.92695 −0.156229
\(352\) 0 0
\(353\) 13.7039i 0.729387i −0.931128 0.364694i \(-0.881174\pi\)
0.931128 0.364694i \(-0.118826\pi\)
\(354\) 0 0
\(355\) 12.6863 3.22473i 0.673318 0.171151i
\(356\) 0 0
\(357\) 2.94396i 0.155811i
\(358\) 0 0
\(359\) −13.1274 −0.692835 −0.346418 0.938080i \(-0.612602\pi\)
−0.346418 + 0.938080i \(0.612602\pi\)
\(360\) 0 0
\(361\) 36.5479 1.92357
\(362\) 0 0
\(363\) 6.06946i 0.318564i
\(364\) 0 0
\(365\) −4.30561 16.9385i −0.225366 0.886603i
\(366\) 0 0
\(367\) 20.7635i 1.08384i −0.840429 0.541922i \(-0.817697\pi\)
0.840429 0.541922i \(-0.182303\pi\)
\(368\) 0 0
\(369\) 6.88909 0.358632
\(370\) 0 0
\(371\) −26.3306 −1.36702
\(372\) 0 0
\(373\) 17.8879i 0.926201i 0.886306 + 0.463100i \(0.153263\pi\)
−0.886306 + 0.463100i \(0.846737\pi\)
\(374\) 0 0
\(375\) −7.59438 8.20521i −0.392172 0.423715i
\(376\) 0 0
\(377\) 19.1855i 0.988105i
\(378\) 0 0
\(379\) 6.52015 0.334918 0.167459 0.985879i \(-0.446444\pi\)
0.167459 + 0.985879i \(0.446444\pi\)
\(380\) 0 0
\(381\) −16.0705 −0.823318
\(382\) 0 0
\(383\) 8.43497i 0.431007i −0.976503 0.215503i \(-0.930861\pi\)
0.976503 0.215503i \(-0.0691392\pi\)
\(384\) 0 0
\(385\) −3.60103 14.1667i −0.183526 0.722000i
\(386\) 0 0
\(387\) 9.78125i 0.497209i
\(388\) 0 0
\(389\) 20.9635 1.06289 0.531445 0.847093i \(-0.321649\pi\)
0.531445 + 0.847093i \(0.321649\pi\)
\(390\) 0 0
\(391\) 8.15951 0.412644
\(392\) 0 0
\(393\) 15.5900i 0.786410i
\(394\) 0 0
\(395\) 28.1675 7.15991i 1.41726 0.360254i
\(396\) 0 0
\(397\) 24.6066i 1.23497i −0.786583 0.617484i \(-0.788152\pi\)
0.786583 0.617484i \(-0.211848\pi\)
\(398\) 0 0
\(399\) 21.9414 1.09845
\(400\) 0 0
\(401\) −16.5153 −0.824737 −0.412369 0.911017i \(-0.635298\pi\)
−0.412369 + 0.911017i \(0.635298\pi\)
\(402\) 0 0
\(403\) 21.9484i 1.09333i
\(404\) 0 0
\(405\) −2.16715 + 0.550869i −0.107687 + 0.0273729i
\(406\) 0 0
\(407\) 6.08518i 0.301631i
\(408\) 0 0
\(409\) −10.9340 −0.540652 −0.270326 0.962769i \(-0.587131\pi\)
−0.270326 + 0.962769i \(0.587131\pi\)
\(410\) 0 0
\(411\) 11.4091 0.562769
\(412\) 0 0
\(413\) 6.43459i 0.316625i
\(414\) 0 0
\(415\) 6.35611 + 25.0053i 0.312009 + 1.22746i
\(416\) 0 0
\(417\) 12.2949i 0.602082i
\(418\) 0 0
\(419\) 21.5631 1.05343 0.526714 0.850043i \(-0.323424\pi\)
0.526714 + 0.850043i \(0.323424\pi\)
\(420\) 0 0
\(421\) −12.5868 −0.613442 −0.306721 0.951799i \(-0.599232\pi\)
−0.306721 + 0.951799i \(0.599232\pi\)
\(422\) 0 0
\(423\) 8.16561i 0.397026i
\(424\) 0 0
\(425\) −2.38763 4.39309i −0.115817 0.213096i
\(426\) 0 0
\(427\) 43.3003i 2.09545i
\(428\) 0 0
\(429\) −6.49924 −0.313786
\(430\) 0 0
\(431\) 9.88964 0.476367 0.238184 0.971220i \(-0.423448\pi\)
0.238184 + 0.971220i \(0.423448\pi\)
\(432\) 0 0
