Properties

Label 51.7.b.a.35.22
Level $51$
Weight $7$
Character 51.35
Analytic conductor $11.733$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [51,7,Mod(35,51)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(51, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("51.35"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 51.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7327582646\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 35.22
Character \(\chi\) \(=\) 51.35
Dual form 51.7.b.a.35.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+6.35177i q^{2} +(-6.87539 - 26.1099i) q^{3} +23.6551 q^{4} -214.273i q^{5} +(165.844 - 43.6709i) q^{6} -487.138 q^{7} +556.764i q^{8} +(-634.458 + 359.032i) q^{9} +1361.01 q^{10} +1788.18i q^{11} +(-162.638 - 617.633i) q^{12} -1815.64 q^{13} -3094.18i q^{14} +(-5594.65 + 1473.21i) q^{15} -2022.51 q^{16} +1191.58i q^{17} +(-2280.49 - 4029.93i) q^{18} +152.498 q^{19} -5068.64i q^{20} +(3349.26 + 12719.1i) q^{21} -11358.1 q^{22} -12165.6i q^{23} +(14537.1 - 3827.97i) q^{24} -30287.8 q^{25} -11532.5i q^{26} +(13736.5 + 14097.2i) q^{27} -11523.3 q^{28} -38981.9i q^{29} +(-9357.47 - 35535.9i) q^{30} +4346.21 q^{31} +22786.4i q^{32} +(46689.4 - 12294.5i) q^{33} -7568.62 q^{34} +104380. i q^{35} +(-15008.2 + 8492.93i) q^{36} -36390.1 q^{37} +968.629i q^{38} +(12483.2 + 47406.2i) q^{39} +119299. q^{40} -46210.1i q^{41} +(-80789.0 + 21273.7i) q^{42} -97432.9 q^{43} +42299.6i q^{44} +(76930.8 + 135947. i) q^{45} +77272.7 q^{46} -37496.3i q^{47} +(13905.6 + 52807.7i) q^{48} +119654. q^{49} -192381. i q^{50} +(31112.0 - 8192.56i) q^{51} -42949.1 q^{52} -137705. i q^{53} +(-89541.9 + 87250.7i) q^{54} +383159. q^{55} -271221. i q^{56} +(-1048.48 - 3981.70i) q^{57} +247604. q^{58} -99800.3i q^{59} +(-132342. + 34848.9i) q^{60} -113868. q^{61} +27606.1i q^{62} +(309068. - 174898. i) q^{63} -274175. q^{64} +389042. i q^{65} +(78091.5 + 296560. i) q^{66} -374493. q^{67} +28186.9i q^{68} +(-317642. + 83642.9i) q^{69} -662999. q^{70} +178897. i q^{71} +(-199896. - 353244. i) q^{72} -189276. q^{73} -231141. i q^{74} +(208240. + 790812. i) q^{75} +3607.34 q^{76} -871092. i q^{77} +(-301113. + 79290.6i) q^{78} +769979. q^{79} +433369. i q^{80} +(273633. - 455582. i) q^{81} +293516. q^{82} -155977. i q^{83} +(79227.1 + 300872. i) q^{84} +255322. q^{85} -618871. i q^{86} +(-1.01782e6 + 268016. i) q^{87} -995597. q^{88} +18567.4i q^{89} +(-863503. + 488646. i) q^{90} +884467. q^{91} -287777. i q^{92} +(-29881.9 - 113479. i) q^{93} +238167. q^{94} -32676.1i q^{95} +(594952. - 156665. i) q^{96} -1.12203e6 q^{97} +760015. i q^{98} +(-642015. - 1.13453e6i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 32 q^{3} - 1024 q^{4} + 286 q^{6} + 568 q^{7} - 912 q^{9} - 744 q^{10} + 194 q^{12} - 2312 q^{13} - 6240 q^{15} + 13208 q^{16} + 2936 q^{18} + 7936 q^{19} - 21688 q^{21} + 13176 q^{22} + 18282 q^{24}+ \cdots + 1619864 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/51\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 6.35177i 0.793971i 0.917825 + 0.396985i \(0.129944\pi\)
−0.917825 + 0.396985i \(0.870056\pi\)
\(3\) −6.87539 26.1099i −0.254644 0.967035i
\(4\) 23.6551 0.369611
\(5\) 214.273i 1.71418i −0.515166 0.857091i \(-0.672270\pi\)
0.515166 0.857091i \(-0.327730\pi\)
\(6\) 165.844 43.6709i 0.767797 0.202180i
\(7\) −487.138 −1.42023 −0.710113 0.704087i \(-0.751356\pi\)
−0.710113 + 0.704087i \(0.751356\pi\)
\(8\) 556.764i 1.08743i
\(9\) −634.458 + 359.032i −0.870313 + 0.492500i
\(10\) 1361.01 1.36101
\(11\) 1788.18i 1.34349i 0.740783 + 0.671744i \(0.234455\pi\)
−0.740783 + 0.671744i \(0.765545\pi\)
\(12\) −162.638 617.633i −0.0941192 0.357426i
\(13\) −1815.64 −0.826418 −0.413209 0.910636i \(-0.635592\pi\)
−0.413209 + 0.910636i \(0.635592\pi\)
\(14\) 3094.18i 1.12762i
\(15\) −5594.65 + 1473.21i −1.65767 + 0.436506i
\(16\) −2022.51 −0.493778
\(17\) 1191.58i 0.242536i
\(18\) −2280.49 4029.93i −0.391030 0.691003i
\(19\) 152.498 0.0222332 0.0111166 0.999938i \(-0.496461\pi\)
0.0111166 + 0.999938i \(0.496461\pi\)
\(20\) 5068.64i 0.633579i
\(21\) 3349.26 + 12719.1i 0.361652 + 1.37341i
\(22\) −11358.1 −1.06669
\(23\) 12165.6i 0.999881i −0.866060 0.499940i \(-0.833355\pi\)
0.866060 0.499940i \(-0.166645\pi\)
\(24\) 14537.1 3827.97i 1.05158 0.276908i
\(25\) −30287.8 −1.93842
\(26\) 11532.5i 0.656151i
\(27\) 13736.5 + 14097.2i 0.697884 + 0.716211i
\(28\) −11523.3 −0.524931
\(29\) 38981.9i 1.59834i −0.601105 0.799170i \(-0.705273\pi\)
0.601105 0.799170i \(-0.294727\pi\)
\(30\) −9357.47 35535.9i −0.346573 1.31614i
\(31\) 4346.21 0.145890 0.0729450 0.997336i \(-0.476760\pi\)
0.0729450 + 0.997336i \(0.476760\pi\)
\(32\) 22786.4i 0.695386i
\(33\) 46689.4 12294.5i 1.29920 0.342112i
\(34\) −7568.62 −0.192566
\(35\) 104380.i 2.43453i
\(36\) −15008.2 + 8492.93i −0.321677 + 0.182033i
\(37\) −36390.1 −0.718419 −0.359210 0.933257i \(-0.616954\pi\)
−0.359210 + 0.933257i \(0.616954\pi\)
\(38\) 968.629i 0.0176525i
\(39\) 12483.2 + 47406.2i 0.210442 + 0.799175i
\(40\) 119299. 1.86405
\(41\) 46210.1i 0.670479i −0.942133 0.335239i \(-0.891183\pi\)
0.942133 0.335239i \(-0.108817\pi\)
\(42\) −80789.0 + 21273.7i −1.09045 + 0.287141i
\(43\) −97432.9 −1.22546 −0.612731 0.790291i \(-0.709929\pi\)
−0.612731 + 0.790291i \(0.709929\pi\)
\(44\) 42299.6i 0.496568i
\(45\) 76930.8 + 135947.i 0.844233 + 1.49187i
\(46\) 77272.7 0.793876
\(47\) 37496.3i 0.361156i −0.983561 0.180578i \(-0.942203\pi\)
0.983561 0.180578i \(-0.0577968\pi\)
\(48\) 13905.6 + 52807.7i 0.125738 + 0.477500i
\(49\) 119654. 1.01704
\(50\) 192381.i 1.53905i
\(51\) 31112.0 8192.56i 0.234540 0.0617603i
\(52\) −42949.1 −0.305453
\(53\) 137705.i 0.924961i −0.886629 0.462481i \(-0.846959\pi\)
0.886629 0.462481i \(-0.153041\pi\)
\(54\) −89541.9 + 87250.7i −0.568650 + 0.554100i
\(55\) 383159. 2.30298
\(56\) 271221.i 1.54440i
\(57\) −1048.48 3981.70i −0.00566156 0.0215003i
\(58\) 247604. 1.26903
\(59\) 99800.3i 0.485932i −0.970035 0.242966i \(-0.921880\pi\)
0.970035 0.242966i \(-0.0781204\pi\)
\(60\) −132342. + 34848.9i −0.612693 + 0.161337i
\(61\) −113868. −0.501662 −0.250831 0.968031i \(-0.580704\pi\)
−0.250831 + 0.968031i \(0.580704\pi\)
\(62\) 27606.1i 0.115832i
\(63\) 309068. 174898.i 1.23604 0.699461i
\(64\) −274175. −1.04589
\(65\) 389042.i 1.41663i
\(66\) 78091.5 + 296560.i 0.271627 + 1.03153i
\(67\) −374493. −1.24514 −0.622572 0.782562i \(-0.713912\pi\)
