Properties

Label 510.2.bi.b
Level $510$
Weight $2$
Character orbit 510.bi
Analytic conductor $4.072$
Analytic rank $0$
Dimension $80$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [510,2,Mod(37,510)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("510.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(510, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 4, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 510 = 2 \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 510.bi (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.07237050309\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{16})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 80 q + 48 q^{25} + 16 q^{28} + 32 q^{29} + 16 q^{30} + 16 q^{31} - 16 q^{33} - 32 q^{34} - 32 q^{35} + 48 q^{37} + 32 q^{41} + 32 q^{43} + 16 q^{44} - 64 q^{49} + 48 q^{50} - 32 q^{51} + 16 q^{52} - 32 q^{53}+ \cdots - 144 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
37.1 −0.923880 0.382683i −0.831470 + 0.555570i 0.707107 + 0.707107i −1.99873 1.00254i 0.980785 0.195090i 0.843659 0.167814i −0.382683 0.923880i 0.382683 0.923880i 1.46293 + 1.69111i
37.2 −0.923880 0.382683i −0.831470 + 0.555570i 0.707107 + 0.707107i −0.0618065 + 2.23521i 0.980785 0.195090i 2.25037 0.447626i −0.382683 0.923880i 0.382683 0.923880i 0.912481 2.04142i
37.3 −0.923880 0.382683i −0.831470 + 0.555570i 0.707107 + 0.707107i 0.375191 + 2.20437i 0.980785 0.195090i −2.75876 + 0.548752i −0.382683 0.923880i 0.382683 0.923880i 0.496944 2.18015i
37.4 −0.923880 0.382683i −0.831470 + 0.555570i 0.707107 + 0.707107i 1.78276 1.34973i 0.980785 0.195090i −1.91059 + 0.380040i −0.382683 0.923880i 0.382683 0.923880i −2.16357 + 0.564761i
37.5 −0.923880 0.382683i −0.831470 + 0.555570i 0.707107 + 0.707107i 2.23247 + 0.126850i 0.980785 0.195090i 4.29610 0.854548i −0.382683 0.923880i 0.382683 0.923880i −2.01399 0.971522i
37.6 −0.923880 0.382683i 0.831470 0.555570i 0.707107 + 0.707107i −2.17616 + 0.514138i −0.980785 + 0.195090i 2.04622 0.407018i −0.382683 0.923880i 0.382683 0.923880i 2.20726 + 0.357778i
37.7 −0.923880 0.382683i 0.831470 0.555570i 0.707107 + 0.707107i −0.995069 2.00246i −0.980785 + 0.195090i 1.13886 0.226533i −0.382683 0.923880i 0.382683 0.923880i 0.153017 + 2.23083i
37.8 −0.923880 0.382683i 0.831470 0.555570i 0.707107 + 0.707107i −0.921394 + 2.03741i −0.980785 + 0.195090i −2.36711 + 0.470848i −0.382683 0.923880i 0.382683 0.923880i 1.63094 1.52972i
37.9 −0.923880 0.382683i 0.831470 0.555570i 0.707107 + 0.707107i 1.80447 + 1.32056i −0.980785 + 0.195090i −2.13851 + 0.425376i −0.382683 0.923880i 0.382683 0.923880i −1.16176 1.91058i
37.10 −0.923880 0.382683i 0.831470 0.555570i 0.707107 + 0.707107i 1.80603 1.31843i −0.980785 + 0.195090i 4.04132 0.803869i −0.382683 0.923880i 0.382683 0.923880i −2.17309 + 0.526937i
97.1 −0.382683 + 0.923880i −0.195090 + 0.980785i −0.707107 0.707107i −2.18813 + 0.460513i −0.831470 0.555570i −2.55505 1.70723i 0.923880 0.382683i −0.923880 0.382683i 0.411904 2.19780i
97.2 −0.382683 + 0.923880i −0.195090 + 0.980785i −0.707107 0.707107i −1.85360 1.25066i −0.831470 0.555570i 3.56871 + 2.38454i 0.923880 0.382683i −0.923880 0.382683i 1.86480 1.23390i
97.3 −0.382683 + 0.923880i −0.195090 + 0.980785i −0.707107 0.707107i −1.29477 + 1.82307i −0.831470 0.555570i 0.403469 + 0.269590i 0.923880 0.382683i −0.923880 0.382683i −1.18881 1.89387i
97.4 −0.382683 + 0.923880i −0.195090 + 0.980785i −0.707107 0.707107i 1.15835 1.91265i −0.831470 0.555570i −0.539781 0.360670i 0.923880 0.382683i −0.923880 0.382683i 1.32378 + 1.80212i
97.5 −0.382683 + 0.923880i −0.195090 + 0.980785i −0.707107 0.707107i 1.91712 + 1.15094i −0.831470 0.555570i −2.83276 1.89279i 0.923880 0.382683i −0.923880 0.382683i −1.79698 + 1.33074i
97.6 −0.382683 + 0.923880i 0.195090 0.980785i −0.707107 0.707107i −1.46240 1.69157i 0.831470 + 0.555570i −1.38078 0.922607i 0.923880 0.382683i −0.923880 0.382683i 2.12244 0.703742i
97.7 −0.382683 + 0.923880i 0.195090 0.980785i −0.707107 0.707107i −0.107286 + 2.23349i 0.831470 + 0.555570i −2.05486 1.37301i 0.923880 0.382683i −0.923880 0.382683i −2.02242 0.953840i
97.8 −0.382683 + 0.923880i 0.195090 0.980785i −0.707107 0.707107i 1.01463 1.99262i 0.831470 + 0.555570i 3.37479 + 2.25496i 0.923880 0.382683i −0.923880 0.382683i 1.45266 + 1.69993i
97.9 −0.382683 + 0.923880i 0.195090 0.980785i −0.707107 0.707107i 1.38580 + 1.75487i 0.831470 + 0.555570i 1.76005 + 1.17603i 0.923880 0.382683i −0.923880 0.382683i −2.15161 + 0.608751i
97.10 −0.382683 + 0.923880i 0.195090 0.980785i −0.707107 0.707107i 2.19567 0.423144i 0.831470 + 0.555570i −3.65460 2.44193i 0.923880 0.382683i −0.923880 0.382683i −0.449311 + 2.19046i
See all 80 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 37.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
85.r even 16 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 510.2.bi.b yes 80
5.c odd 4 1 510.2.bd.b 80
17.e odd 16 1 510.2.bd.b 80
85.r even 16 1 inner 510.2.bi.b yes 80
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
510.2.bd.b 80 5.c odd 4 1
510.2.bd.b 80 17.e odd 16 1
510.2.bi.b yes 80 1.a even 1 1 trivial
510.2.bi.b yes 80 85.r even 16 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{80} + 32 T_{7}^{78} - 160 T_{7}^{77} + 384 T_{7}^{76} - 4768 T_{7}^{75} + 18256 T_{7}^{74} + \cdots + 43\!\cdots\!96 \) acting on \(S_{2}^{\mathrm{new}}(510, [\chi])\). Copy content Toggle raw display