\(433\) 11.1185i 0.534319i −0.963652 0.267159i \(-0.913915\pi\)
0.963652 0.267159i \(-0.0860850\pi\)
\(434\) 0 0
\(435\) 3.61083 + 14.2052i 0.173126 + 0.681088i
\(436\) 0 0
\(437\) 60.8132i 2.90909i
\(438\) 0 0
\(439\) −7.87168 −0.375695 −0.187847 0.982198i \(-0.560151\pi\)
−0.187847 + 0.982198i \(0.560151\pi\)
\(440\) 0 0
\(441\) 1.66687 0.0793749
\(442\) 0 0
\(443\) 24.7964i 1.17811i 0.808093 + 0.589055i \(0.200500\pi\)
−0.808093 + 0.589055i \(0.799500\pi\)
\(444\) 0 0
\(445\) 19.1149 4.85882i 0.906133 0.230330i
\(446\) 0 0
\(447\) 11.0918i 0.524623i
\(448\) 0 0
\(449\) −0.451817 −0.0213226 −0.0106613 0.999943i \(-0.503394\pi\)
−0.0106613 + 0.999943i \(0.503394\pi\)
\(450\) 0 0
\(451\) 15.2971 0.720312
\(452\) 0 0
\(453\) 14.7824i 0.694539i
\(454\) 0 0
\(455\) 18.6739 4.74674i 0.875447 0.222530i
\(456\) 0 0
\(457\) 32.2642i 1.50925i −0.656154 0.754627i \(-0.727818\pi\)
0.656154 0.754627i \(-0.272182\pi\)
\(458\) 0 0
\(459\) −1.00000 −0.0466760
\(460\) 0 0
\(461\) −6.01778 −0.280276 −0.140138 0.990132i \(-0.544755\pi\)
−0.140138 + 0.990132i \(0.544755\pi\)
\(462\) 0 0
\(463\) 7.48331i 0.347779i −0.984765 0.173889i \(-0.944366\pi\)
0.984765 0.173889i \(-0.0556335\pi\)
\(464\) 0 0
\(465\) −4.13082 16.2509i −0.191562 0.753617i
\(466\) 0 0
\(467\) 8.18742i 0.378869i −0.981893 0.189434i \(-0.939335\pi\)
0.981893 0.189434i \(-0.0606654\pi\)
\(468\) 0 0
\(469\) 6.43459 0.297122
\(470\) 0 0
\(471\) 5.55361 0.255897
\(472\) 0 0
\(473\) 21.7191i 0.998645i
\(474\) 0 0
\(475\) 32.7419 17.7951i 1.50230 0.816497i
\(476\) 0 0
\(477\) 8.94396i 0.409516i
\(478\) 0 0
\(479\) 37.1891 1.69922 0.849608 0.527415i \(-0.176839\pi\)
0.849608 + 0.527415i \(0.176839\pi\)
\(480\) 0 0
\(481\) 8.02124 0.365737
\(482\) 0 0
\(483\) 24.0212i 1.09300i
\(484\) 0 0
\(485\) −1.66262 6.54085i −0.0754958 0.297005i
\(486\) 0 0
\(487\) 37.6780i 1.70736i 0.520802 + 0.853678i \(0.325633\pi\)
−0.520802 + 0.853678i \(0.674367\pi\)
\(488\) 0 0
\(489\) 16.4945 0.745907
\(490\) 0 0
\(491\) 37.9828 1.71414 0.857069 0.515202i \(-0.172283\pi\)
0.857069 + 0.515202i \(0.172283\pi\)
\(492\) 0 0
\(493\) 6.55478i 0.295213i
\(494\) 0 0
\(495\) −4.81212 + 1.22320i −0.216289 + 0.0549785i
\(496\) 0 0
\(497\) 17.2336i 0.773033i
\(498\) 0 0
\(499\) −6.63997 −0.297246 −0.148623 0.988894i \(-0.547484\pi\)
−0.148623 + 0.988894i \(0.547484\pi\)
\(500\) 0 0
\(501\) −5.12590 −0.229008
\(502\) 0 0
\(503\) 14.9224i 0.665358i −0.943040 0.332679i \(-0.892047\pi\)
0.943040 0.332679i \(-0.107953\pi\)
\(504\) 0 0
\(505\) −13.2010 + 3.35556i −0.587435 + 0.149320i
\(506\) 0 0
\(507\) 4.43297i 0.196875i
\(508\) 0 0
\(509\) −5.68041 −0.251780 −0.125890 0.992044i \(-0.540179\pi\)
−0.125890 + 0.992044i \(0.540179\pi\)
\(510\) 0 0
\(511\) 23.0101 1.01791
\(512\) 0 0