−0.622572 + 0.782562i \(0.713912\pi\)
\(68\) 28186.9i 0.0896437i
\(69\) −317642. + 83642.9i −0.966920 + 0.254614i
\(70\) −662999. −1.93294
\(71\) 178897.i 0.499837i 0.968267 + 0.249918i \(0.0804038\pi\)
−0.968267 + 0.249918i \(0.919596\pi\)
\(72\) −199896. 353244.i −0.535559 0.946405i
\(73\) −189276. −0.486549 −0.243274 0.969957i \(-0.578222\pi\)
−0.243274 + 0.969957i \(0.578222\pi\)
\(74\) 231141.i 0.570404i
\(75\) 208240. + 790812.i 0.493607 + 1.87452i
\(76\) 3607.34 0.00821763
\(77\) 871092.i 1.90806i
\(78\) −301113. + 79290.6i −0.634521 + 0.167085i
\(79\) 769979. 1.56170 0.780850 0.624718i \(-0.214786\pi\)
0.780850 + 0.624718i \(0.214786\pi\)
\(80\) 433369.i 0.846424i
\(81\) 273633. 455582.i 0.514888 0.857257i
\(82\) 293516. 0.532341
\(83\) 155977.i 0.272789i −0.990655 0.136394i \(-0.956449\pi\)
0.990655 0.136394i \(-0.0435514\pi\)
\(84\) 79227.1 + 300872.i 0.133671 + 0.507626i
\(85\) 255322. 0.415750
\(86\) 618871.i 0.972982i
\(87\) −1.01782e6 + 268016.i −1.54565 + 0.407008i
\(88\) −995597. −1.46095
\(89\) 18567.4i 0.0263378i 0.999913 + 0.0131689i \(0.00419192\pi\)
−0.999913 + 0.0131689i \(0.995808\pi\)
\(90\) −863503. + 488646.i −1.18450 + 0.670297i
\(91\) 884467. 1.17370
\(92\) 287777.i 0.369566i
\(93\) −29881.9 113479.i −0.0371500 0.141081i
\(94\) 238167. 0.286747
\(95\) 32676.1i 0.0381117i
\(96\) 594952. 156665.i 0.672462 0.177076i
\(97\) −1.12203e6 −1.22939 −0.614693 0.788766i \(-0.710720\pi\)
−0.614693 + 0.788766i \(0.710720\pi\)
\(98\) 760015.i 0.807503i
\(99\) −642015. 1.13453e6i −0.661668 1.16926i
\(100\) −716459. −0.716459
\(101\) 1.12866e6i 1.09546i 0.836654 + 0.547732i \(0.184509\pi\)
−0.836654 + 0.547732i \(0.815491\pi\)
\(102\) 52037.2 + 197616.i 0.0490359 + 0.186218i
\(103\) 962305. 0.880645 0.440323 0.897840i \(-0.354864\pi\)
0.440323 + 0.897840i \(0.354864\pi\)
\(104\) 1.01088e6i 0.898672i
\(105\) 2.72536e6 717655.i 2.35427 0.619938i
\(106\) 874673. 0.734392
\(107\) 1.68946e6i 1.37910i −0.724236 0.689552i \(-0.757807\pi\)
0.724236 0.689552i \(-0.242193\pi\)
\(108\) 324937. + 333470.i 0.257945 + 0.264719i
\(109\) 1.01017e6 0.780038 0.390019 0.920807i \(-0.372469\pi\)
0.390019 + 0.920807i \(0.372469\pi\)
\(110\) 2.43373e6i 1.82850i
\(111\) 250196. + 950143.i 0.182941 + 0.694737i
\(112\) 985242. 0.701276
\(113\) 1.07976e6i 0.748325i 0.927363 + 0.374163i \(0.122070\pi\)
−0.927363 + 0.374163i \(0.877930\pi\)
\(114\) 25290.8 6659.70i 0.0170706 0.00449511i
\(115\) −2.60674e6 −1.71398
\(116\) 922120.i 0.590763i
\(117\) 1.15195e6 651873.i 0.719242 0.407010i
\(118\) 633908. 0.385816
\(119\) 580462.i 0.344456i
\(120\) −820230. 3.11490e6i −0.474670 1.80260i
\(121\) −1.42604e6 −0.804962
\(122\) 723261.i 0.398305i
\(123\) −1.20654e6 + 317712.i −0.648376 + 0.170734i
\(124\) 102810. 0.0539224
\(125\) 3.14183e6i 1.60862i
\(126\) 1.11091e6 + 1.96313e6i 0.555352 + 0.981381i
\(127\) 3.41306e6 1.66622 0.833110 0.553107i \(-0.186558\pi\)
0.833110 + 0.553107i \(0.186558\pi\)
\(128\) 283164.i 0.135023i
\(129\) 669889. + 2.54397e6i 0.312057 + 1.18507i
\(130\) −2.47110e6 −1.12476
\(131\) 3.23463e6i 1.43883i 0.694579 + 0.719416i \(0.255591\pi\)
−0.694579 + 0.719416i \(0.744409\pi\)
\(132\) 1.10444e6 290826.i 0.480198 0.126448i
\(133\) −74287.3 −0.0315762
\(134\) 2.37869e6i 0.988608i
\(135\) 3.02064e6 2.94335e6i 1.22771 1.19630i
\(136\) −663428. −0.263741
\(137\) 4.11616e6i 1.60078i 0.599481 + 0.800389i \(0.295374\pi\)
−0.599481 + 0.800389i \(0.704626\pi\)
\(138\) −531280. 2.01759e6i −0.202156 0.767706i
\(139\) 5.17866e6 1.92829 0.964146 0.265371i \(-0.0854944\pi\)
0.964146 + 0.265371i \(0.0854944\pi\)
\(140\) 2.46912e6i 0.899826i
\(141\) −979025. + 257801.i −0.349250 + 0.0919662i
\(142\) −1.13631e6 −0.396856
\(143\) 3.24670e6i 1.11028i
\(144\) 1.28320e6 726147.i 0.429741 0.243185i
\(145\) −8.35276e6 −2.73984
\(146\) 1.20224e6i 0.386306i
\(147\) −822669. 3.12416e6i −0.258984 0.983517i
\(148\) −860810. −0.265535
\(149\) 3.37945e6i 1.02161i −0.859695 0.510807i \(-0.829347\pi\)
0.859695 0.510807i \(-0.170653\pi\)
\(150\) −5.02305e6 + 1.32269e6i −1.48831 + 0.391909i
\(151\) −5.07358e6 −1.47361 −0.736807 0.676103i \(-0.763667\pi\)
−0.736807 + 0.676103i \(0.763667\pi\)
\(152\) 84905.2i 0.0241771i
\(153\) −427815. 756006.i −0.119449 0.211082i
\(154\) 5.53297e6 1.51494
\(155\) 931273.i 0.250082i
\(156\) 295292. + 1.12140e6i 0.0777817 + 0.295383i
\(157\) 2.01317e6 0.520213 0.260106 0.965580i \(-0.416242\pi\)
0.260106 + 0.965580i \(0.416242\pi\)
\(158\) 4.89073e6i 1.23994i
\(159\) −3.59548e6 + 946779.i −0.894470 + 0.235536i
\(160\) 4.88250e6 1.19202
\(161\) 5.92630e6i 1.42006i
\(162\) 2.89375e6 + 1.73805e6i 0.680637 + 0.408806i
\(163\) −5.53182e6 −1.27734 −0.638668 0.769482i \(-0.720514\pi\)
−0.638668 + 0.769482i \(0.720514\pi\)
\(164\) 1.09310e6i 0.247816i
\(165\) −2.63437e6 1.00043e7i −0.586441 2.22706i
\(166\) 990730. 0.216586
\(167\) 2.31058e6i 0.496102i −0.968747 0.248051i \(-0.920210\pi\)
0.968747 0.248051i \(-0.0797901\pi\)
\(168\) −7.08156e6 + 1.86475e6i −1.49349 + 0.393272i
\(169\) −1.53026e6 −0.317034
\(170\) 1.62175e6i 0.330093i
\(171\) −96753.3 + 54751.5i −0.0193498 + 0.0109498i
\(172\) −2.30478e6 −0.452944
\(173\) 1.97759e6i 0.381943i 0.981596 + 0.190972i \(0.0611638\pi\)
−0.981596 + 0.190972i \(0.938836\pi\)
\(174\) −1.70237e6 6.46492e6i −0.323152 1.22720i
\(175\) 1.47543e7 2.75299
\(176\) 3.61662e6i 0.663384i
\(177\) −2.60578e6 + 686166.i −0.469913 + 0.123740i
\(178\) −117936. −0.0209115
\(179\) 5.11096e6i 0.891135i −0.895248 0.445568i \(-0.853002\pi\)
0.895248 0.445568i \(-0.146998\pi\)
\(180\) 1.81980e6 + 3.21584e6i 0.312038 + 0.551412i
\(181\) −8.27932e6 −1.39624 −0.698118 0.715983i \(-0.745979\pi\)
−0.698118 + 0.715983i \(0.745979\pi\)
\(182\) 5.61792e6i 0.931884i
\(183\) 782885. + 2.97308e6i 0.127745 + 0.485125i
\(184\) 6.77335e6 1.08730
\(185\) 7.79740e6i 1.23150i
\(186\) 720793. 189803.i 0.112014 0.0294960i
\(187\) −2.13076e6 −0.325844
\(188\) 886977.i 0.133487i
\(189\) −6.69155e6 6.86726e6i −0.991154 1.01718i
\(190\) 207551. 0.0302596
\(191\) 9.44505e6i 1.35551i −0.735286 0.677757i \(-0.762952\pi\)
0.735286 0.677757i \(-0.237048\pi\)
\(192\) 1.88506e6 + 7.15868e6i 0.266331 + 1.01142i
\(193\) −839115. −0.116721 −0.0583606 0.998296i \(-0.518587\pi\)
−0.0583606 + 0.998296i \(0.518587\pi\)
\(194\) 7.12686e6i 0.976097i
\(195\) 1.01579e7 2.67482e6i 1.36993 0.360736i
\(196\) 2.83043e6 0.375910
\(197\) 3.87609e6i 0.506985i −0.967337 0.253492i \(-0.918421\pi\)
