gp: [N,k,chi] = [510,2,Mod(37,510)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("510.37");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(510, base_ring=CyclotomicField(16))
chi = DirichletCharacter(H, H._module([0, 4, 1]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [80]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{80} + 32 T_{7}^{78} - 160 T_{7}^{77} + 384 T_{7}^{76} - 4768 T_{7}^{75} + 18256 T_{7}^{74} + \cdots + 43\!\cdots\!96 \)
T7^80 + 32*T7^78 - 160*T7^77 + 384*T7^76 - 4768*T7^75 + 18256*T7^74 - 52896*T7^73 + 470528*T7^72 - 1484000*T7^71 + 3997088*T7^70 - 36864384*T7^69 + 93322288*T7^68 - 103276288*T7^67 + 1891064384*T7^66 - 1094044928*T7^65 + 5039039040*T7^64 - 20832740736*T7^63 + 162614943936*T7^62 - 96936454144*T7^61 - 1117109335168*T7^60 - 2232534103552*T7^59 + 13321913743616*T7^58 + 55146791281664*T7^57 - 63596322903936*T7^56 - 546773930703360*T7^55 - 3058865024816128*T7^54 - 6232571864450048*T7^53 + 39531337925690368*T7^52 + 373203016704899072*T7^51 + 2251346995182051328*T7^50 + 7861439693690074112*T7^49 + 16925715013164986368*T7^48 + 53858663294369762304*T7^47 + 234412362366769222656*T7^46 + 210458408214307328000*T7^45 - 1769713410228366908928*T7^44 - 3986789010962558668800*T7^43 + 4623757570107252901888*T7^42 - 4274867692097715945472*T7^41 - 106098051861146801881088*T7^40 + 54711250369732232613888*T7^39 + 865748456635178394814464*T7^38 - 236220085174758653337600*T7^37 - 2099258788723434863702016*T7^36 + 9768779748081400115552256*T7^35 + 4951189816373902893006848*T7^34 - 81977344294715398165168128*T7^33 - 15830671770924271881157632*T7^32 + 422726641797072871339212800*T7^31 + 122404392599034900057751552*T7^30 - 1378306998819223993947357184*T7^29 - 80920920561698191626518528*T7^28 + 3058171466906935469009010688*T7^27 - 5876882619890613151056658432*T7^26 - 9590098371777526736962453504*T7^25 + 32422699816367081833321594880*T7^24 + 27958164162222423888955179008*T7^23 - 75171694067482139488371867648*T7^22 + 24100458379536005437932961792*T7^21 + 290096399139939793297316511744*T7^20 - 70249844783769638938458718208*T7^19 - 759599876945713165592362483712*T7^18 + 23400535317426515708504702976*T7^17 + 1070188601040505171673872596992*T7^16 - 457724546280067694191662071808*T7^15 - 905193082639670379035018395648*T7^14 + 1794401315188174545352730345472*T7^13 - 121695676833429778605939884032*T7^12 - 2758854387055031828186927202304*T7^11 + 3802002879219899842652165636096*T7^10 - 2740522735849951847432625061888*T7^9 + 945568270972826866494537203712*T7^8 - 55396259042164095008343326720*T7^7 + 140610741983044718266805125120*T7^6 - 362801858213034674494048829440*T7^5 + 350985584361133473953178714112*T7^4 - 153928918294089918830413348864*T7^3 + 30543772201840572630233513984*T7^2 - 682656155150569459884752896*T7 + 432876024591433999681847296
acting on \(S_{2}^{\mathrm{new}}(510, [\chi])\).