\(513\) 7.45305i 0.329060i
\(514\) 0 0
\(515\) −5.38819 21.1974i −0.237432 0.934071i
\(516\) 0 0
\(517\) 18.1316i 0.797427i
\(518\) 0 0
\(519\) −9.75256 −0.428090
\(520\) 0 0
\(521\) −10.0303 −0.439436 −0.219718 0.975563i \(-0.570514\pi\)
−0.219718 + 0.975563i \(0.570514\pi\)
\(522\) 0 0
\(523\) 35.1154i 1.53549i 0.640756 + 0.767744i \(0.278621\pi\)
−0.640756 + 0.767744i \(0.721379\pi\)
\(524\) 0 0
\(525\) 12.9330 7.02909i 0.564445 0.306774i
\(526\) 0 0
\(527\) 7.49874i 0.326650i
\(528\) 0 0
\(529\) −43.5777 −1.89468
\(530\) 0 0
\(531\) −2.18569 −0.0948510
\(532\) 0 0
\(533\) 20.1640i 0.873400i
\(534\) 0 0
\(535\) −1.53482 6.03806i −0.0663559 0.261048i
\(536\) 0 0
\(537\) 4.31903i 0.186380i
\(538\) 0 0
\(539\) 3.70126 0.159425
\(540\) 0 0
\(541\) −6.77276 −0.291184 −0.145592 0.989345i \(-0.546509\pi\)
−0.145592 + 0.989345i \(0.546509\pi\)
\(542\) 0 0
\(543\) 0.219705i 0.00942847i
\(544\) 0 0
\(545\) 27.9694 7.10957i 1.19808 0.304540i
\(546\) 0 0
\(547\) 39.0154i 1.66818i 0.551629 + 0.834090i \(0.314007\pi\)
−0.551629 + 0.834090i \(0.685993\pi\)
\(548\) 0 0
\(549\) 14.7082 0.627731
\(550\) 0 0
\(551\) −48.8531 −2.08121
\(552\) 0 0
\(553\) 38.2640i 1.62715i
\(554\) 0 0
\(555\) 5.93903 1.50965i 0.252098 0.0640809i
\(556\) 0 0
\(557\) 4.89389i 0.207361i −0.994611 0.103680i \(-0.966938\pi\)
0.994611 0.103680i \(-0.0330619\pi\)
\(558\) 0 0
\(559\) −28.6292 −1.21089
\(560\) 0 0
\(561\) −2.22048 −0.0937488
\(562\) 0 0
\(563\) 29.2863i 1.23427i 0.786856 + 0.617136i \(0.211707\pi\)
−0.786856 + 0.617136i \(0.788293\pi\)
\(564\) 0 0
\(565\) 10.6147 + 41.7590i 0.446566 + 1.75681i
\(566\) 0 0
\(567\) 2.94396i 0.123635i
\(568\) 0 0
\(569\) −27.7551 −1.16356 −0.581778 0.813348i \(-0.697643\pi\)
−0.581778 + 0.813348i \(0.697643\pi\)
\(570\) 0 0
\(571\) −32.9491 −1.37888 −0.689439 0.724343i \(-0.742143\pi\)
−0.689439 + 0.724343i \(0.742143\pi\)
\(572\) 0 0
\(573\) 22.2927i 0.931293i
\(574\) 0 0
\(575\) 19.4819 + 35.8454i 0.812453 + 1.49486i
\(576\) 0 0
\(577\) 31.3658i 1.30578i −0.757455 0.652888i \(-0.773557\pi\)
0.757455 0.652888i \(-0.226443\pi\)
\(578\) 0 0
\(579\) −24.5225 −1.01912
\(580\) 0 0
\(581\) −33.9683 −1.40924
\(582\) 0 0
\(583\) 19.8599i 0.822513i
\(584\) 0 0
\(585\) −1.61237 6.34314i −0.0666632 0.262257i
\(586\) 0 0
\(587\) 33.7149i 1.39156i 0.718253 + 0.695782i \(0.244942\pi\)
−0.718253 + 0.695782i \(0.755058\pi\)
\(588\) 0 0
\(589\) 55.8885 2.30284
\(590\) 0 0
\(591\) 11.6923 0.480955
\(592\) 0 0
\(593\) 5.28289i 0.216942i 0.994100 + 0.108471i \(0.0345955\pi\)
−0.994100 + 0.108471i \(0.965405\pi\)
\(594\) 0 0
\(595\) 6.38000 1.62173i 0.261554 0.0664846i
\(596\) 0 0
\(597\) 2.79400i 0.114351i
\(598\) 0 0
\(599\) −11.8098 −0.482537 −0.241268 0.970458i \(-0.577563\pi\)