0.967337 0.253492i \(-0.0815793\pi\)
\(198\) 7.20625e6 4.07793e6i 0.928354 0.525345i
\(199\) 1.19508e6 0.151648 0.0758242 0.997121i \(-0.475841\pi\)
0.0758242 + 0.997121i \(0.475841\pi\)
\(200\) 1.68632e7i 2.10789i
\(201\) 2.57479e6 + 9.77800e6i 0.317069 + 1.20410i
\(202\) −7.16897e6 −0.869766
\(203\) 1.89896e7i 2.27000i
\(204\) 735957. 193796.i 0.0866886 0.0228272i
\(205\) −9.90155e6 −1.14932
\(206\) 6.11234e6i 0.699207i
\(207\) 4.36782e6 + 7.71853e6i 0.492441 + 0.870209i
\(208\) 3.67215e6 0.408066
\(209\) 272694.i 0.0298701i
\(210\) 4.55838e6 + 1.73109e7i 0.492212 + 1.86922i
\(211\) 179511. 0.0191092 0.00955460 0.999954i \(-0.496959\pi\)
0.00955460 + 0.999954i \(0.496959\pi\)
\(212\) 3.25743e6i 0.341875i
\(213\) 4.67099e6 1.22999e6i 0.483360 0.127281i
\(214\) 1.07311e7 1.09497
\(215\) 2.08772e7i 2.10067i
\(216\) −7.84881e6 + 7.64797e6i −0.778829 + 0.758901i
\(217\) −2.11720e6 −0.207197
\(218\) 6.41637e6i 0.619327i
\(219\) 1.30135e6 + 4.94198e6i 0.123897 + 0.470510i
\(220\) 9.06365e6 0.851207
\(221\) 2.16348e6i 0.200436i
\(222\) −6.03509e6 + 1.58919e6i −0.551600 + 0.145250i
\(223\) 3.63621e6 0.327894 0.163947 0.986469i \(-0.447577\pi\)
0.163947 + 0.986469i \(0.447577\pi\)
\(224\) 1.11001e7i 0.987605i
\(225\) 1.92163e7 1.08743e7i 1.68703 0.954669i
\(226\) −6.85836e6 −0.594148
\(227\) 1.20834e7i 1.03303i −0.856279 0.516514i \(-0.827229\pi\)
0.856279 0.516514i \(-0.172771\pi\)
\(228\) −24801.9 94187.5i −0.00209257 0.00794673i
\(229\) −1.42322e7 −1.18513 −0.592566 0.805522i \(-0.701885\pi\)
−0.592566 + 0.805522i \(0.701885\pi\)
\(230\) 1.65574e7i 1.36085i
\(231\) −2.27442e7 + 5.98910e6i −1.84516 + 0.485876i
\(232\) 2.17037e7 1.73808
\(233\) 1.33774e7i 1.05756i −0.848759 0.528779i \(-0.822650\pi\)
0.848759 0.528779i \(-0.177350\pi\)
\(234\) 4.14054e6 + 7.31690e6i 0.323154 + 0.571057i
\(235\) −8.03442e6 −0.619086
\(236\) 2.36078e6i 0.179606i
\(237\) −5.29391e6 2.01041e7i −0.397678 1.51022i
\(238\) 3.68696e6 0.273488
\(239\) 8.99537e6i 0.658909i 0.944171 + 0.329455i \(0.106865\pi\)
−0.944171 + 0.329455i \(0.893135\pi\)
\(240\) 1.13152e7 2.97958e6i 0.818522 0.215537i
\(241\) 1.72296e7 1.23090 0.615452 0.788174i \(-0.288973\pi\)
0.615452 + 0.788174i \(0.288973\pi\)
\(242\) 9.05786e6i 0.639116i
\(243\) −1.37765e7 4.01223e6i −0.960111 0.279620i
\(244\) −2.69355e6 −0.185420
\(245\) 2.56386e7i 1.74340i
\(246\) −2.01803e6 7.66367e6i −0.135557 0.514792i
\(247\) −276881. −0.0183739
\(248\) 2.41981e6i 0.158645i
\(249\) −4.07255e6 + 1.07240e6i −0.263796 + 0.0694641i
\(250\) −1.99562e7 −1.27719
\(251\) 1.44074e7i 0.911095i 0.890212 + 0.455547i \(0.150556\pi\)
−0.890212 + 0.455547i \(0.849444\pi\)
\(252\) 7.31104e6 4.13723e6i 0.456854 0.258528i
\(253\) 2.17542e7 1.34333
\(254\) 2.16789e7i 1.32293i
\(255\) −1.75544e6 6.66645e6i −0.105868 0.402045i
\(256\) −1.57486e7 −0.938689
\(257\) 2.46410e7i 1.45164i −0.687884 0.725821i \(-0.741460\pi\)
0.687884 0.725821i \(-0.258540\pi\)
\(258\) −1.61587e7 + 4.25498e6i −0.940907 + 0.247764i
\(259\) 1.77270e7 1.02032
\(260\) 9.20281e6i 0.523601i
\(261\) 1.39958e7 + 2.47324e7i 0.787182 + 1.39106i
\(262\) −2.05456e7 −1.14239
\(263\) 2.40534e7i 1.32223i 0.750283 + 0.661117i \(0.229917\pi\)
−0.750283 + 0.661117i \(0.770083\pi\)
\(264\) 6.84512e6 + 2.59950e7i 0.372023 + 1.41279i
\(265\) −2.95065e7 −1.58555
\(266\) 471856.i 0.0250706i
\(267\) 484793. 127658.i 0.0254696 0.00670678i
\(268\) −8.85867e6 −0.460219
\(269\) 1.52024e7i 0.781007i −0.920601 0.390504i \(-0.872301\pi\)
0.920601 0.390504i \(-0.127699\pi\)
\(270\) 1.86954e7 + 1.91864e7i 0.949827 + 0.974769i
\(271\) 1.28811e7 0.647210 0.323605 0.946192i \(-0.395105\pi\)
0.323605 + 0.946192i \(0.395105\pi\)
\(272\) 2.40998e6i 0.119759i
\(273\) −6.08105e6 2.30934e7i −0.298876 1.13501i
\(274\) −2.61449e7 −1.27097
\(275\) 5.41601e7i 2.60424i
\(276\) −7.51384e6 + 1.97858e6i −0.357384 + 0.0941079i
\(277\) −2.14785e7 −1.01056 −0.505282 0.862954i \(-0.668612\pi\)
−0.505282 + 0.862954i \(0.668612\pi\)
\(278\) 3.28936e7i 1.53101i
\(279\) −2.75749e6 + 1.56043e6i −0.126970 + 0.0718507i
\(280\) −5.81152e7 −2.64738
\(281\) 2.87201e7i 1.29439i 0.762323 + 0.647197i \(0.224059\pi\)
−0.762323 + 0.647197i \(0.775941\pi\)
\(282\) −1.63749e6 6.21854e6i −0.0730184 0.277294i
\(283\) 2.42413e7 1.06954 0.534770 0.844998i \(-0.320398\pi\)
0.534770 + 0.844998i \(0.320398\pi\)
\(284\) 4.23183e6i 0.184745i
\(285\) −853170. + 224661.i −0.0368554 + 0.00970493i
\(286\) 2.06223e7 0.881532
\(287\) 2.25107e7i 0.952232i
\(288\) −8.18105e6 1.44570e7i −0.342477 0.605203i
\(289\) −1.41986e6 −0.0588235
\(290\) 5.30548e7i 2.17536i
\(291\) 7.71438e6 + 2.92961e7i 0.313056 + 1.18886i
\(292\) −4.47733e6 −0.179834
\(293\) 3.54040e6i 0.140750i −0.997521 0.0703752i \(-0.977580\pi\)
0.997521 0.0703752i \(-0.0224197\pi\)
\(294\) 1.98440e7 5.22540e6i 0.780883 0.205626i
\(295\) −2.13845e7 −0.832976
\(296\) 2.02607e7i 0.781231i
\(297\) −2.52083e7 + 2.45633e7i −0.962221 + 0.937600i
\(298\) 2.14655e7 0.811132
\(299\) 2.20883e7i 0.826319i
\(300\) 4.92594e6 + 1.87067e7i 0.182442 + 0.692841i
\(301\) 4.74632e7 1.74043
\(302\) 3.22262e7i 1.17001i
\(303\) 2.94692e7 7.75996e6i 1.05935 0.278953i
\(304\) −308428. −0.0109783
\(305\) 2.43987e7i 0.859939i
\(306\) 4.80197e6 2.71738e6i 0.167593 0.0948388i
\(307\) 1.07146e7 0.370307 0.185154 0.982710i \(-0.440722\pi\)
0.185154 + 0.982710i \(0.440722\pi\)
\(308\) 2.06057e7i 0.705238i
\(309\) −6.61622e6 2.51257e7i −0.224251 0.851615i
\(310\) 5.91523e6 0.198558
\(311\) 4.15654e7i 1.38182i 0.722942 + 0.690908i \(0.242789\pi\)
−0.722942 + 0.690908i \(0.757211\pi\)
\(312\) −2.63941e7 + 6.95022e6i −0.869047 + 0.228842i
\(313\) −1.33555e7 −0.435539 −0.217770 0.976000i \(-0.569878\pi\)
−0.217770 + 0.976000i \(0.569878\pi\)
\(314\) 1.27872e7i 0.413034i
\(315\) −3.74759e7 6.62249e7i −1.19900 2.11880i
\(316\) 1.82139e7 0.577221
\(317\) 2.91393e6i 0.0914748i −0.998953 0.0457374i \(-0.985436\pi\)
0.998953 0.0457374i \(-0.0145637\pi\)
\(318\) −6.01372e6 2.28377e7i −0.187009 0.710183i
\(319\) 6.97068e7 2.14735
\(320\) 5.87481e7i 1.79285i
\(321\) −4.41118e7 + 1.16157e7i −1.33364 + 0.351181i
\(322\) −3.76425e7 −1.12748
\(323\) 181713.i 0.00539234i
\(324\) 6.47280e6 1.07768e7i 0.190308 0.316851i
\(325\) 5.49917e7 1.60194
\(326\) 3.51368e7i 1.01417i
\(327\) −6.94532e6 2.63755e7i −0.198632 0.754324i
\(328\) 2.57281e7 0.729099
\(329\) 1.82658e7i 0.512923i
\(330\) 6.35447e7 1.67329e7i 1.76822 0.465617i
