L(s) = 1 | + 6.35i·2-s + (−6.87 − 26.1i)3-s + 23.6·4-s − 214. i·5-s + (165. − 43.6i)6-s − 487.·7-s + 556. i·8-s + (−634. + 359. i)9-s + 1.36e3·10-s + 1.78e3i·11-s + (−162. − 617. i)12-s − 1.81e3·13-s − 3.09e3i·14-s + (−5.59e3 + 1.47e3i)15-s − 2.02e3·16-s + 1.19e3i·17-s + ⋯ |
L(s) = 1 | + 0.793i·2-s + (−0.254 − 0.967i)3-s + 0.369·4-s − 1.71i·5-s + (0.767 − 0.202i)6-s − 1.42·7-s + 1.08i·8-s + (−0.870 + 0.492i)9-s + 1.36·10-s + 1.34i·11-s + (−0.0941 − 0.357i)12-s − 0.826·13-s − 1.12i·14-s + (−1.65 + 0.436i)15-s − 0.493·16-s + 0.242i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.967 + 0.254i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (-0.967 + 0.254i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{7}{2})\) |
\(\approx\) |
\(0.0504149 - 0.389437i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0504149 - 0.389437i\) |
\(L(4)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (6.87 + 26.1i)T \) |
| 17 | \( 1 - 1.19e3iT \) |
good | 2 | \( 1 - 6.35iT - 64T^{2} \) |
| 5 | \( 1 + 214. iT - 1.56e4T^{2} \) |
| 7 | \( 1 + 487.T + 1.17e5T^{2} \) |
| 11 | \( 1 - 1.78e3iT - 1.77e6T^{2} \) |
| 13 | \( 1 + 1.81e3T + 4.82e6T^{2} \) |
| 19 | \( 1 - 152.T + 4.70e7T^{2} \) |
| 23 | \( 1 + 1.21e4iT - 1.48e8T^{2} \) |
| 29 | \( 1 + 3.89e4iT - 5.94e8T^{2} \) |
| 31 | \( 1 - 4.34e3T + 8.87e8T^{2} \) |
| 37 | \( 1 + 3.63e4T + 2.56e9T^{2} \) |
| 41 | \( 1 + 4.62e4iT - 4.75e9T^{2} \) |
| 43 | \( 1 + 9.74e4T + 6.32e9T^{2} \) |
| 47 | \( 1 + 3.74e4iT - 1.07e10T^{2} \) |
| 53 | \( 1 + 1.37e5iT - 2.21e10T^{2} \) |
| 59 | \( 1 + 9.98e4iT - 4.21e10T^{2} \) |
| 61 | \( 1 + 1.13e5T + 5.15e10T^{2} \) |
| 67 | \( 1 + 3.74e5T + 9.04e10T^{2} \) |
| 71 | \( 1 - 1.78e5iT - 1.28e11T^{2} \) |
| 73 | \( 1 + 1.89e5T + 1.51e11T^{2} \) |
| 79 | \( 1 - 7.69e5T + 2.43e11T^{2} \) |
| 83 | \( 1 + 1.55e5iT - 3.26e11T^{2} \) |
| 89 | \( 1 - 1.85e4iT - 4.96e11T^{2} \) |
| 97 | \( 1 + 1.12e6T + 8.32e11T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.48502985732219562228079110590, −12.51281541853282384712787624443, −12.04095978262761711511524746583, −9.865941189941337834223270531473, −8.500080510224066094980143588764, −7.30305764103437340529694906428, −6.22932998751734118266537371241, −4.93263382003067461738192937209, −2.08990032157680625355255529945, −0.16070746911115146690506169201,
3.03858527465114391623328321466, 3.33101828299059781380914978057, 6.03138360771578754340628397121, 7.01049000895856501073858282807, 9.453249647731489723975787969886, 10.34316072428526858214294080207, 11.01697641862528501101542658050, 12.02552691679070941134333063881, 13.66195613030121055845291312338, 14.91790525232465088689089189319