−0.241268 + 0.970458i \(0.577563\pi\)
\(600\) 0 0
\(601\) −7.80211 −0.318255 −0.159127 0.987258i \(-0.550868\pi\)
−0.159127 + 0.987258i \(0.550868\pi\)
\(602\) 0 0
\(603\) 2.18569i 0.0890083i
\(604\) 0 0
\(605\) 13.1534 3.34348i 0.534763 0.135932i
\(606\) 0 0
\(607\) 5.19576i 0.210889i −0.994425 0.105445i \(-0.966373\pi\)
0.994425 0.105445i \(-0.0336266\pi\)
\(608\) 0 0
\(609\) −19.2970 −0.781954
\(610\) 0 0
\(611\) 23.9003 0.966904
\(612\) 0 0
\(613\) 9.52430i 0.384683i −0.981328 0.192341i \(-0.938392\pi\)
0.981328 0.192341i \(-0.0616081\pi\)
\(614\) 0 0
\(615\) 3.79499 + 14.9297i 0.153029 + 0.602023i
\(616\) 0 0
\(617\) 34.5985i 1.39288i 0.717614 + 0.696441i \(0.245234\pi\)
−0.717614 + 0.696441i \(0.754766\pi\)
\(618\) 0 0
\(619\) −12.5225 −0.503322 −0.251661 0.967815i \(-0.580977\pi\)
−0.251661 + 0.967815i \(0.580977\pi\)
\(620\) 0 0
\(621\) 8.15951 0.327430
\(622\) 0 0
\(623\) 25.9665i 1.04033i
\(624\) 0 0
\(625\) 13.5984 20.9782i 0.543937 0.839126i
\(626\) 0 0
\(627\) 16.5494i 0.660918i
\(628\) 0 0
\(629\) 2.74048 0.109270
\(630\) 0 0
\(631\) −14.2986 −0.569219 −0.284609 0.958644i \(-0.591864\pi\)
−0.284609 + 0.958644i \(0.591864\pi\)
\(632\) 0 0
\(633\) 2.75653i 0.109562i
\(634\) 0 0
\(635\) −8.85276 34.8273i −0.351311 1.38208i
\(636\) 0 0
\(637\) 4.87886i 0.193307i
\(638\) 0 0
\(639\) 5.85390 0.231577
\(640\) 0 0
\(641\) 6.33683 0.250290 0.125145 0.992138i \(-0.460060\pi\)
0.125145 + 0.992138i \(0.460060\pi\)
\(642\) 0 0
\(643\) 13.5652i 0.534961i 0.963563 + 0.267480i \(0.0861911\pi\)
−0.963563 + 0.267480i \(0.913809\pi\)
\(644\) 0 0
\(645\) −21.1974 + 5.38819i −0.834648 + 0.212160i
\(646\) 0 0
\(647\) 1.03764i 0.0407939i −0.999792 0.0203969i \(-0.993507\pi\)
0.999792 0.0203969i \(-0.00649300\pi\)
\(648\) 0 0
\(649\) −4.85330 −0.190509
\(650\) 0 0
\(651\) 22.0760 0.865225
\(652\) 0 0
\(653\) 18.0163i 0.705034i −0.935805 0.352517i \(-0.885326\pi\)
0.935805 0.352517i \(-0.114674\pi\)
\(654\) 0 0
\(655\) 33.7858 8.58804i 1.32012 0.335562i
\(656\) 0 0
\(657\) 7.81604i 0.304933i
\(658\) 0 0
\(659\) 12.8514 0.500619 0.250309 0.968166i \(-0.419468\pi\)
0.250309 + 0.968166i \(0.419468\pi\)
\(660\) 0 0
\(661\) −33.5247 −1.30396 −0.651981 0.758236i \(-0.726062\pi\)
−0.651981 + 0.758236i \(0.726062\pi\)
\(662\) 0 0
\(663\) 2.92695i 0.113673i
\(664\) 0 0
\(665\) 12.0869 + 47.5504i 0.468708 + 1.84393i
\(666\) 0 0
\(667\) 53.4838i 2.07090i
\(668\) 0 0
\(669\) −3.76929 −0.145729
\(670\) 0 0
\(671\) 32.6593 1.26080
\(672\) 0 0
\(673\) 43.1130i 1.66189i −0.556358 0.830943i \(-0.687802\pi\)
0.556358 0.830943i \(-0.312198\pi\)
\(674\) 0 0
\(675\) −2.38763 4.39309i −0.0919001 0.169090i
\(676\) 0 0
\(677\) 0.254132i 0.00976710i −0.999988 0.00488355i \(-0.998446\pi\)