\(331\) 4.94216e7 1.36280 0.681401 0.731910i \(-0.261371\pi\)
0.681401 + 0.731910i \(0.261371\pi\)
\(332\) 3.68965e6i 0.100826i
\(333\) 2.30880e7 1.30652e7i 0.625250 0.353821i
\(334\) 1.46762e7 0.393890
\(335\) 8.02437e7i 2.13440i
\(336\) −6.77393e6 2.57246e7i −0.178576 0.678158i
\(337\) −3.48728e7 −0.911166 −0.455583 0.890193i \(-0.650569\pi\)
−0.455583 + 0.890193i \(0.650569\pi\)
\(338\) 9.71987e6i 0.251716i
\(339\) 2.81924e7 7.42375e6i 0.723657 0.190557i
\(340\) 6.03967e6 0.153666
\(341\) 7.77181e6i 0.196001i
\(342\) −347769. 614554.i −0.00869385 0.0153632i
\(343\) −976799. −0.0242060
\(344\) 5.42472e7i 1.33261i
\(345\) 1.79224e7 + 6.80619e7i 0.436454 + 1.65748i
\(346\) −1.25612e7 −0.303252
\(347\) 4.10781e7i 0.983156i −0.870834 0.491578i \(-0.836420\pi\)
0.870834 0.491578i \(-0.163580\pi\)
\(348\) −2.40765e7 + 6.33994e6i −0.571289 + 0.150434i
\(349\) 2.35139e7 0.553156 0.276578 0.960991i \(-0.410800\pi\)
0.276578 + 0.960991i \(0.410800\pi\)
\(350\) 9.37159e7i 2.18579i
\(351\) −2.49405e7 2.55954e7i −0.576744 0.591889i
\(352\) −4.07463e7 −0.934243
\(353\) 4.94492e7i 1.12418i −0.827076 0.562089i \(-0.809998\pi\)
0.827076 0.562089i \(-0.190002\pi\)
\(354\) −4.35837e6 1.65513e7i −0.0982458 0.373097i
\(355\) 3.83328e7 0.856811
\(356\) 439212.i 0.00973475i
\(357\) −1.51558e7 + 3.99091e6i −0.333101 + 0.0877136i
\(358\) 3.24636e7 0.707535
\(359\) 1.01375e7i 0.219103i 0.993981 + 0.109552i \(0.0349415\pi\)
−0.993981 + 0.109552i \(0.965059\pi\)
\(360\) −7.56905e7 + 4.28323e7i −1.62231 + 0.918045i
\(361\) −4.70226e7 −0.999506
\(362\) 5.25883e7i 1.10857i
\(363\) 9.80458e6 + 3.72338e7i 0.204979 + 0.778426i
\(364\) 2.09221e7 0.433812
\(365\) 4.05566e7i 0.834033i
\(366\) −1.88843e7 + 4.97270e6i −0.385175 + 0.101426i
\(367\) −5.45232e6 −0.110302 −0.0551510 0.998478i \(-0.517564\pi\)
−0.0551510 + 0.998478i \(0.517564\pi\)
\(368\) 2.46050e7i 0.493719i
\(369\) 1.65909e7 + 2.93183e7i 0.330211 + 0.583526i
\(370\) −4.95273e7 −0.977776
\(371\) 6.70815e7i 1.31365i
\(372\) −706858. 2.68436e6i −0.0137310 0.0521449i
\(373\) −8.27614e7 −1.59478 −0.797391 0.603463i \(-0.793787\pi\)
−0.797391 + 0.603463i \(0.793787\pi\)
\(374\) 1.35341e7i 0.258710i
\(375\) 8.20330e7 2.16013e7i 1.55559 0.409625i
\(376\) 2.08766e7 0.392732
\(377\) 7.07771e7i 1.32090i
\(378\) 4.36193e7 4.25031e7i 0.807612 0.786947i
\(379\) −3.11189e7 −0.571618 −0.285809 0.958287i \(-0.592262\pi\)
−0.285809 + 0.958287i \(0.592262\pi\)
\(380\) 772954.i 0.0140865i
\(381\) −2.34661e7 8.91147e7i −0.424293 1.61129i
\(382\) 5.99927e7 1.07624
\(383\) 3.24145e7i 0.576957i 0.957486 + 0.288479i \(0.0931494\pi\)
−0.957486 + 0.288479i \(0.906851\pi\)
\(384\) −7.39339e6 + 1.94686e6i −0.130572 + 0.0343828i
\(385\) −1.86651e8 −3.27076
\(386\) 5.32986e6i 0.0926732i
\(387\) 6.18171e7 3.49815e7i 1.06654 0.603540i
\(388\) −2.65416e7 −0.454394
\(389\) 3.38064e7i 0.574314i 0.957883 + 0.287157i \(0.0927102\pi\)
−0.957883 + 0.287157i \(0.907290\pi\)
\(390\) 1.69898e7 + 6.45203e7i 0.286414 + 1.08768i
\(391\) 1.44962e7 0.242507
\(392\) 6.66192e7i 1.10596i
\(393\) 8.44559e7 2.22393e7i 1.39140 0.366390i
\(394\) 2.46200e7 0.402531
\(395\) 1.64986e8i 2.67704i
\(396\) −1.51869e7 2.68373e7i −0.244559 0.432169i
\(397\) −3.42933e7 −0.548072 −0.274036 0.961719i \(-0.588359\pi\)
−0.274036 + 0.961719i \(0.588359\pi\)
\(398\) 7.59087e6i 0.120404i
\(399\) 510754. + 1.93964e6i 0.00804069 + 0.0305353i
\(400\) 6.12574e7 0.957147
\(401\) 1.30045e7i 0.201679i −0.994903 0.100840i \(-0.967847\pi\)
0.994903 0.100840i \(-0.0321529\pi\)
\(402\) −6.21076e7 + 1.63545e7i −0.956019 + 0.251743i
\(403\) −7.89114e6 −0.120566
\(404\) 2.66985e7i 0.404895i
\(405\) −9.76187e7 5.86320e7i −1.46949 0.882612i
\(406\) −1.20617e8 −1.80232
\(407\) 6.50722e7i 0.965188i
\(408\) 4.56133e6 + 1.73221e7i 0.0671600 + 0.255046i
\(409\) 1.53722e7 0.224681 0.112341 0.993670i \(-0.464165\pi\)
0.112341 + 0.993670i \(0.464165\pi\)
\(410\) 6.28924e7i 0.912528i
\(411\) 1.07473e8 2.83002e7i 1.54801 0.407629i
\(412\) 2.27634e7 0.325496
\(413\) 4.86165e7i 0.690134i
\(414\) −4.90263e7 + 2.77434e7i −0.690920 + 0.390984i
\(415\) −3.34216e7 −0.467609
\(416\) 4.13719e7i 0.574679i
\(417\) −3.56053e7 1.35215e8i −0.491028 1.86473i
\(418\) −1.73209e6 −0.0237160
\(419\) 8.18825e7i 1.11314i −0.830802 0.556569i \(-0.812118\pi\)
0.830802 0.556569i \(-0.187882\pi\)
\(420\) 6.44687e7 1.69762e7i 0.870163 0.229136i
\(421\) −4.36687e7 −0.585226 −0.292613 0.956231i \(-0.594525\pi\)
−0.292613 + 0.956231i \(0.594525\pi\)
\(422\) 1.14021e6i 0.0151722i
\(423\) 1.34624e7 + 2.37898e7i 0.177869 + 0.314318i
\(424\) 7.66695e7 1.00583
\(425\) 3.60902e7i 0.470135i
\(426\) 7.81260e6 + 2.96691e7i 0.101057 + 0.383773i
\(427\) 5.54693e7 0.712474
\(428\) 3.99644e7i 0.509732i
\(429\) −8.47710e7 + 2.23223e7i −1.07368 + 0.282727i
\(430\) −1.32607e8 −1.66787
\(431\) 2.39809e7i 0.299526i 0.988722 + 0.149763i \(0.0478511\pi\)
−0.988722 + 0.149763i \(0.952149\pi\)
\(432\) −2.77822e7 2.85117e7i −0.344600 0.353649i
\(433\) 7.82361e7 0.963704 0.481852 0.876253i \(-0.339964\pi\)
0.481852 + 0.876253i \(0.339964\pi\)
\(434\) 1.34480e7i 0.164508i
\(435\) 5.74285e7 + 2.18090e8i 0.697685 + 2.64952i
\(436\) 2.38957e7 0.288310
\(437\) 1.85522e6i 0.0222306i
\(438\) −3.13903e7 + 8.26584e6i −0.373571 + 0.0983705i
\(439\) −7.65437e7 −0.904723 −0.452362 0.891835i \(-0.649418\pi\)
−0.452362 + 0.891835i \(0.649418\pi\)
\(440\) 2.13329e8i 2.50433i
\(441\) −7.59155e7 + 4.29597e7i −0.885146 + 0.500894i
\(442\) 1.37419e7 0.159140
\(443\) 4.83048e7i 0.555622i −0.960636 0.277811i \(-0.910391\pi\)
0.960636 0.277811i \(-0.0896089\pi\)
\(444\) 5.91841e6 + 2.24757e7i 0.0676170 + 0.256782i
\(445\) 3.97848e6 0.0451478
\(446\) 2.30963e7i 0.260339i
\(447\) −8.82372e7 + 2.32350e7i −0.987936 + 0.260148i
\(448\) 1.33561e8 1.48541
\(449\) 6.18093e7i 0.682833i 0.939912 + 0.341417i \(0.110907\pi\)
−0.939912 + 0.341417i \(0.889093\pi\)
\(450\) 6.90709e7 + 1.22058e8i 0.757980 + 1.33945i
\(451\) 8.26321e7 0.900781
\(452\) 2.55417e7i 0.276589i
\(453\) 3.48828e7 + 1.32471e8i 0.375247 + 1.42504i
\(454\) 7.67510e7 0.820194
\(455\) 1.89517e8i 2.01193i
\(456\) 2.21687e6 583757.i 0.0233801 0.00615655i
\(457\) −5.88422e7 −0.616510 −0.308255 0.951304i \(-0.599745\pi\)
−0.308255 + 0.951304i \(0.599745\pi\)
\(458\) 9.03999e7i 0.940961i
\(459\) −1.67979e7 + 1.63681e7i −0.173707 + 0.169262i
\(460\) −6.16627e7 −0.633504
\(461\) 1.42554e8i 1.45504i −0.686085 0.727521i \(-0.740672\pi\)
0.686085 0.727521i \(-0.259328\pi\)
