Properties

Label 510.2.w.b
Level $510$
Weight $2$
Character orbit 510.w
Analytic conductor $4.072$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [510,2,Mod(257,510)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("510.257"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(510, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([4, 2, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 510 = 2 \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 510.w (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.07237050309\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + (\zeta_{8}^{2} + \zeta_{8} - 1) q^{3} + q^{4} + ( - \zeta_{8}^{2} - 2) q^{5} + (\zeta_{8}^{2} + \zeta_{8} - 1) q^{6} + (\zeta_{8}^{3} - \zeta_{8}^{2} + \cdots - 2) q^{7} + q^{8} + (2 \zeta_{8}^{3} - \zeta_{8}^{2} - 2 \zeta_{8}) q^{9}+ \cdots + ( - 6 \zeta_{8}^{3} + 9 \zeta_{8}^{2} + \cdots - 6) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 4 q^{3} + 4 q^{4} - 8 q^{5} - 4 q^{6} - 8 q^{7} + 4 q^{8} - 8 q^{10} - 12 q^{11} - 4 q^{12} - 12 q^{13} - 8 q^{14} + 12 q^{15} + 4 q^{16} - 12 q^{17} - 4 q^{19} - 8 q^{20} + 8 q^{21} - 12 q^{22}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/510\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(307\) \(341\)
\(\chi(n)\) \(\zeta_{8}\) \(-\zeta_{8}^{2}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
257.1
0.707107 0.707107i
−0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 + 0.707107i
1.00000 −0.292893 1.70711i 1.00000 −2.00000 + 1.00000i −0.292893 1.70711i −4.12132 + 1.70711i 1.00000 −2.82843 + 1.00000i −2.00000 + 1.00000i
263.1 1.00000 −1.70711 + 0.292893i 1.00000 −2.00000 1.00000i −1.70711 + 0.292893i 0.121320 0.292893i 1.00000 2.82843 1.00000i −2.00000 1.00000i
287.1 1.00000 −1.70711 0.292893i 1.00000 −2.00000 + 1.00000i −1.70711 0.292893i 0.121320 + 0.292893i 1.00000 2.82843 + 1.00000i −2.00000 + 1.00000i
383.1 1.00000 −0.292893 + 1.70711i 1.00000 −2.00000 1.00000i −0.292893 + 1.70711i −4.12132 1.70711i 1.00000 −2.82843 1.00000i −2.00000 1.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
255.ba even 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 510.2.w.b yes 4
3.b odd 2 1 510.2.w.a 4
5.c odd 4 1 510.2.z.a yes 4
15.e even 4 1 510.2.z.b yes 4
17.d even 8 1 510.2.z.b yes 4
51.g odd 8 1 510.2.z.a yes 4
85.k odd 8 1 510.2.w.a 4
255.ba even 8 1 inner 510.2.w.b yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
510.2.w.a 4 3.b odd 2 1
510.2.w.a 4 85.k odd 8 1
510.2.w.b yes 4 1.a even 1 1 trivial
510.2.w.b yes 4 255.ba even 8 1 inner
510.2.z.a yes 4 5.c odd 4 1
510.2.z.a yes 4 51.g odd 8 1
510.2.z.b yes 4 15.e even 4 1
510.2.z.b yes 4 17.d even 8 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(510, [\chi])\):

\( T_{7}^{4} + 8T_{7}^{3} + 18T_{7}^{2} - 4T_{7} + 2 \) Copy content Toggle raw display
\( T_{11}^{4} + 12T_{11}^{3} + 54T_{11}^{2} + 108T_{11} + 162 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 4 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$5$ \( (T^{2} + 4 T + 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} + 8 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$11$ \( T^{4} + 12 T^{3} + \cdots + 162 \) Copy content Toggle raw display
$13$ \( T^{4} + 12 T^{3} + \cdots + 196 \) Copy content Toggle raw display
$17$ \( (T^{2} + 6 T + 17)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 4 T^{3} + \cdots + 1156 \) Copy content Toggle raw display
$23$ \( T^{4} + 8 T^{3} + \cdots + 98 \) Copy content Toggle raw display
$29$ \( T^{4} + 8 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$31$ \( T^{4} + 2 T^{2} + \cdots + 2 \) Copy content Toggle raw display
$37$ \( T^{4} - 8 T^{3} + \cdots + 98 \) Copy content Toggle raw display
$41$ \( T^{4} + 4 T^{3} + \cdots + 98 \) Copy content Toggle raw display
$43$ \( T^{4} + 136T^{2} + 16 \) Copy content Toggle raw display
$47$ \( T^{4} + 12 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$53$ \( T^{4} + 48T^{2} + 64 \) Copy content Toggle raw display
$59$ \( T^{4} + 20 T^{3} + \cdots + 2116 \) Copy content Toggle raw display
$61$ \( T^{4} - 24 T^{3} + \cdots + 1058 \) Copy content Toggle raw display
$67$ \( T^{4} + 12 T^{3} + \cdots + 196 \) Copy content Toggle raw display
$71$ \( T^{4} - 16 T^{3} + \cdots + 4802 \) Copy content Toggle raw display
$73$ \( T^{4} + 12 T^{3} + \cdots + 7938 \) Copy content Toggle raw display
$79$ \( T^{4} + 32 T^{3} + \cdots + 28322 \) Copy content Toggle raw display
$83$ \( T^{4} + 136T^{2} + 16 \) Copy content Toggle raw display
$89$ \( (T^{2} + 200)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 20 T^{3} + \cdots + 1250 \) Copy content Toggle raw display
show more
show less