0.999988 0.00488355i \(-0.00155449\pi\)
\(678\) 0 0
\(679\) 8.88539 0.340990
\(680\) 0 0
\(681\) 19.4726 0.746190
\(682\) 0 0
\(683\) 31.2210i 1.19464i −0.802004 0.597319i \(-0.796233\pi\)
0.802004 0.597319i \(-0.203767\pi\)
\(684\) 0 0
\(685\) 6.28491 + 24.7252i 0.240134 + 0.944701i
\(686\) 0 0
\(687\) 7.62799i 0.291026i
\(688\) 0 0
\(689\) −26.1785 −0.997322
\(690\) 0 0
\(691\) 1.31305 0.0499506 0.0249753 0.999688i \(-0.492049\pi\)
0.0249753 + 0.999688i \(0.492049\pi\)
\(692\) 0 0
\(693\) 6.53700i 0.248320i
\(694\) 0 0
\(695\) −26.6448 + 6.77286i −1.01070 + 0.256909i
\(696\) 0 0
\(697\) 6.88909i 0.260943i
\(698\) 0 0
\(699\) −9.78812 −0.370221
\(700\) 0 0
\(701\) −39.0578 −1.47519 −0.737596 0.675242i \(-0.764039\pi\)
−0.737596 + 0.675242i \(0.764039\pi\)
\(702\) 0 0
\(703\) 20.4249i 0.770340i
\(704\) 0 0
\(705\) 17.6961 4.49819i 0.666474 0.169411i
\(706\) 0 0
\(707\) 17.9328i 0.674431i
\(708\) 0 0
\(709\) −3.72235 −0.139796 −0.0698979 0.997554i \(-0.522267\pi\)
−0.0698979 + 0.997554i \(0.522267\pi\)
\(710\) 0 0
\(711\) 12.9975 0.487444
\(712\) 0 0
\(713\) 61.1861i 2.29144i
\(714\) 0 0
\(715\) −3.58023 14.0848i −0.133893 0.526743i
\(716\) 0 0
\(717\) 1.78029i 0.0664863i
\(718\) 0 0
\(719\) 43.2995 1.61480 0.807399 0.590005i \(-0.200874\pi\)
0.807399 + 0.590005i \(0.200874\pi\)
\(720\) 0 0
\(721\) 28.7956 1.07240
\(722\) 0 0
\(723\) 12.5961i 0.468454i
\(724\) 0 0
\(725\) −28.7957 + 15.6504i −1.06945 + 0.581242i
\(726\) 0 0
\(727\) 3.62706i 0.134520i −0.997735 0.0672601i \(-0.978574\pi\)
0.997735 0.0672601i \(-0.0214257\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −9.78125 −0.361773
\(732\) 0 0
\(733\) 24.3743i 0.900285i 0.892957 + 0.450142i \(0.148627\pi\)
−0.892957 + 0.450142i \(0.851373\pi\)
\(734\) 0 0
\(735\) 0.918229 + 3.61237i 0.0338694 + 0.133244i
\(736\) 0 0
\(737\) 4.85330i 0.178773i
\(738\) 0 0
\(739\) 3.76879 0.138637 0.0693186 0.997595i \(-0.477918\pi\)
0.0693186 + 0.997595i \(0.477918\pi\)
\(740\) 0 0
\(741\) 21.8147 0.801383
\(742\) 0 0
\(743\) 45.5234i 1.67009i −0.550179 0.835047i \(-0.685441\pi\)
0.550179 0.835047i \(-0.314559\pi\)
\(744\) 0 0
\(745\) 24.0376 6.11012i 0.880669 0.223858i
\(746\) 0 0
\(747\) 11.5383i 0.422166i
\(748\) 0 0
\(749\) 8.20237 0.299708
\(750\) 0 0
\(751\) 5.23474 0.191018 0.0955092 0.995429i \(-0.469552\pi\)
0.0955092 + 0.995429i \(0.469552\pi\)
\(752\) 0 0
\(753\) 21.4987i 0.783458i
\(754\) 0 0
\(755\) 32.0357 8.14318i 1.16590 0.296361i
\(756\) 0 0
\(757\) 39.7836i 1.44596i −0.690869 0.722980i \(-0.742772\pi\)
0.690869 0.722980i \(-0.257228\pi\)
\(758\) 0 0
\(759\) 18.1181 0.657644
\(760\) 0 0
\(761\) 27.4012 0.993293 0.496646 0.867953i \(-0.334565\pi\)
0.496646 + 0.867953i \(0.334565\pi\)
\(762\) 0 0
