Properties

Label 51.6.a.d
Level $51$
Weight $6$
Character orbit 51.a
Self dual yes
Analytic conductor $8.180$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [51,6,Mod(1,51)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(51, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("51.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 51.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.17957481046\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 138x^{3} + 122x^{2} + 2304x + 2520 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - 9 q^{3} + (\beta_{4} + 2 \beta_{2} + \beta_1 + 24) q^{4} + ( - \beta_{4} - \beta_{3} + \cdots + 5 \beta_1) q^{5} - 9 \beta_1 q^{6} + (\beta_{4} - 9 \beta_{2} + 12 \beta_1 - 14) q^{7}+ \cdots + ( - 810 \beta_{4} - 729 \beta_{3} + \cdots - 1620) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{2} - 45 q^{3} + 117 q^{4} + 4 q^{5} - 9 q^{6} - 40 q^{7} - 15 q^{8} + 405 q^{9} + 1234 q^{10} - 46 q^{11} - 1053 q^{12} + 1912 q^{13} + 4544 q^{14} - 36 q^{15} + 7465 q^{16} + 1445 q^{17} + 81 q^{18}+ \cdots - 3726 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 138x^{3} + 122x^{2} + 2304x + 2520 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 3\nu^{4} - 5\nu^{3} - 368\nu^{2} + 654\nu + 2892 ) / 128 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{4} + 7\nu^{3} + 128\nu^{2} - 794\nu - 1220 ) / 32 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -3\nu^{4} + 5\nu^{3} + 432\nu^{2} - 718\nu - 6476 ) / 64 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} + 2\beta_{2} + \beta _1 + 56 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{4} + 6\beta_{3} + 6\beta_{2} + 107\beta _1 - 8 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 121\beta_{4} + 10\beta_{3} + 298\beta_{2} + 83\beta _1 + 5892 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−10.9973
−2.93119
−1.32128
5.50815
10.7416
−10.9973 −9.00000 88.9404 −61.0146 98.9756 −218.144 −626.190 81.0000 670.996
1.2 −2.93119 −9.00000 −23.4081 −74.4476 26.3807 64.4251 162.412 81.0000 218.220
1.3 −1.32128 −9.00000 −30.2542 78.2397 11.8915 −203.626 82.2553 81.0000 −103.377
1.4 5.50815 −9.00000 −1.66028 40.0248 −49.5733 256.808 −185.406 81.0000 220.463
1.5 10.7416 −9.00000 83.3822 21.1978 −96.6745 60.5370 551.928 81.0000 227.698
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 51.6.a.d 5
3.b odd 2 1 153.6.a.g 5
4.b odd 2 1 816.6.a.u 5
17.b even 2 1 867.6.a.i 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
51.6.a.d 5 1.a even 1 1 trivial
153.6.a.g 5 3.b odd 2 1
816.6.a.u 5 4.b odd 2 1
867.6.a.i 5 17.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{5} - T_{2}^{4} - 138T_{2}^{3} + 122T_{2}^{2} + 2304T_{2} + 2520 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(51))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} - T^{4} + \cdots + 2520 \) Copy content Toggle raw display
$3$ \( (T + 9)^{5} \) Copy content Toggle raw display
$5$ \( T^{5} - 4 T^{4} + \cdots - 301530168 \) Copy content Toggle raw display
$7$ \( T^{5} + \cdots - 44489834496 \) Copy content Toggle raw display
$11$ \( T^{5} + \cdots + 12261839113152 \) Copy content Toggle raw display
$13$ \( T^{5} + \cdots + 2121939133768 \) Copy content Toggle raw display
$17$ \( (T - 289)^{5} \) Copy content Toggle raw display
$19$ \( T^{5} + \cdots + 27911819012544 \) Copy content Toggle raw display
$23$ \( T^{5} + \cdots - 3036499623936 \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots + 90\!\cdots\!28 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots - 27\!\cdots\!96 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots - 39\!\cdots\!44 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots - 35\!\cdots\!56 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots - 35\!\cdots\!36 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots - 12\!\cdots\!16 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots - 54\!\cdots\!52 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots + 11\!\cdots\!72 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots + 16\!\cdots\!16 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots + 27\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots + 15\!\cdots\!96 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots - 22\!\cdots\!64 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots - 12\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots + 37\!\cdots\!72 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots - 58\!\cdots\!60 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots - 24\!\cdots\!36 \) Copy content Toggle raw display
show more
show less