\(462\) −3.80413e7 1.44466e8i −0.385771 1.46500i
\(463\) −7.66224e7 −0.771992 −0.385996 0.922501i \(-0.626142\pi\)
−0.385996 + 0.922501i \(0.626142\pi\)
\(464\) 7.88414e7i 0.789224i
\(465\) −2.43155e7 + 6.40287e6i −0.241838 + 0.0636818i
\(466\) 8.49702e7 0.839670
\(467\) 1.18640e8i 1.16488i 0.812873 + 0.582440i \(0.197902\pi\)
−0.812873 + 0.582440i \(0.802098\pi\)
\(468\) 2.72494e7 1.54201e7i 0.265839 0.150435i
\(469\) 1.82430e8 1.76839
\(470\) 5.10328e7i 0.491536i
\(471\) −1.38413e7 5.25637e7i −0.132469 0.503064i
\(472\) 5.55652e7 0.528418
\(473\) 1.74228e8i 1.64640i
\(474\) 1.27697e8 3.36257e7i 1.19907 0.315745i
\(475\) −4.61881e6 −0.0430972
\(476\) 1.37309e7i 0.127314i
\(477\) 4.94407e7 + 8.73683e7i 0.455543 + 0.805006i
\(478\) −5.71365e7 −0.523155
\(479\) 4.04655e7i 0.368196i −0.982908 0.184098i \(-0.941064\pi\)
0.982908 0.184098i \(-0.0589363\pi\)
\(480\) −3.35691e7 1.27482e8i −0.303540 1.15272i
\(481\) 6.60713e7 0.593714
\(482\) 1.09438e8i 0.977302i
\(483\) 1.54735e8 4.07456e7i 1.37324 0.361609i
\(484\) −3.37331e7 −0.297522
\(485\) 2.40420e8i 2.10739i
\(486\) 2.54848e7 8.75054e7i 0.222010 0.762300i
\(487\) −2.71676e7 −0.235215 −0.117607 0.993060i \(-0.537522\pi\)
−0.117607 + 0.993060i \(0.537522\pi\)
\(488\) 6.33975e7i 0.545523i
\(489\) 3.80334e7 + 1.44435e8i 0.325266 + 1.23523i
\(490\) 1.62850e8 1.38421
\(491\) 4.47113e7i 0.377722i 0.982004 + 0.188861i \(0.0604796\pi\)
−0.982004 + 0.188861i \(0.939520\pi\)
\(492\) −2.85408e7 + 7.51551e6i −0.239647 + 0.0631049i
\(493\) 4.64500e7 0.387654
\(494\) 1.75868e6i 0.0145883i
\(495\) −2.43098e8 + 1.37566e8i −2.00432 + 1.13422i
\(496\) −8.79026e6 −0.0720372
\(497\) 8.71476e7i 0.709882i
\(498\) −6.81166e6 2.58679e7i −0.0551524 0.209446i
\(499\) −2.31136e8 −1.86023 −0.930113 0.367272i \(-0.880292\pi\)
−0.930113 + 0.367272i \(0.880292\pi\)
\(500\) 7.43202e7i 0.594562i
\(501\) −6.03290e7 + 1.58861e7i −0.479748 + 0.126329i
\(502\) −9.15122e7 −0.723382
\(503\) 1.69165e8i 1.32925i −0.747177 0.664625i \(-0.768591\pi\)
0.747177 0.664625i \(-0.231409\pi\)
\(504\) 9.73771e7 + 1.72078e8i 0.760615 + 1.34411i
\(505\) 2.41840e8 1.87782
\(506\) 1.38178e8i 1.06656i
\(507\) 1.05212e7 + 3.99551e7i 0.0807308 + 0.306583i
\(508\) 8.07361e7 0.615852
\(509\) 1.68108e8i 1.27478i 0.770540 + 0.637391i \(0.219987\pi\)
−0.770540 + 0.637391i \(0.780013\pi\)
\(510\) 4.23438e7 1.11502e7i 0.319212 0.0840563i
\(511\) 9.22034e7 0.691010
\(512\) 1.18154e8i 0.880315i
\(513\) 2.09478e6 + 2.14978e6i 0.0155162 + 0.0159237i
\(514\) 1.56514e8 1.15256
\(515\) 2.06196e8i 1.50959i
\(516\) 1.58463e7 + 6.01777e7i 0.115340 + 0.438013i
\(517\) 6.70502e7 0.485208
\(518\) 1.12598e8i 0.810103i
\(519\) 5.16349e7 1.35967e7i 0.369352 0.0972596i
\(520\) −2.16605e8 −1.54049
\(521\) 1.71182e8i 1.21044i −0.796057 0.605221i \(-0.793085\pi\)
0.796057 0.605221i \(-0.206915\pi\)
\(522\) −1.57094e8 + 8.88978e7i −1.10446 + 0.624999i
\(523\) −9.56859e7 −0.668872 −0.334436 0.942419i \(-0.608546\pi\)
−0.334436 + 0.942419i \(0.608546\pi\)
\(524\) 7.65153e7i 0.531808i
\(525\) −1.01442e8 3.85234e8i −0.701033 2.66224i
\(526\) −1.52781e8 −1.04982
\(527\) 5.17884e6i 0.0353835i
\(528\) −9.44298e7 + 2.48657e7i −0.641516 + 0.168927i
\(529\) 35281.4 0.000238330
\(530\) 1.87418e8i 1.25888i
\(531\) 3.58315e7 + 6.33191e7i 0.239321 + 0.422913i
\(532\) −1.75727e6 −0.0116709
\(533\) 8.39008e7i 0.554096i
\(534\) 810853. + 3.07929e6i 0.00532499 + 0.0202221i
\(535\) −3.62006e8 −2.36404
\(536\) 2.08505e8i 1.35401i
\(537\) −1.33447e8 + 3.51399e7i −0.861759 + 0.226922i
\(538\) 9.65620e7 0.620097
\(539\) 2.13964e8i 1.36639i
\(540\) 7.14534e7 6.96251e7i 0.453776 0.442165i
\(541\) −1.41289e8 −0.892312 −0.446156 0.894955i \(-0.647207\pi\)
−0.446156 + 0.894955i \(0.647207\pi\)
\(542\) 8.18178e7i 0.513866i
\(543\) 5.69236e7 + 2.16173e8i 0.355543 + 1.35021i
\(544\) −2.71518e7 −0.168656
\(545\) 2.16452e8i 1.33713i
\(546\) 1.46684e8 3.86254e7i 0.901164 0.237299i
\(547\) −1.26863e8 −0.775127 −0.387564 0.921843i \(-0.626683\pi\)
−0.387564 + 0.921843i \(0.626683\pi\)
\(548\) 9.73682e7i 0.591664i
\(549\) 7.22443e7 4.08822e7i 0.436603 0.247068i
\(550\) 3.44012e8 2.06769
\(551\) 5.94465e6i 0.0355362i
\(552\) −4.65694e7 1.76852e8i −0.276875 1.05146i
\(553\) −3.75086e8 −2.21797
\(554\) 1.36426e8i 0.802359i
\(555\) 2.03590e8 5.36102e7i 1.19090 0.313595i
\(556\) 1.22502e8 0.712717
\(557\) 6.48692e7i 0.375382i −0.982228 0.187691i \(-0.939900\pi\)
0.982228 0.187691i \(-0.0601003\pi\)
\(558\) −9.91147e6 1.75149e7i −0.0570474 0.100810i
\(559\) 1.76903e8 1.01274
\(560\) 2.11110e8i 1.20211i
\(561\) 1.46498e7 + 5.56340e7i 0.0829742 + 0.315102i
\(562\) −1.82423e8 −1.02771
\(563\) 7.56366e7i 0.423845i 0.977286 + 0.211922i \(0.0679724\pi\)
−0.977286 + 0.211922i \(0.932028\pi\)
\(564\) −2.31589e7 + 6.09831e6i −0.129086 + 0.0339917i
\(565\) 2.31362e8 1.28277
\(566\) 1.53975e8i 0.849184i
\(567\) −1.33297e8 + 2.21931e8i −0.731258 + 1.21750i
\(568\) −9.96036e7 −0.543538
\(569\) 1.80647e8i 0.980603i −0.871553 0.490302i \(-0.836887\pi\)
0.871553 0.490302i \(-0.163113\pi\)
\(570\) −1.42699e6 5.41913e6i −0.00770543 0.0292621i
\(571\) 1.29391e8 0.695015 0.347507 0.937677i \(-0.387028\pi\)
0.347507 + 0.937677i \(0.387028\pi\)
\(572\) 7.68008e7i 0.410372i
\(573\) −2.46610e8 + 6.49384e7i −1.31083 + 0.345174i
\(574\) −1.42983e8 −0.756044
\(575\) 3.68467e8i 1.93819i
\(576\) 1.73952e8 9.84375e7i 0.910254 0.515102i
\(577\) 7.99462e7 0.416169 0.208085 0.978111i \(-0.433277\pi\)
0.208085 + 0.978111i \(0.433277\pi\)
\(578\) 9.01860e6i 0.0467042i
\(579\) 5.76925e6 + 2.19093e7i 0.0297224 + 0.112873i
\(580\) −1.97585e8 −1.01268
\(581\) 7.59823e7i 0.387422i
\(582\) −1.86082e8 + 4.89999e7i −0.943919 + 0.248557i
\(583\) 2.46243e8 1.24268
\(584\) 1.05382e8i 0.529088i
\(585\) −1.39679e8 2.46831e8i −0.697689 1.23291i
\(586\) 2.24878e7 0.111752
\(587\) 3.37859e7i 0.167040i −0.996506 0.0835201i \(-0.973384\pi\)
0.996506 0.0835201i \(-0.0266163\pi\)
\(588\) −1.94603e7 7.39023e7i −0.0957233 0.363518i
\(589\) 662786. 0.00324360
\(590\) 1.35829e8i 0.661358i
\(591\) −1.01204e8 + 2.66496e7i −0.490272 + 0.129101i
\(592\) 7.35994e7 0.354739
\(593\) 3.22407e8i 1.54611i 0.634338 + 0.773056i \(0.281273\pi\)
−0.634338 + 0.773056i \(0.718727\pi\)
\(594\) −1.56020e8 1.60117e8i −0.744427 0.763975i
\(595\) −1.24377e8 −0.590459
\(596\) 7.99411e7i 0.377599i
\(597\) −8.21665e6 3.12035e7i −0.0386164 0.146649i
\(598\) −1.40299e8 −0.656073