\(763\) 37.9950i 1.37551i
\(764\) 0 0
\(765\) −0.550869 2.16715i −0.0199167 0.0783535i
\(766\) 0 0
\(767\) 6.39742i 0.230997i
\(768\) 0 0
\(769\) 28.7265 1.03590 0.517952 0.855410i \(-0.326695\pi\)
0.517952 + 0.855410i \(0.326695\pi\)
\(770\) 0 0
\(771\) −27.5505 −0.992208
\(772\) 0 0
\(773\) 9.08155i 0.326641i −0.986573 0.163320i \(-0.947780\pi\)
0.986573 0.163320i \(-0.0522204\pi\)
\(774\) 0 0
\(775\) 32.9426 17.9042i 1.18333 0.643139i
\(776\) 0 0
\(777\) 8.06785i 0.289432i
\(778\) 0 0
\(779\) −51.3447 −1.83961
\(780\) 0 0
\(781\) 12.9985 0.465122
\(782\) 0 0
\(783\) 6.55478i 0.234249i
\(784\) 0 0
\(785\) 3.05931 + 12.0355i 0.109192 + 0.429566i
\(786\) 0 0
\(787\) 26.6783i 0.950978i −0.879722 0.475489i \(-0.842271\pi\)
0.879722 0.475489i \(-0.157729\pi\)
\(788\) 0 0
\(789\) 10.1415 0.361045
\(790\) 0 0
\(791\) −56.7273 −2.01699
\(792\) 0 0
\(793\) 43.0502i 1.52876i
\(794\) 0 0
\(795\) −19.3829 + 4.92695i −0.687441 + 0.174741i
\(796\) 0 0
\(797\) 15.8270i 0.560621i −0.959909 0.280310i \(-0.909563\pi\)
0.959909 0.280310i \(-0.0904374\pi\)
\(798\) 0 0
\(799\) 8.16561 0.288879
\(800\) 0 0
\(801\) 8.82029 0.311649
\(802\) 0 0
\(803\) 17.3554i 0.612458i
\(804\) 0 0
\(805\) −52.0577 + 13.2326i −1.83479 + 0.466387i
\(806\) 0 0
\(807\) 10.0303i 0.353084i
\(808\) 0 0
\(809\) 22.0429 0.774987 0.387494 0.921872i \(-0.373341\pi\)
0.387494 + 0.921872i \(0.373341\pi\)
\(810\) 0 0
\(811\) 41.3144 1.45074 0.725372 0.688357i \(-0.241668\pi\)
0.725372 + 0.688357i \(0.241668\pi\)
\(812\) 0 0
\(813\) 22.4148i 0.786121i
\(814\) 0 0
\(815\) 9.08631 + 35.7460i 0.318279 + 1.25213i
\(816\) 0 0
\(817\) 72.9001i 2.55045i
\(818\) 0 0
\(819\) 8.61681 0.301096
\(820\) 0 0
\(821\) −0.00462923 −0.000161561 −8.07806e−5 1.00000i \(-0.500026\pi\)
−8.07806e−5 1.00000i \(0.500026\pi\)
\(822\) 0 0
\(823\) 35.0154i 1.22056i 0.792185 + 0.610281i \(0.208943\pi\)
−0.792185 + 0.610281i \(0.791057\pi\)
\(824\) 0 0
\(825\) −5.30170 9.75477i −0.184581 0.339618i
\(826\) 0 0
\(827\) 21.1206i 0.734436i −0.930135 0.367218i \(-0.880310\pi\)
0.930135 0.367218i \(-0.119690\pi\)
\(828\) 0 0
\(829\) 22.3747 0.777104 0.388552 0.921427i \(-0.372975\pi\)
0.388552 + 0.921427i \(0.372975\pi\)
\(830\) 0 0
\(831\) −12.9975 −0.450878
\(832\) 0 0
\(833\) 1.66687i 0.0577537i
\(834\) 0 0
\(835\) −2.82370 11.1086i −0.0977182 0.384429i
\(836\) 0 0
\(837\) 7.49874i 0.259194i
\(838\) 0 0
\(839\) 11.2265 0.387581 0.193790 0.981043i \(-0.437922\pi\)
0.193790 + 0.981043i \(0.437922\pi\)
\(840\) 0 0
\(841\) 13.9652 0.481559
\(842\) 0 0
\(843\) 22.8514i 0.787043i
\(844\) 0 0
\(845\) −9.60690 + 2.44198i −0.330488 + 0.0840068i
\(846\) 0 0
\(847\) 17.8682i 0.613959i
\(848\) 0 0
\(849\) 13.7820 0.472998
\(850\) 0 0
\(851\) −22.3610 −0.766524