\(599\) 4.90496e7i 0.228221i 0.993468 + 0.114110i \(0.0364018\pi\)
−0.993468 + 0.114110i \(0.963598\pi\)
\(600\) −4.40296e8 + 1.15941e8i −2.03841 + 0.536763i
\(601\) 1.26390e8 0.582221 0.291111 0.956689i \(-0.405975\pi\)
0.291111 + 0.956689i \(0.405975\pi\)
\(602\) 3.01475e8i 1.38185i
\(603\) 2.37600e8 1.34455e8i 1.08367 0.613233i
\(604\) −1.20016e8 −0.544663
\(605\) 3.05561e8i 1.37985i
\(606\) 4.92895e7 + 1.87181e8i 0.221481 + 0.841094i
\(607\) −2.19519e8 −0.981536 −0.490768 0.871290i \(-0.663284\pi\)
−0.490768 + 0.871290i \(0.663284\pi\)
\(608\) 3.47487e6i 0.0154607i
\(609\) 4.95816e8 1.30561e8i 2.19517 0.578043i
\(610\) −1.54975e8 −0.682767
\(611\) 6.80797e7i 0.298465i
\(612\) −1.01200e7 1.78834e7i −0.0441495 0.0780181i
\(613\) −2.37427e8 −1.03074 −0.515370 0.856968i \(-0.672345\pi\)
−0.515370 + 0.856968i \(0.672345\pi\)
\(614\) 6.80568e7i 0.294013i
\(615\) 6.80771e7 + 2.58529e8i 0.292668 + 1.11143i
\(616\) 4.84993e8 2.07488
\(617\) 4.47246e7i 0.190411i 0.995458 + 0.0952053i \(0.0303507\pi\)
−0.995458 + 0.0952053i \(0.969649\pi\)
\(618\) 1.59593e8 4.20247e7i 0.676157 0.178049i
\(619\) 2.11726e8 0.892695 0.446347 0.894860i \(-0.352725\pi\)
0.446347 + 0.894860i \(0.352725\pi\)
\(620\) 2.20293e7i 0.0924328i
\(621\) 1.71500e8 1.67112e8i 0.716125 0.697801i
\(622\) −2.64013e8 −1.09712
\(623\) 9.04486e6i 0.0374057i
\(624\) −2.52475e7 9.58797e7i −0.103912 0.394614i
\(625\) 1.99962e8 0.819043
\(626\) 8.48310e7i 0.345805i
\(627\) 7.12001e6 1.87488e6i 0.0288854 0.00760624i
\(628\) 4.76216e7 0.192276
\(629\) 4.33616e7i 0.174242i
\(630\) 4.20645e8 2.38038e8i 1.68226 0.951973i
\(631\) 3.16146e7 0.125835 0.0629173 0.998019i \(-0.479960\pi\)
0.0629173 + 0.998019i \(0.479960\pi\)
\(632\) 4.28697e8i 1.69824i
\(633\) −1.23421e6 4.68701e6i −0.00486605 0.0184793i
\(634\) 1.85086e7 0.0726283
\(635\) 7.31325e8i 2.85620i
\(636\) −8.50514e7 + 2.23961e7i −0.330605 + 0.0870566i
\(637\) −2.17249e8 −0.840503
\(638\) 4.42761e8i 1.70493i
\(639\) −6.42298e7 1.13503e8i −0.246169 0.435014i
\(640\) −6.06742e7 −0.231454
\(641\) 8.03800e6i 0.0305192i 0.999884 + 0.0152596i \(0.00485748\pi\)
−0.999884 + 0.0152596i \(0.995143\pi\)
\(642\) −7.37803e7 2.80188e8i −0.278827 1.05887i
\(643\) −1.79294e7 −0.0674425 −0.0337213 0.999431i \(-0.510736\pi\)
−0.0337213 + 0.999431i \(0.510736\pi\)
\(644\) 1.40187e8i 0.524868i
\(645\) 5.45102e8 1.43539e8i 2.03142 0.534922i
\(646\) −1.15420e6 −0.00428136
\(647\) 2.33792e8i 0.863211i 0.902063 + 0.431605i \(0.142053\pi\)
−0.902063 + 0.431605i \(0.857947\pi\)
\(648\) 2.53652e8 + 1.52349e8i 0.932208 + 0.559905i
\(649\) 1.78461e8 0.652844
\(650\) 3.49294e8i 1.27189i
\(651\) 1.45566e7 + 5.52800e7i 0.0527614 + 0.200366i
\(652\) −1.30856e8 −0.472117
\(653\) 3.00491e8i 1.07917i −0.841930 0.539587i \(-0.818581\pi\)
0.841930 0.539587i \(-0.181419\pi\)
\(654\) 1.67531e8 4.41151e7i 0.598911 0.157708i
\(655\) 6.93092e8 2.46642
\(656\) 9.34605e7i 0.331067i
\(657\) 1.20088e8 6.79561e7i 0.423450 0.239625i
\(658\) −1.16020e8 −0.407246
\(659\) 3.62789e7i 0.126764i −0.997989 0.0633822i \(-0.979811\pi\)
0.997989 0.0633822i \(-0.0201887\pi\)
\(660\) −6.23161e7 2.36651e8i −0.216755 0.823147i
\(661\) −5.07516e8 −1.75730 −0.878650 0.477467i \(-0.841555\pi\)
−0.878650 + 0.477467i \(0.841555\pi\)
\(662\) 3.13914e8i 1.08202i
\(663\) −5.64882e7 + 1.48747e7i −0.193828 + 0.0510398i
\(664\) 8.68425e7 0.296639
\(665\) 1.59177e7i 0.0541273i
\(666\) 8.29872e7 + 1.46649e8i 0.280924 + 0.496430i
\(667\) −4.74236e8 −1.59815
\(668\) 5.46569e7i 0.183365i
\(669\) −2.50004e7 9.49412e7i −0.0834964 0.317085i
\(670\) −5.09689e8 −1.69465
\(671\) 2.03616e8i 0.673977i
\(672\) −2.89823e8 + 7.63176e7i −0.955049 + 0.251488i
\(673\) 3.85589e8 1.26497 0.632485 0.774573i \(-0.282035\pi\)
0.632485 + 0.774573i \(0.282035\pi\)
\(674\) 2.21504e8i 0.723439i
\(675\) −4.16047e8 4.26972e8i −1.35279 1.38831i
\(676\) −3.61985e7 −0.117179
\(677\) 2.10320e8i 0.677819i −0.940819 0.338910i \(-0.889942\pi\)
0.940819 0.338910i \(-0.110058\pi\)
\(678\) 4.71539e7 + 1.79071e8i 0.151296 + 0.574562i
\(679\) 5.46582e8 1.74601
\(680\) 1.42154e8i 0.452099i
\(681\) −3.15497e8 + 8.30782e7i −0.998974 + 0.263055i
\(682\) −4.93647e7 −0.155619
\(683\) 1.67096e7i 0.0524450i −0.999656 0.0262225i \(-0.991652\pi\)
0.999656 0.0262225i \(-0.00834783\pi\)
\(684\) −2.28871e6 + 1.29515e6i −0.00715190 + 0.00404718i
\(685\) 8.81981e8 2.74402
\(686\) 6.20440e6i 0.0192189i
\(687\) 9.78523e7 + 3.71603e8i 0.301787 + 1.14606i
\(688\) 1.97059e8 0.605106
\(689\) 2.50023e8i 0.764404i
\(690\) −4.32314e8 + 1.13839e8i −1.31599 + 0.346532i
\(691\) −1.27470e8 −0.386343 −0.193172 0.981165i \(-0.561877\pi\)
−0.193172 + 0.981165i \(0.561877\pi\)
\(692\) 4.67801e7i 0.141170i
\(693\) 3.12750e8 + 5.52671e8i 0.939718 + 1.66061i
\(694\) 2.60919e8 0.780597
\(695\) 1.10965e9i 3.30544i
\(696\) −1.49222e8 5.66683e8i −0.442593 1.68079i
\(697\) 5.50629e7 0.162615
\(698\) 1.49355e8i 0.439190i
\(699\) −3.49283e8 + 9.19749e7i −1.02270 + 0.269301i
\(700\) 3.49014e8 1.01753
\(701\) 5.24585e8i 1.52287i 0.648243 + 0.761433i \(0.275504\pi\)
−0.648243 + 0.761433i \(0.724496\pi\)
\(702\) 1.62576e8 1.58416e8i 0.469943 0.457918i
\(703\) −5.54940e6 −0.0159728
\(704\) 4.90275e8i 1.40515i
\(705\) 5.52398e7 + 2.09778e8i 0.157647 + 0.598678i
\(706\) 3.14090e8 0.892565
\(707\) 5.49812e8i 1.55581i
\(708\) −6.16399e7 + 1.62313e7i −0.173685 + 0.0457355i
\(709\) 2.79644e8 0.784633 0.392316 0.919830i \(-0.371674\pi\)
0.392316 + 0.919830i \(0.371674\pi\)
\(710\) 2.43481e8i 0.680283i
\(711\) −4.88520e8 + 2.76447e8i −1.35917 + 0.769137i
\(712\) −1.03376e7 −0.0286406
\(713\) 5.28740e7i 0.145873i
\(714\) −2.53493e7 9.62663e7i −0.0696420 0.264472i
\(715\) −6.95678e8 −1.90323
\(716\) 1.20900e8i 0.329373i
\(717\) 2.34869e8 6.18467e7i 0.637188 0.167787i
\(718\) −6.43912e7 −0.173962
\(719\) 2.52270e8i 0.678702i 0.940660 + 0.339351i \(0.110207\pi\)
−0.940660 + 0.339351i \(0.889793\pi\)
\(720\) −1.55593e8 2.74955e8i −0.416863 0.736654i
\(721\) −4.68775e8 −1.25072
\(722\) 2.98677e8i 0.793578i
\(723\) −1.18460e8 4.49864e8i −0.313443 1.19033i
\(724\) −1.95848e8 −0.516064
\(725\) 1.18067e9i 3.09825i
\(726\) −2.36500e8 + 6.22764e7i −0.618047 + 0.162747i
\(727\) 9.96358e7 0.259306 0.129653 0.991559i \(-0.458614\pi\)
0.129653 + 0.991559i \(0.458614\pi\)
\(728\) 4.92440e8i 1.27632i
\(729\) −1.00401e7 + 3.87290e8i −0.0259152 + 0.999664i
\(730\) −2.57606e8 −0.662198
\(731\) 1.16099e8i 0.297218i
\(732\) 1.85192e7 + 7.03284e7i 0.0472160 + 0.179307i
\(733\) 6.85192e7 0.173981 0.0869903 0.996209i \(-0.472275\pi\)
0.0869903 + 0.996209i \(0.472275\pi\)
\(734\) 3.46319e7i 0.0875765i
\(735\) −6.69423e8 + 1.76276e8i −1.68593 + 0.443946i
\(736\) 2.77209e8 0.695303
\(737\) 6.69663e8i 1.67284i
\(738\) −1.86223e8 + 1.05382e8i −0.463303 + 0.262177i
\(739\) 3.80330e8 0.942382 0.471191 0.882031i \(-0.343824\pi\)
0.471191 + 0.882031i \(0.343824\pi\)
\(740\) 1.84448e8i 0.455176i
\(741\) 1.90366e6 + 7.22934e6i 0.00467881 + 0.0177682i
\(742\) −4.26086e8 −1.04300
\(743\) 5.14155e7i 0.125351i −0.998034 0.0626754i \(-0.980037\pi\)
0.998034 0.0626754i \(-0.0199633\pi\)
\(744\) 6.31812e7 1.66372e7i 0.153415 0.0403981i
\(745\) −7.24123e8 −1.75123
\(746\) 5.25681e8i 1.26621i
\(747\) 5.60008e7 + 9.89609e7i 0.134348 + 0.237412i
\(748\) −5.04033e7 −0.120435
\(749\) 8.23001e8i 1.95864i
\(750\) 1.37206e8 + 5.21054e8i 0.325230 + 1.23509i
\(751\) 2.18343e8 0.515489 0.257744 0.966213i \(-0.417021\pi\)
0.257744 + 0.966213i \(0.417021\pi\)
\(752\) 7.58367e7i 0.178330i
\(753\) 3.76175e8 9.90563e7i 0.881060 0.232005i
\(754\) −4.49560e8 −1.04875
\(755\) 1.08713e9i 2.52604i
\(756\) −1.58289e8 1.62446e8i −0.366341 0.375961i
\(757\) 1.26532e7 0.0291684 0.0145842 0.999894i \(-0.495358\pi\)
0.0145842 + 0.999894i \(0.495358\pi\)
\(758\) 1.97660e8i 0.453848i
\(759\) −1.49569e8 5.68002e8i −0.342071 1.29905i
\(760\) 1.81929e7 0.0414439
\(761\) 8.36458e7i 0.189797i −0.995487 0.0948987i \(-0.969747\pi\)
0.995487 0.0948987i \(-0.0302527\pi\)
\(762\) 5.66036e8 1.49051e8i 1.27932 0.336876i
\(763\) −4.92093e8 −1.10783
\(764\) 2.23423e8i 0.501012i
\(765\) −1.61991e8 + 9.16690e7i −0.361833 + 0.204757i
\(766\) −2.05890e8 −0.458087
\(767\) 1.81201e8i 0.401583i
\(768\) 1.08278e8 + 4.11195e8i 0.239032 + 0.907745i
\(769\) 3.90789e8 0.859337 0.429669 0.902987i \(-0.358630\pi\)
0.429669 + 0.902987i \(0.358630\pi\)
\(770\) 1.18556e9i 2.59689i
\(771\) −6.43376e8 + 1.69417e8i −1.40379 + 0.369652i
\(772\) −1.98493e7 −0.0431414
\(773\) 2.91270e8i 0.630605i 0.948991 + 0.315303i \(0.102106\pi\)
−0.948991 + 0.315303i \(0.897894\pi\)
\(774\) 2.22195e8 + 3.92647e8i 0.479193 + 0.846798i
\(775\) −1.31637e8 −0.282795
\(776\) 6.24705e8i 1.33687i
\(777\) −1.21880e8 4.62851e8i −0.259818 0.986683i
\(778\) −2.14730e8 −0.455989
\(779\) 7.04692e6i 0.0149069i
\(780\) 2.40285e8 6.32730e7i 0.506341 0.133332i
\(781\) −3.19901e8 −0.671525
\(782\) 9.20764e7i 0.192543i
\(783\) 5.49535e8 5.35473e8i 1.14475 1.11546i
\(784\) −2.42002e8 −0.502193
\(785\) 4.31367e8i 0.891739i
\(786\) 1.41259e8 + 5.36444e8i 0.290903 + 1.10473i
\(787\) −6.97895e8 −1.43175 −0.715873 0.698230i \(-0.753971\pi\)
−0.715873 + 0.698230i \(0.753971\pi\)
\(788\) 9.16892e7i 0.187387i
\(789\) 6.28032e8 1.65376e8i 1.27865 0.336699i
\(790\) 1.04795e9 2.12549
\(791\) 5.25990e8i 1.06279i
\(792\) 6.31664e8 3.57451e8i 1.27148 0.719518i
\(793\) 2.06743e8 0.414582
\(794\) 2.17823e8i 0.435153i
\(795\) 2.02869e8 + 7.70413e8i 0.403751 + 1.53328i
\(796\) 2.82697e7 0.0560508
\(797\) 8.61715e8i 1.70211i −0.525073 0.851057i \(-0.675962\pi\)
0.525073 0.851057i \(-0.324038\pi\)
\(798\) −1.23201e7 + 3.24419e6i −0.0242441 + 0.00638407i
\(799\) 4.46797e7 0.0875931
\(800\) 6.90149e8i 1.34795i
\(801\) −6.66628e6 1.17802e7i −0.0129714 0.0229222i
\(802\) 8.26017e7 0.160128
\(803\) 3.38460e8i 0.653673i
\(804\) 6.09068e7 + 2.31299e8i 0.117192 + 0.445047i
\(805\) 1.26984e9 2.43424
\(806\) 5.01227e7i 0.0957259i
\(807\) −3.96933e8 + 1.04522e8i −0.755261 + 0.198879i
\(808\) −6.28396e8 −1.19124
\(809\) 7.23236e8i 1.36595i −0.730442 0.682975i \(-0.760686\pi\)
0.730442 0.682975i \(-0.239314\pi\)
\(810\) 3.72417e8 6.20051e8i 0.700768 1.16674i
\(811\) 8.90755e8 1.66992 0.834961 0.550310i \(-0.185490\pi\)
0.834961 + 0.550310i \(0.185490\pi\)
\(812\) 4.49199e8i 0.839018i
\(813\) −8.85626e7 3.36325e8i −0.164808 0.625875i
\(814\) 4.13323e8 0.766331
\(815\) 1.18532e9i 2.18959i
\(816\) −6.29245e7 + 1.65696e7i −0.115811 + 0.0304958i
\(817\) −1.48583e7 −0.0272460
\(818\) 9.76407e7i 0.178390i
\(819\) −5.61157e8 + 3.17552e8i −1.02149 + 0.578047i
\(820\) −2.34222e8 −0.424802
\(821\) 4.81595e8i 0.870266i −0.900366 0.435133i \(-0.856701\pi\)
0.900366 0.435133i \(-0.143299\pi\)
\(822\) 1.79756e8 + 6.82642e8i 0.323645 + 1.22907i
\(823\) −8.12461e8 −1.45748 −0.728741 0.684789i \(-0.759894\pi\)
−0.728741 + 0.684789i \(0.759894\pi\)
\(824\) 5.35777e8i 0.957641i
\(825\) −1.41412e9 + 3.72372e8i −2.51839 + 0.663155i
\(826\) −3.08800e8 −0.547946
\(827\) 2.15815e8i 0.381562i 0.981633 + 0.190781i \(0.0611020\pi\)
−0.981633 + 0.190781i \(0.938898\pi\)
\(828\) 1.03321e8 + 1.82582e8i 0.182011 + 0.321638i
\(829\) −1.00349e9 −1.76137 −0.880683 0.473707i \(-0.842916\pi\)
−0.880683 + 0.473707i \(0.842916\pi\)
\(830\) 2.12286e8i 0.371268i
\(831\) 1.47673e8 + 5.60802e8i 0.257334 + 0.977252i
\(832\) 4.97802e8 0.864345
\(833\) 1.42577e8i 0.246669i
\(834\) 8.58851e8 2.26157e8i 1.48054 0.389862i
\(835\) −4.95093e8 −0.850409
\(836\) 6.45059e6i 0.0110403i
\(837\) 5.97015e7 + 6.12692e7i 0.101814 + 0.104488i
\(838\) 5.20098e8 0.883799
\(839\) 5.53392e8i 0.937017i −0.883459 0.468508i \(-0.844792\pi\)
0.883459 0.468508i \(-0.155208\pi\)
\(840\) 3.99565e8 + 1.51739e9i 0.674139 + 2.56011i
\(841\) −9.24766e8 −1.55469
\(842\) 2.77373e8i 0.464652i
\(843\) 7.49879e8 1.97462e8i 1.25172 0.329610i
\(844\) 4.24634e6 0.00706297
\(845\) 3.27893e8i 0.543454i
\(846\) −1.51107e8 + 8.55098e7i −0.249560 + 0.141223i
\(847\) 6.94677e8 1.14323
\(848\) 2.78511e8i 0.456725i
\(849\) −1.66669e8 6.32940e8i −0.272352 1.03428i
\(850\) 2.29237e8 0.373274
\(851\) 4.42706e8i 0.718334i
\(852\) 1.10493e8 2.90955e7i 0.178655 0.0470442i
\(853\) 6.56767e8 1.05819 0.529095 0.848562i \(-0.322531\pi\)
0.529095 + 0.848562i \(0.322531\pi\)
\(854\) 3.52328e8i 0.565683i
\(855\) 1.17318e7 + 2.07316e7i 0.0187700 + 0.0331691i
\(856\) 9.40633e8 1.49968
\(857\) 8.40672e8i 1.33562i 0.744330 + 0.667812i \(0.232769\pi\)
−0.744330 + 0.667812i \(0.767231\pi\)
\(858\) −1.41786e8 5.38446e8i −0.224477 0.852472i
\(859\) 8.18475e8 1.29130 0.645648 0.763635i \(-0.276587\pi\)
0.645648 + 0.763635i \(0.276587\pi\)
\(860\) 4.93852e8i 0.776428i
\(861\) 5.87752e8 1.54770e8i 0.920841 0.242480i
\(862\) −1.52321e8 −0.237815
\(863\) 1.06508e8i 0.165710i −0.996562 0.0828548i \(-0.973596\pi\)
0.996562 0.0828548i \(-0.0264038\pi\)
\(864\) −3.21224e8 + 3.13004e8i −0.498043 + 0.485299i
\(865\) 4.23744e8 0.654720
\(866\) 4.96938e8i 0.765153i