\(852\) 0 0
\(853\) 27.9221i 0.956035i 0.878350 + 0.478018i \(0.158645\pi\)
−0.878350 + 0.478018i \(0.841355\pi\)
\(854\) 0 0
\(855\) 16.1519 4.10565i 0.552382 0.140410i
\(856\) 0 0
\(857\) 38.5855i 1.31806i −0.752119 0.659028i \(-0.770968\pi\)
0.752119 0.659028i \(-0.229032\pi\)
\(858\) 0 0
\(859\) −30.1869 −1.02996 −0.514981 0.857202i \(-0.672201\pi\)
−0.514981 + 0.857202i \(0.672201\pi\)
\(860\) 0 0
\(861\) −20.2812 −0.691180
\(862\) 0 0
\(863\) 2.10589i 0.0716852i −0.999357 0.0358426i \(-0.988589\pi\)
0.999357 0.0358426i \(-0.0114115\pi\)
\(864\) 0 0
\(865\) −5.37238 21.1353i −0.182667 0.718621i
\(866\) 0 0
\(867\) 1.00000i 0.0339618i
\(868\) 0 0
\(869\) 28.8607 0.979031
\(870\) 0 0
\(871\) 6.39742 0.216768
\(872\) 0 0
\(873\) 3.01818i 0.102150i
\(874\) 0 0
\(875\) 22.3575 + 24.1558i 0.755822 + 0.816614i
\(876\) 0 0
\(877\) 0.0171621i 0.000579523i −1.00000 0.000289762i \(-0.999908\pi\)
1.00000 0.000289762i \(-9.22340e-5\pi\)
\(878\) 0 0
\(879\) 1.03188 0.0348045
\(880\) 0 0
\(881\) −17.6280 −0.593902 −0.296951 0.954893i \(-0.595970\pi\)
−0.296951 + 0.954893i \(0.595970\pi\)
\(882\) 0 0
\(883\) 35.7475i 1.20300i 0.798874 + 0.601499i \(0.205430\pi\)
−0.798874 + 0.601499i \(0.794570\pi\)
\(884\) 0 0
\(885\) −1.20403 4.73673i −0.0404731 0.159223i
\(886\) 0 0
\(887\) 31.3002i 1.05096i 0.850807 + 0.525479i \(0.176114\pi\)
−0.850807 + 0.525479i \(0.823886\pi\)
\(888\) 0 0
\(889\) 47.3109 1.58676
\(890\) 0 0
\(891\) −2.22048 −0.0743890
\(892\) 0 0
\(893\) 60.8587i 2.03656i
\(894\) 0 0
\(895\) 9.35998 2.37922i 0.312870 0.0795285i
\(896\) 0 0
\(897\) 23.8825i 0.797413i
\(898\) 0 0
\(899\) −49.1526 −1.63933
\(900\) 0 0
\(901\) −8.94396 −0.297966
\(902\) 0 0
\(903\) 28.7956i 0.958256i
\(904\) 0 0
\(905\) 0.476135 0.121029i 0.0158273 0.00402314i
\(906\) 0 0
\(907\) 38.6563i 1.28356i −0.766889 0.641780i \(-0.778196\pi\)
0.766889 0.641780i \(-0.221804\pi\)
\(908\) 0 0
\(909\) −6.09139 −0.202039
\(910\) 0 0
\(911\) 7.51866 0.249104 0.124552 0.992213i \(-0.460251\pi\)
0.124552 + 0.992213i \(0.460251\pi\)
\(912\) 0 0
\(913\) 25.6207i 0.847920i
\(914\) 0 0
\(915\) 8.10229 + 31.8749i 0.267854 + 1.05375i
\(916\) 0 0
\(917\) 45.8962i 1.51563i
\(918\) 0 0
\(919\) 8.24705 0.272045 0.136023 0.990706i \(-0.456568\pi\)
0.136023 + 0.990706i \(0.456568\pi\)
\(920\) 0 0
\(921\) −21.0756 −0.694463
\(922\) 0 0
\(923\) 17.1341i 0.563975i
\(924\) 0 0
\(925\) 6.54326 + 12.0392i 0.215141 + 0.395845i
\(926\) 0 0
\(927\) 9.78125i 0.321258i
\(928\) 0 0
\(929\) 38.5663 1.26532 0.632660 0.774430i \(-0.281963\pi\)
0.632660 + 0.774430i \(0.281963\pi\)
\(930\) 0 0
\(931\) −12.4233 −0.407157
\(932\) 0 0
\(933\) 25.1113i 0.822107i
\(934\) 0 0
\(935\) −1.22320 4.81212i −0.0400028 0.157373i
\(936\) 0 0
\(937\) 21.8518i 0.713866i 0.934130 + 0.356933i \(0.116178\pi\)
−0.934130 + 0.356933i \(0.883822\pi\)
\(938\) 0 0
\(939\) −15.2728 −0.498410
\(940\) 0 0
\(941\) −8.65899 −0.282275 −0.141138 0.989990i \(-0.545076\pi\)
−0.141138 + 0.989990i \(0.545076\pi\)
\(942\) 0 0
\(943\) 56.2116i 1.83050i
\(944\) 0 0
\(945\) 6.38000 1.62173i 0.207541 0.0527550i
\(946\) 0 0
\(947\) 6.28370i 0.204193i −0.994775 0.102096i \(-0.967445\pi\)
0.994775 0.102096i \(-0.0325550\pi\)
\(948\) 0 0
\(949\) 22.8771 0.742624
\(950\) 0 0
\(951\) −7.29291 −0.236489
\(952\) 0 0
\(953\) 44.7341i 1.44908i −0.689233 0.724540i \(-0.742052\pi\)
0.689233 0.724540i \(-0.257948\pi\)
\(954\) 0 0
\(955\) −48.3117 + 12.2804i −1.56333 + 0.397384i
\(956\) 0 0
\(957\) 14.5548i 0.470489i
\(958\) 0 0
\(959\) −33.5878 −1.08461
\(960\) 0 0
\(961\) 25.2311 0.813906
\(962\) 0 0
\(963\) 2.78617i 0.0897832i
\(964\) 0 0
\(965\) −13.5087 53.1440i −0.434860 1.71076i
\(966\) 0 0
\(967\) 4.14972i 0.133446i −0.997772 0.0667230i \(-0.978746\pi\)
0.997772 0.0667230i \(-0.0212544\pi\)
\(968\) 0 0
\(969\) 7.45305 0.239426
\(970\) 0 0
\(971\) −12.6864 −0.407126 −0.203563 0.979062i \(-0.565252\pi\)
−0.203563 + 0.979062i \(0.565252\pi\)
\(972\) 0 0
\(973\) 36.1955i 1.16038i
\(974\) 0 0
\(975\) 12.8583 6.98848i 0.411797 0.223811i
\(976\) 0 0
\(977\) 20.2144i 0.646717i 0.946277 + 0.323359i \(0.104812\pi\)
−0.946277 + 0.323359i \(0.895188\pi\)
\(978\) 0 0
\(979\) 19.5853 0.625949
\(980\) 0 0
\(981\) 12.9061 0.412060
\(982\) 0 0
\(983\) 39.9959i 1.27567i 0.770173 + 0.637835i \(0.220170\pi\)
−0.770173 + 0.637835i \(0.779830\pi\)
\(984\) 0 0
\(985\) 6.44091 + 25.3389i 0.205224 + 0.807365i
\(986\) 0 0
\(987\) 24.0392i 0.765176i
\(988\) 0 0
\(989\) 79.8102 2.53782
\(990\) 0 0
\(991\) −21.7724 −0.691622 −0.345811 0.938304i \(-0.612396\pi\)
−0.345811 + 0.938304i \(0.612396\pi\)
\(992\) 0 0
\(993\) 24.5504i 0.779084i
\(994\) 0 0
\(995\) 6.05503 1.53913i 0.191957 0.0487937i
\(996\) 0 0
\(997\) 39.4553i 1.24956i −0.780800 0.624781i \(-0.785188\pi\)
0.780800 0.624781i \(-0.214812\pi\)
\(998\) 0 0
\(999\) 2.74048 0.0867049
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4080.2.m.r.2449.6 10
4.3 odd 2 1020.2.g.d.409.1 10
5.4 even 2 inner 4080.2.m.r.2449.1 10
12.11 even 2 3060.2.g.g.2449.9 10
20.3 even 4 5100.2.a.bd.1.5 5
20.7 even 4 5100.2.a.bc.1.1 5
20.19 odd 2 1020.2.g.d.409.6 yes 10
60.59 even 2 3060.2.g.g.2449.10 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1020.2.g.d.409.1 10 4.3 odd 2
1020.2.g.d.409.6 yes 10 20.19 odd 2
3060.2.g.g.2449.9 10 12.11 even 2
3060.2.g.g.2449.10 10 60.59 even 2
4080.2.m.r.2449.1 10 5.4 even 2 inner
4080.2.m.r.2449.6 10 1.1 even 1 trivial
5100.2.a.bc.1.1 5 20.7 even 4
5100.2.a.bd.1.5 5 20.3 even 4