\(867\) 9.76207e6 + 3.70724e7i 0.0149791 + 0.0568844i
\(868\) −5.00825e7 −0.0765821
\(869\) 1.37686e9i 2.09813i
\(870\) −1.38526e9 + 3.64772e8i −2.10364 + 0.553942i
\(871\) 6.79945e8 1.02901
\(872\) 5.62428e8i 0.848237i
\(873\) 7.11879e8 4.02844e8i 1.06995 0.605472i
\(874\) 1.17839e7 0.0176504
\(875\) 1.53050e9i 2.28460i
\(876\) 3.07834e7 + 1.16903e8i 0.0457936 + 0.173905i
\(877\) 7.24761e8 1.07447 0.537237 0.843431i \(-0.319468\pi\)
0.537237 + 0.843431i \(0.319468\pi\)
\(878\) 4.86188e8i 0.718324i
\(879\) −9.24397e7 + 2.43417e7i −0.136111 + 0.0358413i
\(880\) −7.74944e8 −1.13716
\(881\) 1.05391e9i 1.54126i −0.637283 0.770630i \(-0.719942\pi\)
0.637283 0.770630i \(-0.280058\pi\)
\(882\) −2.72870e8 4.82198e8i −0.397695 0.702780i
\(883\) −5.57224e8 −0.809371 −0.404686 0.914456i \(-0.632619\pi\)
−0.404686 + 0.914456i \(0.632619\pi\)
\(884\) 5.11772e7i 0.0740831i
\(885\) 1.47027e8 + 5.58347e8i 0.212112 + 0.805517i
\(886\) 3.06821e8 0.441147
\(887\) 3.75397e8i 0.537922i −0.963151 0.268961i \(-0.913320\pi\)
0.963151 0.268961i \(-0.0866803\pi\)
\(888\) −5.29006e8 + 1.39300e8i −0.755478 + 0.198936i
\(889\) −1.66263e9 −2.36641
\(890\) 2.52704e7i 0.0358461i
\(891\) 8.14663e8 + 4.89306e8i 1.15172 + 0.691747i
\(892\) 8.60148e7 0.121193
\(893\) 5.71809e6i 0.00802965i
\(894\) −1.47583e8 5.60462e8i −0.206550 0.784393i
\(895\) −1.09514e9 −1.52757
\(896\) 1.37940e8i 0.191763i
\(897\) 5.76723e8 1.51865e8i 0.799079 0.210417i
\(898\) −3.92598e8 −0.542150
\(899\) 1.69423e8i 0.233182i
\(900\) 4.54563e8 2.57232e8i 0.623544 0.352856i
\(901\) 1.64087e8 0.224336
\(902\) 5.24860e8i 0.715193i
\(903\) −3.26328e8 1.23926e9i −0.443192 1.68306i
\(904\) −6.01170e8 −0.813752
\(905\) 1.77403e9i 2.39340i
\(906\) −8.41424e8 + 2.21568e8i −1.13144 + 0.297935i
\(907\) −6.65060e8 −0.891331 −0.445666 0.895199i \(-0.647033\pi\)
−0.445666 + 0.895199i \(0.647033\pi\)
\(908\) 2.85834e8i 0.381818i
\(909\) −4.05224e8 7.16086e8i −0.539515 0.953396i
\(910\) 1.20377e9 1.59742
\(911\) 1.76438e8i 0.233366i −0.993169 0.116683i \(-0.962774\pi\)
0.993169 0.116683i \(-0.0372262\pi\)
\(912\) 2.12057e6 + 8.05304e6i 0.00279555 + 0.0106164i
\(913\) 2.78916e8 0.366489
\(914\) 3.73752e8i 0.489491i
\(915\) 6.37050e8 1.67751e8i 0.831591 0.218979i
\(916\) −3.36665e8 −0.438037
\(917\) 1.57571e9i 2.04347i
\(918\) −1.03966e8 1.06696e8i −0.134389 0.137918i
\(919\) −5.36704e8 −0.691494 −0.345747 0.938328i \(-0.612374\pi\)
−0.345747 + 0.938328i \(0.612374\pi\)
\(920\) 1.45134e9i 1.86383i
\(921\) −7.36673e7 2.79758e8i −0.0942966 0.358100i
\(922\) 9.05467e8 1.15526
\(923\) 3.24813e8i 0.413074i
\(924\) −5.38015e8 + 1.41673e8i −0.681990 + 0.179585i
\(925\) 1.10217e9 1.39260
\(926\) 4.86687e8i 0.612939i
\(927\) −6.10542e8 + 3.45498e8i −0.766437 + 0.433717i
\(928\) 8.88257e8 1.11146
\(929\) 7.69413e8i 0.959649i 0.877364 + 0.479824i \(0.159300\pi\)
−0.877364 + 0.479824i \(0.840700\pi\)
\(930\) −4.06695e7 1.54446e8i −0.0505615 0.192012i
\(931\) 1.82470e7 0.0226121
\(932\) 3.16444e8i 0.390885i
\(933\) 1.08527e9 2.85778e8i 1.33626 0.351872i
\(934\) −7.53575e8 −0.924881
\(935\) 4.56563e8i 0.558555i
\(936\) 3.62940e8 + 6.41363e8i 0.442595 + 0.782126i
\(937\) −2.73895e8 −0.332939 −0.166470 0.986047i \(-0.553237\pi\)
−0.166470 + 0.986047i \(0.553237\pi\)
\(938\) 1.15875e9i 1.40405i
\(939\) 9.18243e7 + 3.48711e8i 0.110908 + 0.421182i
\(940\) −1.90055e8 −0.228821
\(941\) 5.17644e8i 0.621245i −0.950533 0.310622i \(-0.899463\pi\)
0.950533 0.310622i \(-0.100537\pi\)
\(942\) 3.33872e8 8.79168e7i 0.399418 0.105177i
\(943\) −5.62171e8 −0.670399
\(944\) 2.01847e8i 0.239942i
\(945\) −1.47147e9 + 1.43382e9i −1.74363 + 1.69902i
\(946\) 1.10665e9 1.30719
\(947\) 1.53275e9i 1.80477i 0.430933 + 0.902384i \(0.358185\pi\)
−0.430933 + 0.902384i \(0.641815\pi\)
\(948\) −1.25228e8 4.75564e8i −0.146986 0.558193i
\(949\) 3.43657e8 0.402093
\(950\) 2.93376e7i 0.0342179i
\(951\) −7.60825e7 + 2.00344e7i −0.0884593 + 0.0232935i
\(952\) 3.23181e8 0.374572
\(953\) 1.93142e8i 0.223151i 0.993756 + 0.111575i \(0.0355896\pi\)
−0.993756 + 0.111575i \(0.964410\pi\)
\(954\) −5.54943e8 + 3.14036e8i −0.639151 + 0.361688i
\(955\) −2.02382e9 −2.32360
\(956\) 2.12786e8i 0.243540i
\(957\) −4.79262e8 1.82004e9i −0.546810 2.07656i
\(958\) 2.57028e8 0.292337
\(959\) 2.00514e9i 2.27347i
\(960\) 1.53391e9 4.03916e8i 1.73375 0.456539i
\(961\) −8.68614e8 −0.978716
\(962\) 4.19669e8i 0.471392i
\(963\) 6.06571e8 + 1.07189e9i 0.679208 + 1.20025i
\(964\) 4.07568e8 0.454955
\(965\) 1.79799e8i 0.200081i
\(966\) 2.58807e8 + 9.82842e8i 0.287107 + 1.09032i
\(967\) 1.37798e9 1.52393 0.761965 0.647618i \(-0.224235\pi\)
0.761965 + 0.647618i \(0.224235\pi\)
\(968\) 7.93968e8i 0.875340i
\(969\) 4.74451e6 1.24935e6i 0.00521458 0.00137313i
\(970\) −1.52709e9 −1.67321
\(971\) 5.16726e7i 0.0564421i 0.999602 + 0.0282210i \(0.00898423\pi\)
−0.999602 + 0.0282210i \(0.991016\pi\)
\(972\) −3.25885e8 9.49097e7i −0.354867 0.103350i
\(973\) −2.52272e9 −2.73861
\(974\) 1.72562e8i 0.186753i
\(975\) −3.78089e8 1.43583e9i −0.407925 1.54913i
\(976\) 2.30299e8 0.247709
\(977\) 1.56821e9i 1.68160i 0.541349 + 0.840798i \(0.317914\pi\)
−0.541349 + 0.840798i \(0.682086\pi\)
\(978\) −9.17420e8 + 2.41579e8i −0.980735 + 0.258252i
\(979\) −3.32019e7 −0.0353846
\(980\) 6.06483e8i 0.644378i
\(981\) −6.40911e8 + 3.62684e8i −0.678877 + 0.384168i
\(982\) −2.83995e8 −0.299900
\(983\) 2.83489e8i 0.298453i −0.988803 0.149227i \(-0.952322\pi\)
0.988803 0.149227i \(-0.0476784\pi\)
\(984\) −1.76891e8 6.71760e8i −0.185661 0.705064i
\(985\) −8.30540e8 −0.869064
\(986\) 2.95039e8i 0.307786i
\(987\) 4.76920e8 1.25585e8i 0.496014 0.130613i
\(988\) −6.54963e6 −0.00679119
\(989\) 1.18532e9i 1.22532i
\(990\) −8.73789e8 1.54410e9i −0.900536 1.59137i
\(991\) 4.06516e8 0.417693 0.208846 0.977948i \(-0.433029\pi\)
0.208846 + 0.977948i \(0.433029\pi\)
\(992\) 9.90344e7i 0.101450i
\(993\) −3.39793e8 1.29039e9i −0.347030 1.31788i
\(994\) 5.53541e8 0.563625
\(995\) 2.56073e8i 0.259953i
\(996\) −9.63365e7 + 2.53678e7i −0.0975019 + 0.0256746i
\(997\) 4.29286e8 0.433173 0.216587 0.976263i \(-0.430508\pi\)
0.216587 + 0.976263i \(0.430508\pi\)
\(998\) 1.46812e9i 1.47697i
\(999\) −4.99871e8 5.12997e8i −0.501374 0.514540i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 51.7.b.a.35.22 yes 32
3.2 odd 2 inner 51.7.b.a.35.11 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.7.b.a.35.11 32 3.2 odd 2 inner
51.7.b.a.35.22 yes 32 1.1 even 1 trivial